Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ovnovollem1 Structured version   Visualization version   GIF version

Theorem ovnovollem1 40870
Description: if 𝐹 is a cover of 𝐵 in , then 𝐼 is the corresponding cover in the space of 1-dimensional reals. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
Hypotheses
Ref Expression
ovnovollem1.a (𝜑𝐴𝑉)
ovnovollem1.f (𝜑𝐹 ∈ ((ℝ × ℝ) ↑𝑚 ℕ))
ovnovollem1.i 𝐼 = (𝑗 ∈ ℕ ↦ {⟨𝐴, (𝐹𝑗)⟩})
ovnovollem1.s (𝜑𝐵 ran ([,) ∘ 𝐹))
ovnovollem1.b (𝜑𝐵𝑊)
ovnovollem1.z (𝜑𝑍 = (Σ^‘((vol ∘ [,)) ∘ 𝐹)))
Assertion
Ref Expression
ovnovollem1 (𝜑 → ∃𝑖 ∈ (((ℝ × ℝ) ↑𝑚 {𝐴}) ↑𝑚 ℕ)((𝐵𝑚 {𝐴}) ⊆ 𝑗 ∈ ℕ X𝑘 ∈ {𝐴} (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑍 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝑖𝑗))‘𝑘))))))
Distinct variable groups:   𝐴,𝑖,𝑗,𝑘   𝐵,𝑖   𝑗,𝐹,𝑘   𝑖,𝐼,𝑗,𝑘   𝑘,𝑉   𝑖,𝑍   𝜑,𝑗,𝑘
Allowed substitution hints:   𝜑(𝑖)   𝐵(𝑗,𝑘)   𝐹(𝑖)   𝑉(𝑖,𝑗)   𝑊(𝑖,𝑗,𝑘)   𝑍(𝑗,𝑘)

Proof of Theorem ovnovollem1
StepHypRef Expression
1 eqidd 2623 . . . . . . 7 ((𝜑𝑗 ∈ ℕ) → {⟨𝐴, (𝐹𝑗)⟩} = {⟨𝐴, (𝐹𝑗)⟩})
2 ovnovollem1.a . . . . . . . . 9 (𝜑𝐴𝑉)
32adantr 481 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ) → 𝐴𝑉)
4 ovnovollem1.f . . . . . . . . . 10 (𝜑𝐹 ∈ ((ℝ × ℝ) ↑𝑚 ℕ))
5 elmapi 7879 . . . . . . . . . 10 (𝐹 ∈ ((ℝ × ℝ) ↑𝑚 ℕ) → 𝐹:ℕ⟶(ℝ × ℝ))
64, 5syl 17 . . . . . . . . 9 (𝜑𝐹:ℕ⟶(ℝ × ℝ))
76ffvelrnda 6359 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ) → (𝐹𝑗) ∈ (ℝ × ℝ))
8 fsng 6404 . . . . . . . 8 ((𝐴𝑉 ∧ (𝐹𝑗) ∈ (ℝ × ℝ)) → ({⟨𝐴, (𝐹𝑗)⟩}:{𝐴}⟶{(𝐹𝑗)} ↔ {⟨𝐴, (𝐹𝑗)⟩} = {⟨𝐴, (𝐹𝑗)⟩}))
93, 7, 8syl2anc 693 . . . . . . 7 ((𝜑𝑗 ∈ ℕ) → ({⟨𝐴, (𝐹𝑗)⟩}:{𝐴}⟶{(𝐹𝑗)} ↔ {⟨𝐴, (𝐹𝑗)⟩} = {⟨𝐴, (𝐹𝑗)⟩}))
101, 9mpbird 247 . . . . . 6 ((𝜑𝑗 ∈ ℕ) → {⟨𝐴, (𝐹𝑗)⟩}:{𝐴}⟶{(𝐹𝑗)})
117snssd 4340 . . . . . 6 ((𝜑𝑗 ∈ ℕ) → {(𝐹𝑗)} ⊆ (ℝ × ℝ))
1210, 11fssd 6057 . . . . 5 ((𝜑𝑗 ∈ ℕ) → {⟨𝐴, (𝐹𝑗)⟩}:{𝐴}⟶(ℝ × ℝ))
13 reex 10027 . . . . . . . 8 ℝ ∈ V
1413, 13xpex 6962 . . . . . . 7 (ℝ × ℝ) ∈ V
1514a1i 11 . . . . . 6 ((𝜑𝑗 ∈ ℕ) → (ℝ × ℝ) ∈ V)
16 snex 4908 . . . . . . 7 {𝐴} ∈ V
1716a1i 11 . . . . . 6 ((𝜑𝑗 ∈ ℕ) → {𝐴} ∈ V)
1815, 17elmapd 7871 . . . . 5 ((𝜑𝑗 ∈ ℕ) → ({⟨𝐴, (𝐹𝑗)⟩} ∈ ((ℝ × ℝ) ↑𝑚 {𝐴}) ↔ {⟨𝐴, (𝐹𝑗)⟩}:{𝐴}⟶(ℝ × ℝ)))
1912, 18mpbird 247 . . . 4 ((𝜑𝑗 ∈ ℕ) → {⟨𝐴, (𝐹𝑗)⟩} ∈ ((ℝ × ℝ) ↑𝑚 {𝐴}))
20 ovnovollem1.i . . . 4 𝐼 = (𝑗 ∈ ℕ ↦ {⟨𝐴, (𝐹𝑗)⟩})
2119, 20fmptd 6385 . . 3 (𝜑𝐼:ℕ⟶((ℝ × ℝ) ↑𝑚 {𝐴}))
22 ovexd 6680 . . . 4 (𝜑 → ((ℝ × ℝ) ↑𝑚 {𝐴}) ∈ V)
23 nnex 11026 . . . . 5 ℕ ∈ V
2423a1i 11 . . . 4 (𝜑 → ℕ ∈ V)
2522, 24elmapd 7871 . . 3 (𝜑 → (𝐼 ∈ (((ℝ × ℝ) ↑𝑚 {𝐴}) ↑𝑚 ℕ) ↔ 𝐼:ℕ⟶((ℝ × ℝ) ↑𝑚 {𝐴})))
2621, 25mpbird 247 . 2 (𝜑𝐼 ∈ (((ℝ × ℝ) ↑𝑚 {𝐴}) ↑𝑚 ℕ))
27 ovnovollem1.s . . . . . 6 (𝜑𝐵 ran ([,) ∘ 𝐹))
28 icof 39411 . . . . . . . . . . 11 [,):(ℝ* × ℝ*)⟶𝒫 ℝ*
2928a1i 11 . . . . . . . . . 10 (𝜑 → [,):(ℝ* × ℝ*)⟶𝒫 ℝ*)
30 rexpssxrxp 10084 . . . . . . . . . . 11 (ℝ × ℝ) ⊆ (ℝ* × ℝ*)
3130a1i 11 . . . . . . . . . 10 (𝜑 → (ℝ × ℝ) ⊆ (ℝ* × ℝ*))
3229, 31, 6fcoss 39402 . . . . . . . . 9 (𝜑 → ([,) ∘ 𝐹):ℕ⟶𝒫 ℝ*)
3332ffnd 6046 . . . . . . . 8 (𝜑 → ([,) ∘ 𝐹) Fn ℕ)
34 fniunfv 6505 . . . . . . . 8 (([,) ∘ 𝐹) Fn ℕ → 𝑗 ∈ ℕ (([,) ∘ 𝐹)‘𝑗) = ran ([,) ∘ 𝐹))
3533, 34syl 17 . . . . . . 7 (𝜑 𝑗 ∈ ℕ (([,) ∘ 𝐹)‘𝑗) = ran ([,) ∘ 𝐹))
3635eqcomd 2628 . . . . . 6 (𝜑 ran ([,) ∘ 𝐹) = 𝑗 ∈ ℕ (([,) ∘ 𝐹)‘𝑗))
3727, 36sseqtrd 3641 . . . . 5 (𝜑𝐵 𝑗 ∈ ℕ (([,) ∘ 𝐹)‘𝑗))
38 ovnovollem1.b . . . . . 6 (𝜑𝐵𝑊)
39 fvex 6201 . . . . . . . 8 (([,) ∘ 𝐹)‘𝑗) ∈ V
4023, 39iunex 7147 . . . . . . 7 𝑗 ∈ ℕ (([,) ∘ 𝐹)‘𝑗) ∈ V
4140a1i 11 . . . . . 6 (𝜑 𝑗 ∈ ℕ (([,) ∘ 𝐹)‘𝑗) ∈ V)
4216a1i 11 . . . . . 6 (𝜑 → {𝐴} ∈ V)
432snn0d 39258 . . . . . 6 (𝜑 → {𝐴} ≠ ∅)
4438, 41, 42, 43mapss2 39397 . . . . 5 (𝜑 → (𝐵 𝑗 ∈ ℕ (([,) ∘ 𝐹)‘𝑗) ↔ (𝐵𝑚 {𝐴}) ⊆ ( 𝑗 ∈ ℕ (([,) ∘ 𝐹)‘𝑗) ↑𝑚 {𝐴})))
4537, 44mpbid 222 . . . 4 (𝜑 → (𝐵𝑚 {𝐴}) ⊆ ( 𝑗 ∈ ℕ (([,) ∘ 𝐹)‘𝑗) ↑𝑚 {𝐴}))
46 nfv 1843 . . . . . . 7 𝑗𝜑
47 fvexd 6203 . . . . . . 7 ((𝜑𝑗 ∈ ℕ) → ([,)‘(𝐹𝑗)) ∈ V)
4846, 24, 47, 2iunmapsn 39409 . . . . . 6 (𝜑 𝑗 ∈ ℕ (([,)‘(𝐹𝑗)) ↑𝑚 {𝐴}) = ( 𝑗 ∈ ℕ ([,)‘(𝐹𝑗)) ↑𝑚 {𝐴}))
4948eqcomd 2628 . . . . 5 (𝜑 → ( 𝑗 ∈ ℕ ([,)‘(𝐹𝑗)) ↑𝑚 {𝐴}) = 𝑗 ∈ ℕ (([,)‘(𝐹𝑗)) ↑𝑚 {𝐴}))
50 elmapfun 7881 . . . . . . . . . 10 (𝐹 ∈ ((ℝ × ℝ) ↑𝑚 ℕ) → Fun 𝐹)
514, 50syl 17 . . . . . . . . 9 (𝜑 → Fun 𝐹)
5251adantr 481 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ) → Fun 𝐹)
53 simpr 477 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ) → 𝑗 ∈ ℕ)
54 fdm 6051 . . . . . . . . . . . 12 (𝐹:ℕ⟶(ℝ × ℝ) → dom 𝐹 = ℕ)
556, 54syl 17 . . . . . . . . . . 11 (𝜑 → dom 𝐹 = ℕ)
5655eqcomd 2628 . . . . . . . . . 10 (𝜑 → ℕ = dom 𝐹)
5756adantr 481 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ) → ℕ = dom 𝐹)
5853, 57eleqtrd 2703 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ) → 𝑗 ∈ dom 𝐹)
59 fvco 6274 . . . . . . . 8 ((Fun 𝐹𝑗 ∈ dom 𝐹) → (([,) ∘ 𝐹)‘𝑗) = ([,)‘(𝐹𝑗)))
6052, 58, 59syl2anc 693 . . . . . . 7 ((𝜑𝑗 ∈ ℕ) → (([,) ∘ 𝐹)‘𝑗) = ([,)‘(𝐹𝑗)))
6160iuneq2dv 4542 . . . . . 6 (𝜑 𝑗 ∈ ℕ (([,) ∘ 𝐹)‘𝑗) = 𝑗 ∈ ℕ ([,)‘(𝐹𝑗)))
6261oveq1d 6665 . . . . 5 (𝜑 → ( 𝑗 ∈ ℕ (([,) ∘ 𝐹)‘𝑗) ↑𝑚 {𝐴}) = ( 𝑗 ∈ ℕ ([,)‘(𝐹𝑗)) ↑𝑚 {𝐴}))
63 ffun 6048 . . . . . . . . . . . . 13 ({⟨𝐴, (𝐹𝑗)⟩}:{𝐴}⟶{(𝐹𝑗)} → Fun {⟨𝐴, (𝐹𝑗)⟩})
6410, 63syl 17 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ℕ) → Fun {⟨𝐴, (𝐹𝑗)⟩})
65 id 22 . . . . . . . . . . . . . . 15 (𝑗 ∈ ℕ → 𝑗 ∈ ℕ)
66 snex 4908 . . . . . . . . . . . . . . . 16 {⟨𝐴, (𝐹𝑗)⟩} ∈ V
6766a1i 11 . . . . . . . . . . . . . . 15 (𝑗 ∈ ℕ → {⟨𝐴, (𝐹𝑗)⟩} ∈ V)
6820fvmpt2 6291 . . . . . . . . . . . . . . 15 ((𝑗 ∈ ℕ ∧ {⟨𝐴, (𝐹𝑗)⟩} ∈ V) → (𝐼𝑗) = {⟨𝐴, (𝐹𝑗)⟩})
6965, 67, 68syl2anc 693 . . . . . . . . . . . . . 14 (𝑗 ∈ ℕ → (𝐼𝑗) = {⟨𝐴, (𝐹𝑗)⟩})
7069adantl 482 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ ℕ) → (𝐼𝑗) = {⟨𝐴, (𝐹𝑗)⟩})
7170funeqd 5910 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ℕ) → (Fun (𝐼𝑗) ↔ Fun {⟨𝐴, (𝐹𝑗)⟩}))
7264, 71mpbird 247 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ℕ) → Fun (𝐼𝑗))
7372adantr 481 . . . . . . . . . 10 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘 ∈ {𝐴}) → Fun (𝐼𝑗))
74 simpr 477 . . . . . . . . . . 11 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘 ∈ {𝐴}) → 𝑘 ∈ {𝐴})
7570dmeqd 5326 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ ℕ) → dom (𝐼𝑗) = dom {⟨𝐴, (𝐹𝑗)⟩})
76 fdm 6051 . . . . . . . . . . . . . . 15 ({⟨𝐴, (𝐹𝑗)⟩}:{𝐴}⟶(ℝ × ℝ) → dom {⟨𝐴, (𝐹𝑗)⟩} = {𝐴})
7712, 76syl 17 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ ℕ) → dom {⟨𝐴, (𝐹𝑗)⟩} = {𝐴})
7875, 77eqtrd 2656 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ ℕ) → dom (𝐼𝑗) = {𝐴})
7978eleq2d 2687 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ℕ) → (𝑘 ∈ dom (𝐼𝑗) ↔ 𝑘 ∈ {𝐴}))
8079adantr 481 . . . . . . . . . . 11 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘 ∈ {𝐴}) → (𝑘 ∈ dom (𝐼𝑗) ↔ 𝑘 ∈ {𝐴}))
8174, 80mpbird 247 . . . . . . . . . 10 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘 ∈ {𝐴}) → 𝑘 ∈ dom (𝐼𝑗))
82 fvco 6274 . . . . . . . . . 10 ((Fun (𝐼𝑗) ∧ 𝑘 ∈ dom (𝐼𝑗)) → (([,) ∘ (𝐼𝑗))‘𝑘) = ([,)‘((𝐼𝑗)‘𝑘)))
8373, 81, 82syl2anc 693 . . . . . . . . 9 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘 ∈ {𝐴}) → (([,) ∘ (𝐼𝑗))‘𝑘) = ([,)‘((𝐼𝑗)‘𝑘)))
8469fveq1d 6193 . . . . . . . . . . . 12 (𝑗 ∈ ℕ → ((𝐼𝑗)‘𝑘) = ({⟨𝐴, (𝐹𝑗)⟩}‘𝑘))
8584ad2antlr 763 . . . . . . . . . . 11 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘 ∈ {𝐴}) → ((𝐼𝑗)‘𝑘) = ({⟨𝐴, (𝐹𝑗)⟩}‘𝑘))
86 elsni 4194 . . . . . . . . . . . . 13 (𝑘 ∈ {𝐴} → 𝑘 = 𝐴)
8786fveq2d 6195 . . . . . . . . . . . 12 (𝑘 ∈ {𝐴} → ({⟨𝐴, (𝐹𝑗)⟩}‘𝑘) = ({⟨𝐴, (𝐹𝑗)⟩}‘𝐴))
8887adantl 482 . . . . . . . . . . 11 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘 ∈ {𝐴}) → ({⟨𝐴, (𝐹𝑗)⟩}‘𝑘) = ({⟨𝐴, (𝐹𝑗)⟩}‘𝐴))
89 fvexd 6203 . . . . . . . . . . . . 13 (𝜑 → (𝐹𝑗) ∈ V)
90 fvsng 6447 . . . . . . . . . . . . 13 ((𝐴𝑉 ∧ (𝐹𝑗) ∈ V) → ({⟨𝐴, (𝐹𝑗)⟩}‘𝐴) = (𝐹𝑗))
912, 89, 90syl2anc 693 . . . . . . . . . . . 12 (𝜑 → ({⟨𝐴, (𝐹𝑗)⟩}‘𝐴) = (𝐹𝑗))
9291ad2antrr 762 . . . . . . . . . . 11 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘 ∈ {𝐴}) → ({⟨𝐴, (𝐹𝑗)⟩}‘𝐴) = (𝐹𝑗))
9385, 88, 923eqtrd 2660 . . . . . . . . . 10 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘 ∈ {𝐴}) → ((𝐼𝑗)‘𝑘) = (𝐹𝑗))
9493fveq2d 6195 . . . . . . . . 9 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘 ∈ {𝐴}) → ([,)‘((𝐼𝑗)‘𝑘)) = ([,)‘(𝐹𝑗)))
95 eqidd 2623 . . . . . . . . 9 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘 ∈ {𝐴}) → ([,)‘(𝐹𝑗)) = ([,)‘(𝐹𝑗)))
9683, 94, 953eqtrd 2660 . . . . . . . 8 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘 ∈ {𝐴}) → (([,) ∘ (𝐼𝑗))‘𝑘) = ([,)‘(𝐹𝑗)))
9796ixpeq2dva 7923 . . . . . . 7 ((𝜑𝑗 ∈ ℕ) → X𝑘 ∈ {𝐴} (([,) ∘ (𝐼𝑗))‘𝑘) = X𝑘 ∈ {𝐴} ([,)‘(𝐹𝑗)))
98 fvex 6201 . . . . . . . . 9 ([,)‘(𝐹𝑗)) ∈ V
9916, 98ixpconst 7918 . . . . . . . 8 X𝑘 ∈ {𝐴} ([,)‘(𝐹𝑗)) = (([,)‘(𝐹𝑗)) ↑𝑚 {𝐴})
10099a1i 11 . . . . . . 7 ((𝜑𝑗 ∈ ℕ) → X𝑘 ∈ {𝐴} ([,)‘(𝐹𝑗)) = (([,)‘(𝐹𝑗)) ↑𝑚 {𝐴}))
10197, 100eqtrd 2656 . . . . . 6 ((𝜑𝑗 ∈ ℕ) → X𝑘 ∈ {𝐴} (([,) ∘ (𝐼𝑗))‘𝑘) = (([,)‘(𝐹𝑗)) ↑𝑚 {𝐴}))
102101iuneq2dv 4542 . . . . 5 (𝜑 𝑗 ∈ ℕ X𝑘 ∈ {𝐴} (([,) ∘ (𝐼𝑗))‘𝑘) = 𝑗 ∈ ℕ (([,)‘(𝐹𝑗)) ↑𝑚 {𝐴}))
10349, 62, 1023eqtr4d 2666 . . . 4 (𝜑 → ( 𝑗 ∈ ℕ (([,) ∘ 𝐹)‘𝑗) ↑𝑚 {𝐴}) = 𝑗 ∈ ℕ X𝑘 ∈ {𝐴} (([,) ∘ (𝐼𝑗))‘𝑘))
10445, 103sseqtrd 3641 . . 3 (𝜑 → (𝐵𝑚 {𝐴}) ⊆ 𝑗 ∈ ℕ X𝑘 ∈ {𝐴} (([,) ∘ (𝐼𝑗))‘𝑘))
105 ovnovollem1.z . . . 4 (𝜑𝑍 = (Σ^‘((vol ∘ [,)) ∘ 𝐹)))
106 nfcv 2764 . . . . . . 7 𝑗𝐹
107 ressxr 10083 . . . . . . . . . 10 ℝ ⊆ ℝ*
108 xpss2 5229 . . . . . . . . . 10 (ℝ ⊆ ℝ* → (ℝ × ℝ) ⊆ (ℝ × ℝ*))
109107, 108ax-mp 5 . . . . . . . . 9 (ℝ × ℝ) ⊆ (ℝ × ℝ*)
110109a1i 11 . . . . . . . 8 (𝜑 → (ℝ × ℝ) ⊆ (ℝ × ℝ*))
1116, 110fssd 6057 . . . . . . 7 (𝜑𝐹:ℕ⟶(ℝ × ℝ*))
112106, 111volicofmpt 40214 . . . . . 6 (𝜑 → ((vol ∘ [,)) ∘ 𝐹) = (𝑗 ∈ ℕ ↦ (vol‘((1st ‘(𝐹𝑗))[,)(2nd ‘(𝐹𝑗))))))
11369coeq2d 5284 . . . . . . . . . . . . . . 15 (𝑗 ∈ ℕ → ([,) ∘ (𝐼𝑗)) = ([,) ∘ {⟨𝐴, (𝐹𝑗)⟩}))
114113fveq1d 6193 . . . . . . . . . . . . . 14 (𝑗 ∈ ℕ → (([,) ∘ (𝐼𝑗))‘𝐴) = (([,) ∘ {⟨𝐴, (𝐹𝑗)⟩})‘𝐴))
115114adantl 482 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ ℕ) → (([,) ∘ (𝐼𝑗))‘𝐴) = (([,) ∘ {⟨𝐴, (𝐹𝑗)⟩})‘𝐴))
116 snidg 4206 . . . . . . . . . . . . . . . . 17 (𝐴𝑉𝐴 ∈ {𝐴})
1172, 116syl 17 . . . . . . . . . . . . . . . 16 (𝜑𝐴 ∈ {𝐴})
118 dmsnopg 5606 . . . . . . . . . . . . . . . . 17 ((𝐹𝑗) ∈ V → dom {⟨𝐴, (𝐹𝑗)⟩} = {𝐴})
11989, 118syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → dom {⟨𝐴, (𝐹𝑗)⟩} = {𝐴})
120117, 119eleqtrrd 2704 . . . . . . . . . . . . . . 15 (𝜑𝐴 ∈ dom {⟨𝐴, (𝐹𝑗)⟩})
121120adantr 481 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ ℕ) → 𝐴 ∈ dom {⟨𝐴, (𝐹𝑗)⟩})
122 fvco 6274 . . . . . . . . . . . . . 14 ((Fun {⟨𝐴, (𝐹𝑗)⟩} ∧ 𝐴 ∈ dom {⟨𝐴, (𝐹𝑗)⟩}) → (([,) ∘ {⟨𝐴, (𝐹𝑗)⟩})‘𝐴) = ([,)‘({⟨𝐴, (𝐹𝑗)⟩}‘𝐴)))
12364, 121, 122syl2anc 693 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ ℕ) → (([,) ∘ {⟨𝐴, (𝐹𝑗)⟩})‘𝐴) = ([,)‘({⟨𝐴, (𝐹𝑗)⟩}‘𝐴)))
124 fvexd 6203 . . . . . . . . . . . . . . . . 17 ((𝜑𝑗 ∈ ℕ) → (𝐹𝑗) ∈ V)
1253, 124, 90syl2anc 693 . . . . . . . . . . . . . . . 16 ((𝜑𝑗 ∈ ℕ) → ({⟨𝐴, (𝐹𝑗)⟩}‘𝐴) = (𝐹𝑗))
126 1st2nd2 7205 . . . . . . . . . . . . . . . . 17 ((𝐹𝑗) ∈ (ℝ × ℝ) → (𝐹𝑗) = ⟨(1st ‘(𝐹𝑗)), (2nd ‘(𝐹𝑗))⟩)
1277, 126syl 17 . . . . . . . . . . . . . . . 16 ((𝜑𝑗 ∈ ℕ) → (𝐹𝑗) = ⟨(1st ‘(𝐹𝑗)), (2nd ‘(𝐹𝑗))⟩)
128125, 127eqtrd 2656 . . . . . . . . . . . . . . 15 ((𝜑𝑗 ∈ ℕ) → ({⟨𝐴, (𝐹𝑗)⟩}‘𝐴) = ⟨(1st ‘(𝐹𝑗)), (2nd ‘(𝐹𝑗))⟩)
129128fveq2d 6195 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ ℕ) → ([,)‘({⟨𝐴, (𝐹𝑗)⟩}‘𝐴)) = ([,)‘⟨(1st ‘(𝐹𝑗)), (2nd ‘(𝐹𝑗))⟩))
130 df-ov 6653 . . . . . . . . . . . . . . . 16 ((1st ‘(𝐹𝑗))[,)(2nd ‘(𝐹𝑗))) = ([,)‘⟨(1st ‘(𝐹𝑗)), (2nd ‘(𝐹𝑗))⟩)
131130eqcomi 2631 . . . . . . . . . . . . . . 15 ([,)‘⟨(1st ‘(𝐹𝑗)), (2nd ‘(𝐹𝑗))⟩) = ((1st ‘(𝐹𝑗))[,)(2nd ‘(𝐹𝑗)))
132131a1i 11 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ ℕ) → ([,)‘⟨(1st ‘(𝐹𝑗)), (2nd ‘(𝐹𝑗))⟩) = ((1st ‘(𝐹𝑗))[,)(2nd ‘(𝐹𝑗))))
133129, 132eqtrd 2656 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ ℕ) → ([,)‘({⟨𝐴, (𝐹𝑗)⟩}‘𝐴)) = ((1st ‘(𝐹𝑗))[,)(2nd ‘(𝐹𝑗))))
134115, 123, 1333eqtrd 2660 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ℕ) → (([,) ∘ (𝐼𝑗))‘𝐴) = ((1st ‘(𝐹𝑗))[,)(2nd ‘(𝐹𝑗))))
135134fveq2d 6195 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ℕ) → (vol‘(([,) ∘ (𝐼𝑗))‘𝐴)) = (vol‘((1st ‘(𝐹𝑗))[,)(2nd ‘(𝐹𝑗)))))
136 xp1st 7198 . . . . . . . . . . . . 13 ((𝐹𝑗) ∈ (ℝ × ℝ) → (1st ‘(𝐹𝑗)) ∈ ℝ)
1377, 136syl 17 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ℕ) → (1st ‘(𝐹𝑗)) ∈ ℝ)
138 xp2nd 7199 . . . . . . . . . . . . 13 ((𝐹𝑗) ∈ (ℝ × ℝ) → (2nd ‘(𝐹𝑗)) ∈ ℝ)
1397, 138syl 17 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ℕ) → (2nd ‘(𝐹𝑗)) ∈ ℝ)
140 volicore 40795 . . . . . . . . . . . 12 (((1st ‘(𝐹𝑗)) ∈ ℝ ∧ (2nd ‘(𝐹𝑗)) ∈ ℝ) → (vol‘((1st ‘(𝐹𝑗))[,)(2nd ‘(𝐹𝑗)))) ∈ ℝ)
141137, 139, 140syl2anc 693 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ℕ) → (vol‘((1st ‘(𝐹𝑗))[,)(2nd ‘(𝐹𝑗)))) ∈ ℝ)
142135, 141eqeltrd 2701 . . . . . . . . . 10 ((𝜑𝑗 ∈ ℕ) → (vol‘(([,) ∘ (𝐼𝑗))‘𝐴)) ∈ ℝ)
143142recnd 10068 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ) → (vol‘(([,) ∘ (𝐼𝑗))‘𝐴)) ∈ ℂ)
144 fveq2 6191 . . . . . . . . . . 11 (𝑘 = 𝐴 → (([,) ∘ (𝐼𝑗))‘𝑘) = (([,) ∘ (𝐼𝑗))‘𝐴))
145144fveq2d 6195 . . . . . . . . . 10 (𝑘 = 𝐴 → (vol‘(([,) ∘ (𝐼𝑗))‘𝑘)) = (vol‘(([,) ∘ (𝐼𝑗))‘𝐴)))
146145prodsn 14692 . . . . . . . . 9 ((𝐴𝑉 ∧ (vol‘(([,) ∘ (𝐼𝑗))‘𝐴)) ∈ ℂ) → ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝐼𝑗))‘𝑘)) = (vol‘(([,) ∘ (𝐼𝑗))‘𝐴)))
1473, 143, 146syl2anc 693 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ) → ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝐼𝑗))‘𝑘)) = (vol‘(([,) ∘ (𝐼𝑗))‘𝐴)))
148147, 135eqtr2d 2657 . . . . . . 7 ((𝜑𝑗 ∈ ℕ) → (vol‘((1st ‘(𝐹𝑗))[,)(2nd ‘(𝐹𝑗)))) = ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝐼𝑗))‘𝑘)))
149148mpteq2dva 4744 . . . . . 6 (𝜑 → (𝑗 ∈ ℕ ↦ (vol‘((1st ‘(𝐹𝑗))[,)(2nd ‘(𝐹𝑗))))) = (𝑗 ∈ ℕ ↦ ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝐼𝑗))‘𝑘))))
150112, 149eqtrd 2656 . . . . 5 (𝜑 → ((vol ∘ [,)) ∘ 𝐹) = (𝑗 ∈ ℕ ↦ ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝐼𝑗))‘𝑘))))
151150fveq2d 6195 . . . 4 (𝜑 → (Σ^‘((vol ∘ [,)) ∘ 𝐹)) = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝐼𝑗))‘𝑘)))))
152105, 151eqtrd 2656 . . 3 (𝜑𝑍 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝐼𝑗))‘𝑘)))))
153104, 152jca 554 . 2 (𝜑 → ((𝐵𝑚 {𝐴}) ⊆ 𝑗 ∈ ℕ X𝑘 ∈ {𝐴} (([,) ∘ (𝐼𝑗))‘𝑘) ∧ 𝑍 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝐼𝑗))‘𝑘))))))
154 fveq1 6190 . . . . . . . . 9 (𝑖 = 𝐼 → (𝑖𝑗) = (𝐼𝑗))
155154coeq2d 5284 . . . . . . . 8 (𝑖 = 𝐼 → ([,) ∘ (𝑖𝑗)) = ([,) ∘ (𝐼𝑗)))
156155fveq1d 6193 . . . . . . 7 (𝑖 = 𝐼 → (([,) ∘ (𝑖𝑗))‘𝑘) = (([,) ∘ (𝐼𝑗))‘𝑘))
157156ixpeq2dv 7924 . . . . . 6 (𝑖 = 𝐼X𝑘 ∈ {𝐴} (([,) ∘ (𝑖𝑗))‘𝑘) = X𝑘 ∈ {𝐴} (([,) ∘ (𝐼𝑗))‘𝑘))
158157iuneq2d 4547 . . . . 5 (𝑖 = 𝐼 𝑗 ∈ ℕ X𝑘 ∈ {𝐴} (([,) ∘ (𝑖𝑗))‘𝑘) = 𝑗 ∈ ℕ X𝑘 ∈ {𝐴} (([,) ∘ (𝐼𝑗))‘𝑘))
159158sseq2d 3633 . . . 4 (𝑖 = 𝐼 → ((𝐵𝑚 {𝐴}) ⊆ 𝑗 ∈ ℕ X𝑘 ∈ {𝐴} (([,) ∘ (𝑖𝑗))‘𝑘) ↔ (𝐵𝑚 {𝐴}) ⊆ 𝑗 ∈ ℕ X𝑘 ∈ {𝐴} (([,) ∘ (𝐼𝑗))‘𝑘)))
160 simpl 473 . . . . . . . . . . . 12 ((𝑖 = 𝐼𝑘 ∈ {𝐴}) → 𝑖 = 𝐼)
161160fveq1d 6193 . . . . . . . . . . 11 ((𝑖 = 𝐼𝑘 ∈ {𝐴}) → (𝑖𝑗) = (𝐼𝑗))
162161coeq2d 5284 . . . . . . . . . 10 ((𝑖 = 𝐼𝑘 ∈ {𝐴}) → ([,) ∘ (𝑖𝑗)) = ([,) ∘ (𝐼𝑗)))
163162fveq1d 6193 . . . . . . . . 9 ((𝑖 = 𝐼𝑘 ∈ {𝐴}) → (([,) ∘ (𝑖𝑗))‘𝑘) = (([,) ∘ (𝐼𝑗))‘𝑘))
164163fveq2d 6195 . . . . . . . 8 ((𝑖 = 𝐼𝑘 ∈ {𝐴}) → (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)) = (vol‘(([,) ∘ (𝐼𝑗))‘𝑘)))
165164prodeq2dv 14653 . . . . . . 7 (𝑖 = 𝐼 → ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)) = ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝐼𝑗))‘𝑘)))
166165mpteq2dv 4745 . . . . . 6 (𝑖 = 𝐼 → (𝑗 ∈ ℕ ↦ ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝑖𝑗))‘𝑘))) = (𝑗 ∈ ℕ ↦ ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝐼𝑗))‘𝑘))))
167166fveq2d 6195 . . . . 5 (𝑖 = 𝐼 → (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))) = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝐼𝑗))‘𝑘)))))
168167eqeq2d 2632 . . . 4 (𝑖 = 𝐼 → (𝑍 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))) ↔ 𝑍 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝐼𝑗))‘𝑘))))))
169159, 168anbi12d 747 . . 3 (𝑖 = 𝐼 → (((𝐵𝑚 {𝐴}) ⊆ 𝑗 ∈ ℕ X𝑘 ∈ {𝐴} (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑍 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝑖𝑗))‘𝑘))))) ↔ ((𝐵𝑚 {𝐴}) ⊆ 𝑗 ∈ ℕ X𝑘 ∈ {𝐴} (([,) ∘ (𝐼𝑗))‘𝑘) ∧ 𝑍 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝐼𝑗))‘𝑘)))))))
170169rspcev 3309 . 2 ((𝐼 ∈ (((ℝ × ℝ) ↑𝑚 {𝐴}) ↑𝑚 ℕ) ∧ ((𝐵𝑚 {𝐴}) ⊆ 𝑗 ∈ ℕ X𝑘 ∈ {𝐴} (([,) ∘ (𝐼𝑗))‘𝑘) ∧ 𝑍 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝐼𝑗))‘𝑘)))))) → ∃𝑖 ∈ (((ℝ × ℝ) ↑𝑚 {𝐴}) ↑𝑚 ℕ)((𝐵𝑚 {𝐴}) ⊆ 𝑗 ∈ ℕ X𝑘 ∈ {𝐴} (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑍 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝑖𝑗))‘𝑘))))))
17126, 153, 170syl2anc 693 1 (𝜑 → ∃𝑖 ∈ (((ℝ × ℝ) ↑𝑚 {𝐴}) ↑𝑚 ℕ)((𝐵𝑚 {𝐴}) ⊆ 𝑗 ∈ ℕ X𝑘 ∈ {𝐴} (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑍 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝑖𝑗))‘𝑘))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  wrex 2913  Vcvv 3200  wss 3574  𝒫 cpw 4158  {csn 4177  cop 4183   cuni 4436   ciun 4520  cmpt 4729   × cxp 5112  dom cdm 5114  ran crn 5115  ccom 5118  Fun wfun 5882   Fn wfn 5883  wf 5884  cfv 5888  (class class class)co 6650  1st c1st 7166  2nd c2nd 7167  𝑚 cmap 7857  Xcixp 7908  cc 9934  cr 9935  *cxr 10073  cn 11020  [,)cico 12177  cprod 14635  volcvol 23232  Σ^csumge0 40579
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-rlim 14220  df-sum 14417  df-prod 14636  df-rest 16083  df-topgen 16104  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-top 20699  df-topon 20716  df-bases 20750  df-cmp 21190  df-ovol 23233  df-vol 23234
This theorem is referenced by:  ovnovollem3  40872
  Copyright terms: Public domain W3C validator