MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psgnodpm Structured version   Visualization version   GIF version

Theorem psgnodpm 19934
Description: A permutation which is odd (i.e. not even) has sign -1. (Contributed by SO, 9-Jul-2018.)
Hypotheses
Ref Expression
evpmss.s 𝑆 = (SymGrp‘𝐷)
evpmss.p 𝑃 = (Base‘𝑆)
psgnevpmb.n 𝑁 = (pmSgn‘𝐷)
Assertion
Ref Expression
psgnodpm ((𝐷 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) → (𝑁𝐹) = -1)

Proof of Theorem psgnodpm
StepHypRef Expression
1 eldif 3584 . . 3 (𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷)) ↔ (𝐹𝑃 ∧ ¬ 𝐹 ∈ (pmEven‘𝐷)))
2 simpr 477 . . . . . . . 8 ((𝐷 ∈ Fin ∧ 𝐹𝑃) → 𝐹𝑃)
32a1d 25 . . . . . . 7 ((𝐷 ∈ Fin ∧ 𝐹𝑃) → ((𝑁𝐹) = 1 → 𝐹𝑃))
43ancrd 577 . . . . . 6 ((𝐷 ∈ Fin ∧ 𝐹𝑃) → ((𝑁𝐹) = 1 → (𝐹𝑃 ∧ (𝑁𝐹) = 1)))
5 evpmss.s . . . . . . . 8 𝑆 = (SymGrp‘𝐷)
6 evpmss.p . . . . . . . 8 𝑃 = (Base‘𝑆)
7 psgnevpmb.n . . . . . . . 8 𝑁 = (pmSgn‘𝐷)
85, 6, 7psgnevpmb 19933 . . . . . . 7 (𝐷 ∈ Fin → (𝐹 ∈ (pmEven‘𝐷) ↔ (𝐹𝑃 ∧ (𝑁𝐹) = 1)))
98adantr 481 . . . . . 6 ((𝐷 ∈ Fin ∧ 𝐹𝑃) → (𝐹 ∈ (pmEven‘𝐷) ↔ (𝐹𝑃 ∧ (𝑁𝐹) = 1)))
104, 9sylibrd 249 . . . . 5 ((𝐷 ∈ Fin ∧ 𝐹𝑃) → ((𝑁𝐹) = 1 → 𝐹 ∈ (pmEven‘𝐷)))
1110con3d 148 . . . 4 ((𝐷 ∈ Fin ∧ 𝐹𝑃) → (¬ 𝐹 ∈ (pmEven‘𝐷) → ¬ (𝑁𝐹) = 1))
1211impr 649 . . 3 ((𝐷 ∈ Fin ∧ (𝐹𝑃 ∧ ¬ 𝐹 ∈ (pmEven‘𝐷))) → ¬ (𝑁𝐹) = 1)
131, 12sylan2b 492 . 2 ((𝐷 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) → ¬ (𝑁𝐹) = 1)
14 eqid 2622 . . . . . . 7 ((mulGrp‘ℂfld) ↾s {1, -1}) = ((mulGrp‘ℂfld) ↾s {1, -1})
155, 7, 14psgnghm2 19927 . . . . . 6 (𝐷 ∈ Fin → 𝑁 ∈ (𝑆 GrpHom ((mulGrp‘ℂfld) ↾s {1, -1})))
1615adantr 481 . . . . 5 ((𝐷 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) → 𝑁 ∈ (𝑆 GrpHom ((mulGrp‘ℂfld) ↾s {1, -1})))
1714cnmsgnbas 19924 . . . . . 6 {1, -1} = (Base‘((mulGrp‘ℂfld) ↾s {1, -1}))
186, 17ghmf 17664 . . . . 5 (𝑁 ∈ (𝑆 GrpHom ((mulGrp‘ℂfld) ↾s {1, -1})) → 𝑁:𝑃⟶{1, -1})
1916, 18syl 17 . . . 4 ((𝐷 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) → 𝑁:𝑃⟶{1, -1})
20 eldifi 3732 . . . . 5 (𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷)) → 𝐹𝑃)
2120adantl 482 . . . 4 ((𝐷 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) → 𝐹𝑃)
2219, 21ffvelrnd 6360 . . 3 ((𝐷 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) → (𝑁𝐹) ∈ {1, -1})
23 fvex 6201 . . . 4 (𝑁𝐹) ∈ V
2423elpr 4198 . . 3 ((𝑁𝐹) ∈ {1, -1} ↔ ((𝑁𝐹) = 1 ∨ (𝑁𝐹) = -1))
2522, 24sylib 208 . 2 ((𝐷 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) → ((𝑁𝐹) = 1 ∨ (𝑁𝐹) = -1))
26 orel1 397 . 2 (¬ (𝑁𝐹) = 1 → (((𝑁𝐹) = 1 ∨ (𝑁𝐹) = -1) → (𝑁𝐹) = -1))
2713, 25, 26sylc 65 1 ((𝐷 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) → (𝑁𝐹) = -1)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 383  wa 384   = wceq 1483  wcel 1990  cdif 3571  {cpr 4179  wf 5884  cfv 5888  (class class class)co 6650  Fincfn 7955  1c1 9937  -cneg 10267  Basecbs 15857  s cress 15858   GrpHom cghm 17657  SymGrpcsymg 17797  pmSgncpsgn 17909  pmEvencevpm 17910  mulGrpcmgp 18489  fldccnfld 19746
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-xor 1465  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-ot 4186  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-tpos 7352  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-xnn0 11364  df-z 11378  df-dec 11494  df-uz 11688  df-rp 11833  df-fz 12327  df-fzo 12466  df-seq 12802  df-exp 12861  df-hash 13118  df-word 13299  df-lsw 13300  df-concat 13301  df-s1 13302  df-substr 13303  df-splice 13304  df-reverse 13305  df-s2 13593  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-0g 16102  df-gsum 16103  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-mhm 17335  df-submnd 17336  df-grp 17425  df-minusg 17426  df-subg 17591  df-ghm 17658  df-gim 17701  df-oppg 17776  df-symg 17798  df-pmtr 17862  df-psgn 17911  df-evpm 17912  df-cmn 18195  df-abl 18196  df-mgp 18490  df-ur 18502  df-ring 18549  df-cring 18550  df-oppr 18623  df-dvdsr 18641  df-unit 18642  df-invr 18672  df-dvr 18683  df-drng 18749  df-cnfld 19747
This theorem is referenced by:  zrhpsgnodpm  19938  evpmodpmf1o  19942
  Copyright terms: Public domain W3C validator