MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  4001lem2 Structured version   Visualization version   GIF version

Theorem 4001lem2 15849
Description: Lemma for 4001prm 15852. Calculate a power mod. In decimal, we calculate 2↑400 = (2↑200)↑2≡902↑2 = 203𝑁 + 1401 and 2↑800 = (2↑400)↑2≡1401↑2 = 490𝑁 + 2311 ≡2311. (Contributed by Mario Carneiro, 3-Mar-2014.) (Revised by Mario Carneiro, 20-Apr-2015.) (Proof shortened by AV, 16-Sep-2021.)
Hypothesis
Ref Expression
4001prm.1 𝑁 = 4001
Assertion
Ref Expression
4001lem2 ((2↑800) mod 𝑁) = (2311 mod 𝑁)

Proof of Theorem 4001lem2
StepHypRef Expression
1 4001prm.1 . . 3 𝑁 = 4001
2 4nn0 11311 . . . . . 6 4 ∈ ℕ0
3 0nn0 11307 . . . . . 6 0 ∈ ℕ0
42, 3deccl 11512 . . . . 5 40 ∈ ℕ0
54, 3deccl 11512 . . . 4 400 ∈ ℕ0
6 1nn 11031 . . . 4 1 ∈ ℕ
75, 6decnncl 11518 . . 3 4001 ∈ ℕ
81, 7eqeltri 2697 . 2 𝑁 ∈ ℕ
9 2nn 11185 . 2 2 ∈ ℕ
10 9nn0 11316 . . . . 5 9 ∈ ℕ0
112, 10deccl 11512 . . . 4 49 ∈ ℕ0
1211, 3deccl 11512 . . 3 490 ∈ ℕ0
1312nn0zi 11402 . 2 490 ∈ ℤ
14 1nn0 11308 . . . . 5 1 ∈ ℕ0
1514, 2deccl 11512 . . . 4 14 ∈ ℕ0
1615, 3deccl 11512 . . 3 140 ∈ ℕ0
1716, 14deccl 11512 . 2 1401 ∈ ℕ0
18 2nn0 11309 . . . . 5 2 ∈ ℕ0
19 3nn0 11310 . . . . 5 3 ∈ ℕ0
2018, 19deccl 11512 . . . 4 23 ∈ ℕ0
2120, 14deccl 11512 . . 3 231 ∈ ℕ0
2221, 14deccl 11512 . 2 2311 ∈ ℕ0
2318, 3deccl 11512 . . . 4 20 ∈ ℕ0
2423, 3deccl 11512 . . 3 200 ∈ ℕ0
2523, 19deccl 11512 . . . 4 203 ∈ ℕ0
2625nn0zi 11402 . . 3 203 ∈ ℤ
2710, 3deccl 11512 . . . 4 90 ∈ ℕ0
2827, 18deccl 11512 . . 3 902 ∈ ℕ0
2914001lem1 15848 . . 3 ((2↑200) mod 𝑁) = (902 mod 𝑁)
3024nn0cni 11304 . . . 4 200 ∈ ℂ
31 2cn 11091 . . . 4 2 ∈ ℂ
32 eqid 2622 . . . . 5 200 = 200
33 eqid 2622 . . . . . 6 20 = 20
34 2t2e4 11177 . . . . . 6 (2 · 2) = 4
3531mul02i 10225 . . . . . 6 (0 · 2) = 0
3618, 18, 3, 33, 3, 34, 35decmul1 11585 . . . . 5 (20 · 2) = 40
3718, 23, 3, 32, 3, 36, 35decmul1 11585 . . . 4 (200 · 2) = 400
3830, 31, 37mulcomli 10047 . . 3 (2 · 200) = 400
39 eqid 2622 . . . . 5 1401 = 1401
40 6nn0 11313 . . . . . . 7 6 ∈ ℕ0
4114, 40deccl 11512 . . . . . 6 16 ∈ ℕ0
42 eqid 2622 . . . . . 6 400 = 400
43 eqid 2622 . . . . . . 7 140 = 140
44 eqid 2622 . . . . . . . 8 14 = 14
45 4p2e6 11162 . . . . . . . 8 (4 + 2) = 6
4614, 2, 18, 44, 45decaddi 11579 . . . . . . 7 (14 + 2) = 16
47 00id 10211 . . . . . . 7 (0 + 0) = 0
4815, 3, 18, 3, 43, 33, 46, 47decadd 11570 . . . . . 6 (140 + 20) = 160
49 eqid 2622 . . . . . . 7 40 = 40
5041nn0cni 11304 . . . . . . . 8 16 ∈ ℂ
5150addid1i 10223 . . . . . . 7 (16 + 0) = 16
52 eqid 2622 . . . . . . . 8 203 = 203
53 ax-1cn 9994 . . . . . . . . . 10 1 ∈ ℂ
5453addid1i 10223 . . . . . . . . 9 (1 + 0) = 1
5514dec0h 11522 . . . . . . . . 9 1 = 01
5654, 55eqtri 2644 . . . . . . . 8 (1 + 0) = 01
5753addid2i 10224 . . . . . . . . . 10 (0 + 1) = 1
5857, 14eqeltri 2697 . . . . . . . . 9 (0 + 1) ∈ ℕ0
59 4cn 11098 . . . . . . . . . 10 4 ∈ ℂ
60 4t2e8 11181 . . . . . . . . . 10 (4 · 2) = 8
6159, 31, 60mulcomli 10047 . . . . . . . . 9 (2 · 4) = 8
6259mul02i 10225 . . . . . . . . . . 11 (0 · 4) = 0
6362, 57oveq12i 6662 . . . . . . . . . 10 ((0 · 4) + (0 + 1)) = (0 + 1)
6463, 57eqtri 2644 . . . . . . . . 9 ((0 · 4) + (0 + 1)) = 1
6518, 3, 58, 33, 2, 61, 64decrmanc 11576 . . . . . . . 8 ((20 · 4) + (0 + 1)) = 81
66 2p1e3 11151 . . . . . . . . 9 (2 + 1) = 3
67 3cn 11095 . . . . . . . . . 10 3 ∈ ℂ
68 4t3e12 11632 . . . . . . . . . 10 (4 · 3) = 12
6959, 67, 68mulcomli 10047 . . . . . . . . 9 (3 · 4) = 12
7014, 18, 66, 69decsuc 11535 . . . . . . . 8 ((3 · 4) + 1) = 13
7123, 19, 3, 14, 52, 56, 2, 19, 14, 65, 70decmac 11566 . . . . . . 7 ((203 · 4) + (1 + 0)) = 813
7225nn0cni 11304 . . . . . . . . . 10 203 ∈ ℂ
7372mul01i 10226 . . . . . . . . 9 (203 · 0) = 0
7473oveq1i 6660 . . . . . . . 8 ((203 · 0) + 6) = (0 + 6)
75 6cn 11102 . . . . . . . . 9 6 ∈ ℂ
7675addid2i 10224 . . . . . . . 8 (0 + 6) = 6
7740dec0h 11522 . . . . . . . 8 6 = 06
7874, 76, 773eqtri 2648 . . . . . . 7 ((203 · 0) + 6) = 06
792, 3, 14, 40, 49, 51, 25, 40, 3, 71, 78decma2c 11568 . . . . . 6 ((203 · 40) + (16 + 0)) = 8136
8073oveq1i 6660 . . . . . . 7 ((203 · 0) + 0) = (0 + 0)
813dec0h 11522 . . . . . . 7 0 = 00
8280, 47, 813eqtri 2648 . . . . . 6 ((203 · 0) + 0) = 00
834, 3, 41, 3, 42, 48, 25, 3, 3, 79, 82decma2c 11568 . . . . 5 ((203 · 400) + (140 + 20)) = 81360
8431mulid1i 10042 . . . . . . 7 (2 · 1) = 2
8553mul02i 10225 . . . . . . 7 (0 · 1) = 0
8614, 18, 3, 33, 3, 84, 85decmul1 11585 . . . . . 6 (20 · 1) = 20
8767mulid1i 10042 . . . . . . . 8 (3 · 1) = 3
8887oveq1i 6660 . . . . . . 7 ((3 · 1) + 1) = (3 + 1)
89 3p1e4 11153 . . . . . . 7 (3 + 1) = 4
9088, 89eqtri 2644 . . . . . 6 ((3 · 1) + 1) = 4
9123, 19, 14, 52, 14, 86, 90decrmanc 11576 . . . . 5 ((203 · 1) + 1) = 204
925, 14, 16, 14, 1, 39, 25, 2, 23, 83, 91decma2c 11568 . . . 4 ((203 · 𝑁) + 1401) = 813604
93 eqid 2622 . . . . 5 902 = 902
94 8nn0 11315 . . . . . . 7 8 ∈ ℕ0
9514, 94deccl 11512 . . . . . 6 18 ∈ ℕ0
9695, 3deccl 11512 . . . . 5 180 ∈ ℕ0
97 eqid 2622 . . . . . 6 90 = 90
98 eqid 2622 . . . . . 6 180 = 180
9995nn0cni 11304 . . . . . . . 8 18 ∈ ℂ
10099addid1i 10223 . . . . . . 7 (18 + 0) = 18
101 1p2e3 11152 . . . . . . . . 9 (1 + 2) = 3
102101, 19eqeltri 2697 . . . . . . . 8 (1 + 2) ∈ ℕ0
103 9t9e81 11670 . . . . . . . 8 (9 · 9) = 81
104 9cn 11108 . . . . . . . . . . 11 9 ∈ ℂ
105104mul02i 10225 . . . . . . . . . 10 (0 · 9) = 0
106105, 101oveq12i 6662 . . . . . . . . 9 ((0 · 9) + (1 + 2)) = (0 + 3)
10767addid2i 10224 . . . . . . . . 9 (0 + 3) = 3
108106, 107eqtri 2644 . . . . . . . 8 ((0 · 9) + (1 + 2)) = 3
10910, 3, 102, 97, 10, 103, 108decrmanc 11576 . . . . . . 7 ((90 · 9) + (1 + 2)) = 813
110 9t2e18 11663 . . . . . . . . 9 (9 · 2) = 18
111104, 31, 110mulcomli 10047 . . . . . . . 8 (2 · 9) = 18
112 1p1e2 11134 . . . . . . . 8 (1 + 1) = 2
113 8p8e16 11618 . . . . . . . 8 (8 + 8) = 16
11414, 94, 94, 111, 112, 40, 113decaddci 11580 . . . . . . 7 ((2 · 9) + 8) = 26
11527, 18, 14, 94, 93, 100, 10, 40, 18, 109, 114decmac 11566 . . . . . 6 ((902 · 9) + (18 + 0)) = 8136
11628nn0cni 11304 . . . . . . . . 9 902 ∈ ℂ
117116mul01i 10226 . . . . . . . 8 (902 · 0) = 0
118117oveq1i 6660 . . . . . . 7 ((902 · 0) + 0) = (0 + 0)
119118, 47, 813eqtri 2648 . . . . . 6 ((902 · 0) + 0) = 00
12010, 3, 95, 3, 97, 98, 28, 3, 3, 115, 119decma2c 11568 . . . . 5 ((902 · 90) + 180) = 81360
12118, 10, 3, 97, 3, 110, 35decmul1 11585 . . . . . 6 (90 · 2) = 180
12218, 27, 18, 93, 2, 121, 34decmul1 11585 . . . . 5 (902 · 2) = 1804
12328, 27, 18, 93, 2, 96, 120, 122decmul2c 11589 . . . 4 (902 · 902) = 813604
12492, 123eqtr4i 2647 . . 3 ((203 · 𝑁) + 1401) = (902 · 902)
1258, 9, 24, 26, 28, 17, 29, 38, 124mod2xi 15773 . 2 ((2↑400) mod 𝑁) = (1401 mod 𝑁)
1265nn0cni 11304 . . 3 400 ∈ ℂ
12718, 2, 3, 49, 3, 60, 35decmul1 11585 . . . 4 (40 · 2) = 80
12818, 4, 3, 42, 3, 127, 35decmul1 11585 . . 3 (400 · 2) = 800
129126, 31, 128mulcomli 10047 . 2 (2 · 400) = 800
130 eqid 2622 . . . 4 2311 = 2311
13118, 94deccl 11512 . . . . 5 28 ∈ ℕ0
132 eqid 2622 . . . . . 6 231 = 231
133 eqid 2622 . . . . . 6 49 = 49
134 7nn0 11314 . . . . . . 7 7 ∈ ℕ0
135 7p1e8 11157 . . . . . . 7 (7 + 1) = 8
136 eqid 2622 . . . . . . . 8 23 = 23
137 4p3e7 11163 . . . . . . . . 9 (4 + 3) = 7
13859, 67, 137addcomli 10228 . . . . . . . 8 (3 + 4) = 7
13918, 19, 2, 136, 138decaddi 11579 . . . . . . 7 (23 + 4) = 27
14018, 134, 135, 139decsuc 11535 . . . . . 6 ((23 + 4) + 1) = 28
141 9p1e10 11496 . . . . . . 7 (9 + 1) = 10
142104, 53, 141addcomli 10228 . . . . . 6 (1 + 9) = 10
14320, 14, 2, 10, 132, 133, 140, 142decaddc2 11575 . . . . 5 (231 + 49) = 280
144131nn0cni 11304 . . . . . . 7 28 ∈ ℂ
145144addid1i 10223 . . . . . 6 (28 + 0) = 28
14631addid1i 10223 . . . . . . . 8 (2 + 0) = 2
147146, 18eqeltri 2697 . . . . . . 7 (2 + 0) ∈ ℕ0
148 eqid 2622 . . . . . . 7 490 = 490
149 4t4e16 11633 . . . . . . . . 9 (4 · 4) = 16
150 6p3e9 11170 . . . . . . . . 9 (6 + 3) = 9
15114, 40, 19, 149, 150decaddi 11579 . . . . . . . 8 ((4 · 4) + 3) = 19
152 9t4e36 11665 . . . . . . . 8 (9 · 4) = 36
1532, 2, 10, 133, 40, 19, 151, 152decmul1c 11587 . . . . . . 7 (49 · 4) = 196
15462, 146oveq12i 6662 . . . . . . . 8 ((0 · 4) + (2 + 0)) = (0 + 2)
15531addid2i 10224 . . . . . . . 8 (0 + 2) = 2
156154, 155eqtri 2644 . . . . . . 7 ((0 · 4) + (2 + 0)) = 2
15711, 3, 147, 148, 2, 153, 156decrmanc 11576 . . . . . 6 ((490 · 4) + (2 + 0)) = 1962
15812nn0cni 11304 . . . . . . . . 9 490 ∈ ℂ
159158mul01i 10226 . . . . . . . 8 (490 · 0) = 0
160159oveq1i 6660 . . . . . . 7 ((490 · 0) + 8) = (0 + 8)
161 8cn 11106 . . . . . . . 8 8 ∈ ℂ
162161addid2i 10224 . . . . . . 7 (0 + 8) = 8
16394dec0h 11522 . . . . . . 7 8 = 08
164160, 162, 1633eqtri 2648 . . . . . 6 ((490 · 0) + 8) = 08
1652, 3, 18, 94, 49, 145, 12, 94, 3, 157, 164decma2c 11568 . . . . 5 ((490 · 40) + (28 + 0)) = 19628
166159oveq1i 6660 . . . . . 6 ((490 · 0) + 0) = (0 + 0)
167166, 47, 813eqtri 2648 . . . . 5 ((490 · 0) + 0) = 00
1684, 3, 131, 3, 42, 143, 12, 3, 3, 165, 167decma2c 11568 . . . 4 ((490 · 400) + (231 + 49)) = 196280
16959mulid1i 10042 . . . . . 6 (4 · 1) = 4
170104mulid1i 10042 . . . . . 6 (9 · 1) = 9
17114, 2, 10, 133, 10, 169, 170decmul1 11585 . . . . 5 (49 · 1) = 49
17285oveq1i 6660 . . . . . 6 ((0 · 1) + 1) = (0 + 1)
173172, 57eqtri 2644 . . . . 5 ((0 · 1) + 1) = 1
17411, 3, 14, 148, 14, 171, 173decrmanc 11576 . . . 4 ((490 · 1) + 1) = 491
1755, 14, 21, 14, 1, 130, 12, 14, 11, 168, 174decma2c 11568 . . 3 ((490 · 𝑁) + 2311) = 1962801
17615nn0cni 11304 . . . . . . 7 14 ∈ ℂ
177176addid1i 10223 . . . . . 6 (14 + 0) = 14
178 5nn0 11312 . . . . . . . 8 5 ∈ ℕ0
179178, 40deccl 11512 . . . . . . 7 56 ∈ ℕ0
180179, 3deccl 11512 . . . . . 6 560 ∈ ℕ0
181 eqid 2622 . . . . . . . 8 560 = 560
182179nn0cni 11304 . . . . . . . . 9 56 ∈ ℂ
183182addid2i 10224 . . . . . . . 8 (0 + 56) = 56
1843, 14, 179, 3, 55, 181, 183, 54decadd 11570 . . . . . . 7 (1 + 560) = 561
185182addid1i 10223 . . . . . . . 8 (56 + 0) = 56
186 5cn 11100 . . . . . . . . . . 11 5 ∈ ℂ
187186addid1i 10223 . . . . . . . . . 10 (5 + 0) = 5
188187, 178eqeltri 2697 . . . . . . . . 9 (5 + 0) ∈ ℕ0
18953mulid1i 10042 . . . . . . . . 9 (1 · 1) = 1
190169, 187oveq12i 6662 . . . . . . . . . 10 ((4 · 1) + (5 + 0)) = (4 + 5)
191 5p4e9 11167 . . . . . . . . . . 11 (5 + 4) = 9
192186, 59, 191addcomli 10228 . . . . . . . . . 10 (4 + 5) = 9
193190, 192eqtri 2644 . . . . . . . . 9 ((4 · 1) + (5 + 0)) = 9
19414, 2, 188, 44, 14, 189, 193decrmanc 11576 . . . . . . . 8 ((14 · 1) + (5 + 0)) = 19
19585oveq1i 6660 . . . . . . . . 9 ((0 · 1) + 6) = (0 + 6)
196195, 76, 773eqtri 2648 . . . . . . . 8 ((0 · 1) + 6) = 06
19715, 3, 178, 40, 43, 185, 14, 40, 3, 194, 196decmac 11566 . . . . . . 7 ((140 · 1) + (56 + 0)) = 196
198189oveq1i 6660 . . . . . . . 8 ((1 · 1) + 1) = (1 + 1)
19918dec0h 11522 . . . . . . . 8 2 = 02
200198, 112, 1993eqtri 2648 . . . . . . 7 ((1 · 1) + 1) = 02
20116, 14, 179, 14, 39, 184, 14, 18, 3, 197, 200decmac 11566 . . . . . 6 ((1401 · 1) + (1 + 560)) = 1962
20259mulid2i 10043 . . . . . . . . . . . 12 (1 · 4) = 4
203202oveq1i 6660 . . . . . . . . . . 11 ((1 · 4) + 1) = (4 + 1)
204 4p1e5 11154 . . . . . . . . . . 11 (4 + 1) = 5
205203, 204eqtri 2644 . . . . . . . . . 10 ((1 · 4) + 1) = 5
2062, 14, 2, 44, 40, 14, 205, 149decmul1c 11587 . . . . . . . . 9 (14 · 4) = 56
20775addid1i 10223 . . . . . . . . 9 (6 + 0) = 6
208178, 40, 3, 206, 207decaddi 11579 . . . . . . . 8 ((14 · 4) + 0) = 56
209 0cn 10032 . . . . . . . . 9 0 ∈ ℂ
21059mul01i 10226 . . . . . . . . . 10 (4 · 0) = 0
211210, 81eqtri 2644 . . . . . . . . 9 (4 · 0) = 00
21259, 209, 211mulcomli 10047 . . . . . . . 8 (0 · 4) = 00
2132, 15, 3, 43, 3, 3, 208, 212decmul1c 11587 . . . . . . 7 (140 · 4) = 560
214202oveq1i 6660 . . . . . . . 8 ((1 · 4) + 4) = (4 + 4)
215 4p4e8 11164 . . . . . . . 8 (4 + 4) = 8
216214, 215eqtri 2644 . . . . . . 7 ((1 · 4) + 4) = 8
21716, 14, 2, 39, 2, 213, 216decrmanc 11576 . . . . . 6 ((1401 · 4) + 4) = 5608
21814, 2, 14, 2, 44, 177, 17, 94, 180, 201, 217decma2c 11568 . . . . 5 ((1401 · 14) + (14 + 0)) = 19628
21917nn0cni 11304 . . . . . . . 8 1401 ∈ ℂ
220219mul01i 10226 . . . . . . 7 (1401 · 0) = 0
221220oveq1i 6660 . . . . . 6 ((1401 · 0) + 0) = (0 + 0)
222221, 47, 813eqtri 2648 . . . . 5 ((1401 · 0) + 0) = 00
22315, 3, 15, 3, 43, 43, 17, 3, 3, 218, 222decma2c 11568 . . . 4 ((1401 · 140) + 140) = 196280
224219mulid1i 10042 . . . 4 (1401 · 1) = 1401
22517, 16, 14, 39, 14, 16, 223, 224decmul2c 11589 . . 3 (1401 · 1401) = 1962801
226175, 225eqtr4i 2647 . 2 ((490 · 𝑁) + 2311) = (1401 · 1401)
2278, 9, 5, 13, 17, 22, 125, 129, 226mod2xi 15773 1 ((2↑800) mod 𝑁) = (2311 mod 𝑁)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1483  (class class class)co 6650  0cc0 9936  1c1 9937   + caddc 9939   · cmul 9941  cn 11020  2c2 11070  3c3 11071  4c4 11072  5c5 11073  6c6 11074  7c7 11075  8c8 11076  9c9 11077  0cn0 11292  cdc 11493   mod cmo 12668  cexp 12860
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-rp 11833  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861
This theorem is referenced by:  4001lem3  15850  4001lem4  15851
  Copyright terms: Public domain W3C validator