MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psgnunilem5 Structured version   Visualization version   GIF version

Theorem psgnunilem5 17914
Description: Lemma for psgnuni 17919. It is impossible to shift a transposition off the end because if the active transposition is at the right end, it is the only transposition moving 𝐴 in contradiction to this being a representation of the identity. (Contributed by Stefan O'Rear, 25-Aug-2015.) (Revised by Mario Carneiro, 28-Feb-2016.)
Hypotheses
Ref Expression
psgnunilem2.g 𝐺 = (SymGrp‘𝐷)
psgnunilem2.t 𝑇 = ran (pmTrsp‘𝐷)
psgnunilem2.d (𝜑𝐷𝑉)
psgnunilem2.w (𝜑𝑊 ∈ Word 𝑇)
psgnunilem2.id (𝜑 → (𝐺 Σg 𝑊) = ( I ↾ 𝐷))
psgnunilem2.l (𝜑 → (#‘𝑊) = 𝐿)
psgnunilem2.ix (𝜑𝐼 ∈ (0..^𝐿))
psgnunilem2.a (𝜑𝐴 ∈ dom ((𝑊𝐼) ∖ I ))
psgnunilem2.al (𝜑 → ∀𝑘 ∈ (0..^𝐼) ¬ 𝐴 ∈ dom ((𝑊𝑘) ∖ I ))
Assertion
Ref Expression
psgnunilem5 (𝜑 → (𝐼 + 1) ∈ (0..^𝐿))
Distinct variable groups:   𝐴,𝑘   𝑘,𝐺   𝑘,𝐼   𝑘,𝑊
Allowed substitution hints:   𝜑(𝑘)   𝐷(𝑘)   𝑇(𝑘)   𝐿(𝑘)   𝑉(𝑘)

Proof of Theorem psgnunilem5
Dummy variables 𝑗 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 noel 3919 . . . 4 ¬ 𝐴 ∈ ∅
2 psgnunilem2.id . . . . . . . 8 (𝜑 → (𝐺 Σg 𝑊) = ( I ↾ 𝐷))
32difeq1d 3727 . . . . . . 7 (𝜑 → ((𝐺 Σg 𝑊) ∖ I ) = (( I ↾ 𝐷) ∖ I ))
43dmeqd 5326 . . . . . 6 (𝜑 → dom ((𝐺 Σg 𝑊) ∖ I ) = dom (( I ↾ 𝐷) ∖ I ))
5 resss 5422 . . . . . . . . 9 ( I ↾ 𝐷) ⊆ I
6 ssdif0 3942 . . . . . . . . 9 (( I ↾ 𝐷) ⊆ I ↔ (( I ↾ 𝐷) ∖ I ) = ∅)
75, 6mpbi 220 . . . . . . . 8 (( I ↾ 𝐷) ∖ I ) = ∅
87dmeqi 5325 . . . . . . 7 dom (( I ↾ 𝐷) ∖ I ) = dom ∅
9 dm0 5339 . . . . . . 7 dom ∅ = ∅
108, 9eqtri 2644 . . . . . 6 dom (( I ↾ 𝐷) ∖ I ) = ∅
114, 10syl6eq 2672 . . . . 5 (𝜑 → dom ((𝐺 Σg 𝑊) ∖ I ) = ∅)
1211eleq2d 2687 . . . 4 (𝜑 → (𝐴 ∈ dom ((𝐺 Σg 𝑊) ∖ I ) ↔ 𝐴 ∈ ∅))
131, 12mtbiri 317 . . 3 (𝜑 → ¬ 𝐴 ∈ dom ((𝐺 Σg 𝑊) ∖ I ))
14 psgnunilem2.d . . . . . . . . 9 (𝜑𝐷𝑉)
15 psgnunilem2.g . . . . . . . . . 10 𝐺 = (SymGrp‘𝐷)
1615symggrp 17820 . . . . . . . . 9 (𝐷𝑉𝐺 ∈ Grp)
17 grpmnd 17429 . . . . . . . . 9 (𝐺 ∈ Grp → 𝐺 ∈ Mnd)
1814, 16, 173syl 18 . . . . . . . 8 (𝜑𝐺 ∈ Mnd)
19 psgnunilem2.t . . . . . . . . . . . 12 𝑇 = ran (pmTrsp‘𝐷)
20 eqid 2622 . . . . . . . . . . . 12 (Base‘𝐺) = (Base‘𝐺)
2119, 15, 20symgtrf 17889 . . . . . . . . . . 11 𝑇 ⊆ (Base‘𝐺)
22 sswrd 13313 . . . . . . . . . . 11 (𝑇 ⊆ (Base‘𝐺) → Word 𝑇 ⊆ Word (Base‘𝐺))
2321, 22mp1i 13 . . . . . . . . . 10 (𝜑 → Word 𝑇 ⊆ Word (Base‘𝐺))
24 psgnunilem2.w . . . . . . . . . 10 (𝜑𝑊 ∈ Word 𝑇)
2523, 24sseldd 3604 . . . . . . . . 9 (𝜑𝑊 ∈ Word (Base‘𝐺))
26 swrdcl 13419 . . . . . . . . 9 (𝑊 ∈ Word (Base‘𝐺) → (𝑊 substr ⟨0, 𝐼⟩) ∈ Word (Base‘𝐺))
2725, 26syl 17 . . . . . . . 8 (𝜑 → (𝑊 substr ⟨0, 𝐼⟩) ∈ Word (Base‘𝐺))
2820gsumwcl 17377 . . . . . . . 8 ((𝐺 ∈ Mnd ∧ (𝑊 substr ⟨0, 𝐼⟩) ∈ Word (Base‘𝐺)) → (𝐺 Σg (𝑊 substr ⟨0, 𝐼⟩)) ∈ (Base‘𝐺))
2918, 27, 28syl2anc 693 . . . . . . 7 (𝜑 → (𝐺 Σg (𝑊 substr ⟨0, 𝐼⟩)) ∈ (Base‘𝐺))
3015, 20symgbasf1o 17803 . . . . . . 7 ((𝐺 Σg (𝑊 substr ⟨0, 𝐼⟩)) ∈ (Base‘𝐺) → (𝐺 Σg (𝑊 substr ⟨0, 𝐼⟩)):𝐷1-1-onto𝐷)
3129, 30syl 17 . . . . . 6 (𝜑 → (𝐺 Σg (𝑊 substr ⟨0, 𝐼⟩)):𝐷1-1-onto𝐷)
3231adantr 481 . . . . 5 ((𝜑 ∧ (𝐼 + 1) = 𝐿) → (𝐺 Σg (𝑊 substr ⟨0, 𝐼⟩)):𝐷1-1-onto𝐷)
33 wrdf 13310 . . . . . . . . . 10 (𝑊 ∈ Word 𝑇𝑊:(0..^(#‘𝑊))⟶𝑇)
3424, 33syl 17 . . . . . . . . 9 (𝜑𝑊:(0..^(#‘𝑊))⟶𝑇)
35 psgnunilem2.ix . . . . . . . . . 10 (𝜑𝐼 ∈ (0..^𝐿))
36 psgnunilem2.l . . . . . . . . . . 11 (𝜑 → (#‘𝑊) = 𝐿)
3736oveq2d 6666 . . . . . . . . . 10 (𝜑 → (0..^(#‘𝑊)) = (0..^𝐿))
3835, 37eleqtrrd 2704 . . . . . . . . 9 (𝜑𝐼 ∈ (0..^(#‘𝑊)))
3934, 38ffvelrnd 6360 . . . . . . . 8 (𝜑 → (𝑊𝐼) ∈ 𝑇)
4021, 39sseldi 3601 . . . . . . 7 (𝜑 → (𝑊𝐼) ∈ (Base‘𝐺))
4115, 20symgbasf1o 17803 . . . . . . 7 ((𝑊𝐼) ∈ (Base‘𝐺) → (𝑊𝐼):𝐷1-1-onto𝐷)
4240, 41syl 17 . . . . . 6 (𝜑 → (𝑊𝐼):𝐷1-1-onto𝐷)
4342adantr 481 . . . . 5 ((𝜑 ∧ (𝐼 + 1) = 𝐿) → (𝑊𝐼):𝐷1-1-onto𝐷)
4415, 20symgsssg 17887 . . . . . . . . . . . 12 (𝐷𝑉 → {𝑗 ∈ (Base‘𝐺) ∣ dom (𝑗 ∖ I ) ⊆ (V ∖ {𝐴})} ∈ (SubGrp‘𝐺))
45 subgsubm 17616 . . . . . . . . . . . 12 ({𝑗 ∈ (Base‘𝐺) ∣ dom (𝑗 ∖ I ) ⊆ (V ∖ {𝐴})} ∈ (SubGrp‘𝐺) → {𝑗 ∈ (Base‘𝐺) ∣ dom (𝑗 ∖ I ) ⊆ (V ∖ {𝐴})} ∈ (SubMnd‘𝐺))
4614, 44, 453syl 18 . . . . . . . . . . 11 (𝜑 → {𝑗 ∈ (Base‘𝐺) ∣ dom (𝑗 ∖ I ) ⊆ (V ∖ {𝐴})} ∈ (SubMnd‘𝐺))
4746adantr 481 . . . . . . . . . 10 ((𝜑 ∧ (𝐼 + 1) = 𝐿) → {𝑗 ∈ (Base‘𝐺) ∣ dom (𝑗 ∖ I ) ⊆ (V ∖ {𝐴})} ∈ (SubMnd‘𝐺))
48 fzossfz 12488 . . . . . . . . . . . . . . . . . . . . 21 (0..^𝐿) ⊆ (0...𝐿)
4948, 35sseldi 3601 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝐼 ∈ (0...𝐿))
50 elfzuz3 12339 . . . . . . . . . . . . . . . . . . . 20 (𝐼 ∈ (0...𝐿) → 𝐿 ∈ (ℤ𝐼))
5149, 50syl 17 . . . . . . . . . . . . . . . . . . 19 (𝜑𝐿 ∈ (ℤ𝐼))
5236, 51eqeltrd 2701 . . . . . . . . . . . . . . . . . 18 (𝜑 → (#‘𝑊) ∈ (ℤ𝐼))
53 fzoss2 12496 . . . . . . . . . . . . . . . . . 18 ((#‘𝑊) ∈ (ℤ𝐼) → (0..^𝐼) ⊆ (0..^(#‘𝑊)))
5452, 53syl 17 . . . . . . . . . . . . . . . . 17 (𝜑 → (0..^𝐼) ⊆ (0..^(#‘𝑊)))
5554sselda 3603 . . . . . . . . . . . . . . . 16 ((𝜑𝑠 ∈ (0..^𝐼)) → 𝑠 ∈ (0..^(#‘𝑊)))
5634ffvelrnda 6359 . . . . . . . . . . . . . . . . 17 ((𝜑𝑠 ∈ (0..^(#‘𝑊))) → (𝑊𝑠) ∈ 𝑇)
5721, 56sseldi 3601 . . . . . . . . . . . . . . . 16 ((𝜑𝑠 ∈ (0..^(#‘𝑊))) → (𝑊𝑠) ∈ (Base‘𝐺))
5855, 57syldan 487 . . . . . . . . . . . . . . 15 ((𝜑𝑠 ∈ (0..^𝐼)) → (𝑊𝑠) ∈ (Base‘𝐺))
59 psgnunilem2.al . . . . . . . . . . . . . . . . 17 (𝜑 → ∀𝑘 ∈ (0..^𝐼) ¬ 𝐴 ∈ dom ((𝑊𝑘) ∖ I ))
60 fveq2 6191 . . . . . . . . . . . . . . . . . . . . . 22 (𝑘 = 𝑠 → (𝑊𝑘) = (𝑊𝑠))
6160difeq1d 3727 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 = 𝑠 → ((𝑊𝑘) ∖ I ) = ((𝑊𝑠) ∖ I ))
6261dmeqd 5326 . . . . . . . . . . . . . . . . . . . 20 (𝑘 = 𝑠 → dom ((𝑊𝑘) ∖ I ) = dom ((𝑊𝑠) ∖ I ))
6362eleq2d 2687 . . . . . . . . . . . . . . . . . . 19 (𝑘 = 𝑠 → (𝐴 ∈ dom ((𝑊𝑘) ∖ I ) ↔ 𝐴 ∈ dom ((𝑊𝑠) ∖ I )))
6463notbid 308 . . . . . . . . . . . . . . . . . 18 (𝑘 = 𝑠 → (¬ 𝐴 ∈ dom ((𝑊𝑘) ∖ I ) ↔ ¬ 𝐴 ∈ dom ((𝑊𝑠) ∖ I )))
6564cbvralv 3171 . . . . . . . . . . . . . . . . 17 (∀𝑘 ∈ (0..^𝐼) ¬ 𝐴 ∈ dom ((𝑊𝑘) ∖ I ) ↔ ∀𝑠 ∈ (0..^𝐼) ¬ 𝐴 ∈ dom ((𝑊𝑠) ∖ I ))
6659, 65sylib 208 . . . . . . . . . . . . . . . 16 (𝜑 → ∀𝑠 ∈ (0..^𝐼) ¬ 𝐴 ∈ dom ((𝑊𝑠) ∖ I ))
6766r19.21bi 2932 . . . . . . . . . . . . . . 15 ((𝜑𝑠 ∈ (0..^𝐼)) → ¬ 𝐴 ∈ dom ((𝑊𝑠) ∖ I ))
68 difeq1 3721 . . . . . . . . . . . . . . . . . . 19 (𝑗 = (𝑊𝑠) → (𝑗 ∖ I ) = ((𝑊𝑠) ∖ I ))
6968dmeqd 5326 . . . . . . . . . . . . . . . . . 18 (𝑗 = (𝑊𝑠) → dom (𝑗 ∖ I ) = dom ((𝑊𝑠) ∖ I ))
7069sseq1d 3632 . . . . . . . . . . . . . . . . 17 (𝑗 = (𝑊𝑠) → (dom (𝑗 ∖ I ) ⊆ (V ∖ {𝐴}) ↔ dom ((𝑊𝑠) ∖ I ) ⊆ (V ∖ {𝐴})))
71 disj2 4024 . . . . . . . . . . . . . . . . . 18 ((dom ((𝑊𝑠) ∖ I ) ∩ {𝐴}) = ∅ ↔ dom ((𝑊𝑠) ∖ I ) ⊆ (V ∖ {𝐴}))
72 disjsn 4246 . . . . . . . . . . . . . . . . . 18 ((dom ((𝑊𝑠) ∖ I ) ∩ {𝐴}) = ∅ ↔ ¬ 𝐴 ∈ dom ((𝑊𝑠) ∖ I ))
7371, 72bitr3i 266 . . . . . . . . . . . . . . . . 17 (dom ((𝑊𝑠) ∖ I ) ⊆ (V ∖ {𝐴}) ↔ ¬ 𝐴 ∈ dom ((𝑊𝑠) ∖ I ))
7470, 73syl6bb 276 . . . . . . . . . . . . . . . 16 (𝑗 = (𝑊𝑠) → (dom (𝑗 ∖ I ) ⊆ (V ∖ {𝐴}) ↔ ¬ 𝐴 ∈ dom ((𝑊𝑠) ∖ I )))
7574elrab 3363 . . . . . . . . . . . . . . 15 ((𝑊𝑠) ∈ {𝑗 ∈ (Base‘𝐺) ∣ dom (𝑗 ∖ I ) ⊆ (V ∖ {𝐴})} ↔ ((𝑊𝑠) ∈ (Base‘𝐺) ∧ ¬ 𝐴 ∈ dom ((𝑊𝑠) ∖ I )))
7658, 67, 75sylanbrc 698 . . . . . . . . . . . . . 14 ((𝜑𝑠 ∈ (0..^𝐼)) → (𝑊𝑠) ∈ {𝑗 ∈ (Base‘𝐺) ∣ dom (𝑗 ∖ I ) ⊆ (V ∖ {𝐴})})
77 eqid 2622 . . . . . . . . . . . . . 14 (𝑠 ∈ (0..^𝐼) ↦ (𝑊𝑠)) = (𝑠 ∈ (0..^𝐼) ↦ (𝑊𝑠))
7876, 77fmptd 6385 . . . . . . . . . . . . 13 (𝜑 → (𝑠 ∈ (0..^𝐼) ↦ (𝑊𝑠)):(0..^𝐼)⟶{𝑗 ∈ (Base‘𝐺) ∣ dom (𝑗 ∖ I ) ⊆ (V ∖ {𝐴})})
7936oveq2d 6666 . . . . . . . . . . . . . . . . 17 (𝜑 → (0...(#‘𝑊)) = (0...𝐿))
8049, 79eleqtrrd 2704 . . . . . . . . . . . . . . . 16 (𝜑𝐼 ∈ (0...(#‘𝑊)))
81 swrd0val 13421 . . . . . . . . . . . . . . . 16 ((𝑊 ∈ Word 𝑇𝐼 ∈ (0...(#‘𝑊))) → (𝑊 substr ⟨0, 𝐼⟩) = (𝑊 ↾ (0..^𝐼)))
8224, 80, 81syl2anc 693 . . . . . . . . . . . . . . 15 (𝜑 → (𝑊 substr ⟨0, 𝐼⟩) = (𝑊 ↾ (0..^𝐼)))
8334feqmptd 6249 . . . . . . . . . . . . . . . 16 (𝜑𝑊 = (𝑠 ∈ (0..^(#‘𝑊)) ↦ (𝑊𝑠)))
8483reseq1d 5395 . . . . . . . . . . . . . . 15 (𝜑 → (𝑊 ↾ (0..^𝐼)) = ((𝑠 ∈ (0..^(#‘𝑊)) ↦ (𝑊𝑠)) ↾ (0..^𝐼)))
85 resmpt 5449 . . . . . . . . . . . . . . . 16 ((0..^𝐼) ⊆ (0..^(#‘𝑊)) → ((𝑠 ∈ (0..^(#‘𝑊)) ↦ (𝑊𝑠)) ↾ (0..^𝐼)) = (𝑠 ∈ (0..^𝐼) ↦ (𝑊𝑠)))
8652, 53, 853syl 18 . . . . . . . . . . . . . . 15 (𝜑 → ((𝑠 ∈ (0..^(#‘𝑊)) ↦ (𝑊𝑠)) ↾ (0..^𝐼)) = (𝑠 ∈ (0..^𝐼) ↦ (𝑊𝑠)))
8782, 84, 863eqtrd 2660 . . . . . . . . . . . . . 14 (𝜑 → (𝑊 substr ⟨0, 𝐼⟩) = (𝑠 ∈ (0..^𝐼) ↦ (𝑊𝑠)))
8887feq1d 6030 . . . . . . . . . . . . 13 (𝜑 → ((𝑊 substr ⟨0, 𝐼⟩):(0..^𝐼)⟶{𝑗 ∈ (Base‘𝐺) ∣ dom (𝑗 ∖ I ) ⊆ (V ∖ {𝐴})} ↔ (𝑠 ∈ (0..^𝐼) ↦ (𝑊𝑠)):(0..^𝐼)⟶{𝑗 ∈ (Base‘𝐺) ∣ dom (𝑗 ∖ I ) ⊆ (V ∖ {𝐴})}))
8978, 88mpbird 247 . . . . . . . . . . . 12 (𝜑 → (𝑊 substr ⟨0, 𝐼⟩):(0..^𝐼)⟶{𝑗 ∈ (Base‘𝐺) ∣ dom (𝑗 ∖ I ) ⊆ (V ∖ {𝐴})})
9089adantr 481 . . . . . . . . . . 11 ((𝜑 ∧ (𝐼 + 1) = 𝐿) → (𝑊 substr ⟨0, 𝐼⟩):(0..^𝐼)⟶{𝑗 ∈ (Base‘𝐺) ∣ dom (𝑗 ∖ I ) ⊆ (V ∖ {𝐴})})
91 iswrdi 13309 . . . . . . . . . . 11 ((𝑊 substr ⟨0, 𝐼⟩):(0..^𝐼)⟶{𝑗 ∈ (Base‘𝐺) ∣ dom (𝑗 ∖ I ) ⊆ (V ∖ {𝐴})} → (𝑊 substr ⟨0, 𝐼⟩) ∈ Word {𝑗 ∈ (Base‘𝐺) ∣ dom (𝑗 ∖ I ) ⊆ (V ∖ {𝐴})})
9290, 91syl 17 . . . . . . . . . 10 ((𝜑 ∧ (𝐼 + 1) = 𝐿) → (𝑊 substr ⟨0, 𝐼⟩) ∈ Word {𝑗 ∈ (Base‘𝐺) ∣ dom (𝑗 ∖ I ) ⊆ (V ∖ {𝐴})})
93 gsumwsubmcl 17375 . . . . . . . . . 10 (({𝑗 ∈ (Base‘𝐺) ∣ dom (𝑗 ∖ I ) ⊆ (V ∖ {𝐴})} ∈ (SubMnd‘𝐺) ∧ (𝑊 substr ⟨0, 𝐼⟩) ∈ Word {𝑗 ∈ (Base‘𝐺) ∣ dom (𝑗 ∖ I ) ⊆ (V ∖ {𝐴})}) → (𝐺 Σg (𝑊 substr ⟨0, 𝐼⟩)) ∈ {𝑗 ∈ (Base‘𝐺) ∣ dom (𝑗 ∖ I ) ⊆ (V ∖ {𝐴})})
9447, 92, 93syl2anc 693 . . . . . . . . 9 ((𝜑 ∧ (𝐼 + 1) = 𝐿) → (𝐺 Σg (𝑊 substr ⟨0, 𝐼⟩)) ∈ {𝑗 ∈ (Base‘𝐺) ∣ dom (𝑗 ∖ I ) ⊆ (V ∖ {𝐴})})
95 difeq1 3721 . . . . . . . . . . . . . 14 (𝑗 = (𝐺 Σg (𝑊 substr ⟨0, 𝐼⟩)) → (𝑗 ∖ I ) = ((𝐺 Σg (𝑊 substr ⟨0, 𝐼⟩)) ∖ I ))
9695dmeqd 5326 . . . . . . . . . . . . 13 (𝑗 = (𝐺 Σg (𝑊 substr ⟨0, 𝐼⟩)) → dom (𝑗 ∖ I ) = dom ((𝐺 Σg (𝑊 substr ⟨0, 𝐼⟩)) ∖ I ))
9796sseq1d 3632 . . . . . . . . . . . 12 (𝑗 = (𝐺 Σg (𝑊 substr ⟨0, 𝐼⟩)) → (dom (𝑗 ∖ I ) ⊆ (V ∖ {𝐴}) ↔ dom ((𝐺 Σg (𝑊 substr ⟨0, 𝐼⟩)) ∖ I ) ⊆ (V ∖ {𝐴})))
9897elrab 3363 . . . . . . . . . . 11 ((𝐺 Σg (𝑊 substr ⟨0, 𝐼⟩)) ∈ {𝑗 ∈ (Base‘𝐺) ∣ dom (𝑗 ∖ I ) ⊆ (V ∖ {𝐴})} ↔ ((𝐺 Σg (𝑊 substr ⟨0, 𝐼⟩)) ∈ (Base‘𝐺) ∧ dom ((𝐺 Σg (𝑊 substr ⟨0, 𝐼⟩)) ∖ I ) ⊆ (V ∖ {𝐴})))
9998simprbi 480 . . . . . . . . . 10 ((𝐺 Σg (𝑊 substr ⟨0, 𝐼⟩)) ∈ {𝑗 ∈ (Base‘𝐺) ∣ dom (𝑗 ∖ I ) ⊆ (V ∖ {𝐴})} → dom ((𝐺 Σg (𝑊 substr ⟨0, 𝐼⟩)) ∖ I ) ⊆ (V ∖ {𝐴}))
100 disj2 4024 . . . . . . . . . . 11 ((dom ((𝐺 Σg (𝑊 substr ⟨0, 𝐼⟩)) ∖ I ) ∩ {𝐴}) = ∅ ↔ dom ((𝐺 Σg (𝑊 substr ⟨0, 𝐼⟩)) ∖ I ) ⊆ (V ∖ {𝐴}))
101 disjsn 4246 . . . . . . . . . . 11 ((dom ((𝐺 Σg (𝑊 substr ⟨0, 𝐼⟩)) ∖ I ) ∩ {𝐴}) = ∅ ↔ ¬ 𝐴 ∈ dom ((𝐺 Σg (𝑊 substr ⟨0, 𝐼⟩)) ∖ I ))
102100, 101bitr3i 266 . . . . . . . . . 10 (dom ((𝐺 Σg (𝑊 substr ⟨0, 𝐼⟩)) ∖ I ) ⊆ (V ∖ {𝐴}) ↔ ¬ 𝐴 ∈ dom ((𝐺 Σg (𝑊 substr ⟨0, 𝐼⟩)) ∖ I ))
10399, 102sylib 208 . . . . . . . . 9 ((𝐺 Σg (𝑊 substr ⟨0, 𝐼⟩)) ∈ {𝑗 ∈ (Base‘𝐺) ∣ dom (𝑗 ∖ I ) ⊆ (V ∖ {𝐴})} → ¬ 𝐴 ∈ dom ((𝐺 Σg (𝑊 substr ⟨0, 𝐼⟩)) ∖ I ))
10494, 103syl 17 . . . . . . . 8 ((𝜑 ∧ (𝐼 + 1) = 𝐿) → ¬ 𝐴 ∈ dom ((𝐺 Σg (𝑊 substr ⟨0, 𝐼⟩)) ∖ I ))
105 psgnunilem2.a . . . . . . . . 9 (𝜑𝐴 ∈ dom ((𝑊𝐼) ∖ I ))
106105adantr 481 . . . . . . . 8 ((𝜑 ∧ (𝐼 + 1) = 𝐿) → 𝐴 ∈ dom ((𝑊𝐼) ∖ I ))
107104, 106jca 554 . . . . . . 7 ((𝜑 ∧ (𝐼 + 1) = 𝐿) → (¬ 𝐴 ∈ dom ((𝐺 Σg (𝑊 substr ⟨0, 𝐼⟩)) ∖ I ) ∧ 𝐴 ∈ dom ((𝑊𝐼) ∖ I )))
108107olcd 408 . . . . . 6 ((𝜑 ∧ (𝐼 + 1) = 𝐿) → ((𝐴 ∈ dom ((𝐺 Σg (𝑊 substr ⟨0, 𝐼⟩)) ∖ I ) ∧ ¬ 𝐴 ∈ dom ((𝑊𝐼) ∖ I )) ∨ (¬ 𝐴 ∈ dom ((𝐺 Σg (𝑊 substr ⟨0, 𝐼⟩)) ∖ I ) ∧ 𝐴 ∈ dom ((𝑊𝐼) ∖ I ))))
109 excxor 1469 . . . . . 6 ((𝐴 ∈ dom ((𝐺 Σg (𝑊 substr ⟨0, 𝐼⟩)) ∖ I ) ⊻ 𝐴 ∈ dom ((𝑊𝐼) ∖ I )) ↔ ((𝐴 ∈ dom ((𝐺 Σg (𝑊 substr ⟨0, 𝐼⟩)) ∖ I ) ∧ ¬ 𝐴 ∈ dom ((𝑊𝐼) ∖ I )) ∨ (¬ 𝐴 ∈ dom ((𝐺 Σg (𝑊 substr ⟨0, 𝐼⟩)) ∖ I ) ∧ 𝐴 ∈ dom ((𝑊𝐼) ∖ I ))))
110108, 109sylibr 224 . . . . 5 ((𝜑 ∧ (𝐼 + 1) = 𝐿) → (𝐴 ∈ dom ((𝐺 Σg (𝑊 substr ⟨0, 𝐼⟩)) ∖ I ) ⊻ 𝐴 ∈ dom ((𝑊𝐼) ∖ I )))
111 f1omvdco3 17869 . . . . 5 (((𝐺 Σg (𝑊 substr ⟨0, 𝐼⟩)):𝐷1-1-onto𝐷 ∧ (𝑊𝐼):𝐷1-1-onto𝐷 ∧ (𝐴 ∈ dom ((𝐺 Σg (𝑊 substr ⟨0, 𝐼⟩)) ∖ I ) ⊻ 𝐴 ∈ dom ((𝑊𝐼) ∖ I ))) → 𝐴 ∈ dom (((𝐺 Σg (𝑊 substr ⟨0, 𝐼⟩)) ∘ (𝑊𝐼)) ∖ I ))
11232, 43, 110, 111syl3anc 1326 . . . 4 ((𝜑 ∧ (𝐼 + 1) = 𝐿) → 𝐴 ∈ dom (((𝐺 Σg (𝑊 substr ⟨0, 𝐼⟩)) ∘ (𝑊𝐼)) ∖ I ))
11324adantr 481 . . . . . . . . . 10 ((𝜑 ∧ (𝐼 + 1) = 𝐿) → 𝑊 ∈ Word 𝑇)
114 elfzo0 12508 . . . . . . . . . . . . . . 15 (𝐼 ∈ (0..^𝐿) ↔ (𝐼 ∈ ℕ0𝐿 ∈ ℕ ∧ 𝐼 < 𝐿))
115114simp2bi 1077 . . . . . . . . . . . . . 14 (𝐼 ∈ (0..^𝐿) → 𝐿 ∈ ℕ)
11635, 115syl 17 . . . . . . . . . . . . 13 (𝜑𝐿 ∈ ℕ)
11736, 116eqeltrd 2701 . . . . . . . . . . . 12 (𝜑 → (#‘𝑊) ∈ ℕ)
118 wrdfin 13323 . . . . . . . . . . . . 13 (𝑊 ∈ Word 𝑇𝑊 ∈ Fin)
119 hashnncl 13157 . . . . . . . . . . . . 13 (𝑊 ∈ Fin → ((#‘𝑊) ∈ ℕ ↔ 𝑊 ≠ ∅))
12024, 118, 1193syl 18 . . . . . . . . . . . 12 (𝜑 → ((#‘𝑊) ∈ ℕ ↔ 𝑊 ≠ ∅))
121117, 120mpbid 222 . . . . . . . . . . 11 (𝜑𝑊 ≠ ∅)
122121adantr 481 . . . . . . . . . 10 ((𝜑 ∧ (𝐼 + 1) = 𝐿) → 𝑊 ≠ ∅)
123 swrdccatwrd 13468 . . . . . . . . . . 11 ((𝑊 ∈ Word 𝑇𝑊 ≠ ∅) → ((𝑊 substr ⟨0, ((#‘𝑊) − 1)⟩) ++ ⟨“( lastS ‘𝑊)”⟩) = 𝑊)
124123eqcomd 2628 . . . . . . . . . 10 ((𝑊 ∈ Word 𝑇𝑊 ≠ ∅) → 𝑊 = ((𝑊 substr ⟨0, ((#‘𝑊) − 1)⟩) ++ ⟨“( lastS ‘𝑊)”⟩))
125113, 122, 124syl2anc 693 . . . . . . . . 9 ((𝜑 ∧ (𝐼 + 1) = 𝐿) → 𝑊 = ((𝑊 substr ⟨0, ((#‘𝑊) − 1)⟩) ++ ⟨“( lastS ‘𝑊)”⟩))
12636oveq1d 6665 . . . . . . . . . . . 12 (𝜑 → ((#‘𝑊) − 1) = (𝐿 − 1))
127126adantr 481 . . . . . . . . . . 11 ((𝜑 ∧ (𝐼 + 1) = 𝐿) → ((#‘𝑊) − 1) = (𝐿 − 1))
128116nncnd 11036 . . . . . . . . . . . . 13 (𝜑𝐿 ∈ ℂ)
129 1cnd 10056 . . . . . . . . . . . . 13 (𝜑 → 1 ∈ ℂ)
130 elfzoelz 12470 . . . . . . . . . . . . . . 15 (𝐼 ∈ (0..^𝐿) → 𝐼 ∈ ℤ)
13135, 130syl 17 . . . . . . . . . . . . . 14 (𝜑𝐼 ∈ ℤ)
132131zcnd 11483 . . . . . . . . . . . . 13 (𝜑𝐼 ∈ ℂ)
133128, 129, 132subadd2d 10411 . . . . . . . . . . . 12 (𝜑 → ((𝐿 − 1) = 𝐼 ↔ (𝐼 + 1) = 𝐿))
134133biimpar 502 . . . . . . . . . . 11 ((𝜑 ∧ (𝐼 + 1) = 𝐿) → (𝐿 − 1) = 𝐼)
135127, 134eqtrd 2656 . . . . . . . . . 10 ((𝜑 ∧ (𝐼 + 1) = 𝐿) → ((#‘𝑊) − 1) = 𝐼)
136 opeq2 4403 . . . . . . . . . . . . 13 (((#‘𝑊) − 1) = 𝐼 → ⟨0, ((#‘𝑊) − 1)⟩ = ⟨0, 𝐼⟩)
137136oveq2d 6666 . . . . . . . . . . . 12 (((#‘𝑊) − 1) = 𝐼 → (𝑊 substr ⟨0, ((#‘𝑊) − 1)⟩) = (𝑊 substr ⟨0, 𝐼⟩))
138137adantl 482 . . . . . . . . . . 11 ((𝜑 ∧ ((#‘𝑊) − 1) = 𝐼) → (𝑊 substr ⟨0, ((#‘𝑊) − 1)⟩) = (𝑊 substr ⟨0, 𝐼⟩))
139 lsw 13351 . . . . . . . . . . . . . 14 (𝑊 ∈ Word 𝑇 → ( lastS ‘𝑊) = (𝑊‘((#‘𝑊) − 1)))
14024, 139syl 17 . . . . . . . . . . . . 13 (𝜑 → ( lastS ‘𝑊) = (𝑊‘((#‘𝑊) − 1)))
141 fveq2 6191 . . . . . . . . . . . . 13 (((#‘𝑊) − 1) = 𝐼 → (𝑊‘((#‘𝑊) − 1)) = (𝑊𝐼))
142140, 141sylan9eq 2676 . . . . . . . . . . . 12 ((𝜑 ∧ ((#‘𝑊) − 1) = 𝐼) → ( lastS ‘𝑊) = (𝑊𝐼))
143142s1eqd 13381 . . . . . . . . . . 11 ((𝜑 ∧ ((#‘𝑊) − 1) = 𝐼) → ⟨“( lastS ‘𝑊)”⟩ = ⟨“(𝑊𝐼)”⟩)
144138, 143oveq12d 6668 . . . . . . . . . 10 ((𝜑 ∧ ((#‘𝑊) − 1) = 𝐼) → ((𝑊 substr ⟨0, ((#‘𝑊) − 1)⟩) ++ ⟨“( lastS ‘𝑊)”⟩) = ((𝑊 substr ⟨0, 𝐼⟩) ++ ⟨“(𝑊𝐼)”⟩))
145135, 144syldan 487 . . . . . . . . 9 ((𝜑 ∧ (𝐼 + 1) = 𝐿) → ((𝑊 substr ⟨0, ((#‘𝑊) − 1)⟩) ++ ⟨“( lastS ‘𝑊)”⟩) = ((𝑊 substr ⟨0, 𝐼⟩) ++ ⟨“(𝑊𝐼)”⟩))
146125, 145eqtrd 2656 . . . . . . . 8 ((𝜑 ∧ (𝐼 + 1) = 𝐿) → 𝑊 = ((𝑊 substr ⟨0, 𝐼⟩) ++ ⟨“(𝑊𝐼)”⟩))
147146oveq2d 6666 . . . . . . 7 ((𝜑 ∧ (𝐼 + 1) = 𝐿) → (𝐺 Σg 𝑊) = (𝐺 Σg ((𝑊 substr ⟨0, 𝐼⟩) ++ ⟨“(𝑊𝐼)”⟩)))
14840s1cld 13383 . . . . . . . . 9 (𝜑 → ⟨“(𝑊𝐼)”⟩ ∈ Word (Base‘𝐺))
149 eqid 2622 . . . . . . . . . 10 (+g𝐺) = (+g𝐺)
15020, 149gsumccat 17378 . . . . . . . . 9 ((𝐺 ∈ Mnd ∧ (𝑊 substr ⟨0, 𝐼⟩) ∈ Word (Base‘𝐺) ∧ ⟨“(𝑊𝐼)”⟩ ∈ Word (Base‘𝐺)) → (𝐺 Σg ((𝑊 substr ⟨0, 𝐼⟩) ++ ⟨“(𝑊𝐼)”⟩)) = ((𝐺 Σg (𝑊 substr ⟨0, 𝐼⟩))(+g𝐺)(𝐺 Σg ⟨“(𝑊𝐼)”⟩)))
15118, 27, 148, 150syl3anc 1326 . . . . . . . 8 (𝜑 → (𝐺 Σg ((𝑊 substr ⟨0, 𝐼⟩) ++ ⟨“(𝑊𝐼)”⟩)) = ((𝐺 Σg (𝑊 substr ⟨0, 𝐼⟩))(+g𝐺)(𝐺 Σg ⟨“(𝑊𝐼)”⟩)))
152151adantr 481 . . . . . . 7 ((𝜑 ∧ (𝐼 + 1) = 𝐿) → (𝐺 Σg ((𝑊 substr ⟨0, 𝐼⟩) ++ ⟨“(𝑊𝐼)”⟩)) = ((𝐺 Σg (𝑊 substr ⟨0, 𝐼⟩))(+g𝐺)(𝐺 Σg ⟨“(𝑊𝐼)”⟩)))
15320gsumws1 17376 . . . . . . . . . . 11 ((𝑊𝐼) ∈ (Base‘𝐺) → (𝐺 Σg ⟨“(𝑊𝐼)”⟩) = (𝑊𝐼))
15440, 153syl 17 . . . . . . . . . 10 (𝜑 → (𝐺 Σg ⟨“(𝑊𝐼)”⟩) = (𝑊𝐼))
155154oveq2d 6666 . . . . . . . . 9 (𝜑 → ((𝐺 Σg (𝑊 substr ⟨0, 𝐼⟩))(+g𝐺)(𝐺 Σg ⟨“(𝑊𝐼)”⟩)) = ((𝐺 Σg (𝑊 substr ⟨0, 𝐼⟩))(+g𝐺)(𝑊𝐼)))
15615, 20, 149symgov 17810 . . . . . . . . . 10 (((𝐺 Σg (𝑊 substr ⟨0, 𝐼⟩)) ∈ (Base‘𝐺) ∧ (𝑊𝐼) ∈ (Base‘𝐺)) → ((𝐺 Σg (𝑊 substr ⟨0, 𝐼⟩))(+g𝐺)(𝑊𝐼)) = ((𝐺 Σg (𝑊 substr ⟨0, 𝐼⟩)) ∘ (𝑊𝐼)))
15729, 40, 156syl2anc 693 . . . . . . . . 9 (𝜑 → ((𝐺 Σg (𝑊 substr ⟨0, 𝐼⟩))(+g𝐺)(𝑊𝐼)) = ((𝐺 Σg (𝑊 substr ⟨0, 𝐼⟩)) ∘ (𝑊𝐼)))
158155, 157eqtrd 2656 . . . . . . . 8 (𝜑 → ((𝐺 Σg (𝑊 substr ⟨0, 𝐼⟩))(+g𝐺)(𝐺 Σg ⟨“(𝑊𝐼)”⟩)) = ((𝐺 Σg (𝑊 substr ⟨0, 𝐼⟩)) ∘ (𝑊𝐼)))
159158adantr 481 . . . . . . 7 ((𝜑 ∧ (𝐼 + 1) = 𝐿) → ((𝐺 Σg (𝑊 substr ⟨0, 𝐼⟩))(+g𝐺)(𝐺 Σg ⟨“(𝑊𝐼)”⟩)) = ((𝐺 Σg (𝑊 substr ⟨0, 𝐼⟩)) ∘ (𝑊𝐼)))
160147, 152, 1593eqtrd 2660 . . . . . 6 ((𝜑 ∧ (𝐼 + 1) = 𝐿) → (𝐺 Σg 𝑊) = ((𝐺 Σg (𝑊 substr ⟨0, 𝐼⟩)) ∘ (𝑊𝐼)))
161160difeq1d 3727 . . . . 5 ((𝜑 ∧ (𝐼 + 1) = 𝐿) → ((𝐺 Σg 𝑊) ∖ I ) = (((𝐺 Σg (𝑊 substr ⟨0, 𝐼⟩)) ∘ (𝑊𝐼)) ∖ I ))
162161dmeqd 5326 . . . 4 ((𝜑 ∧ (𝐼 + 1) = 𝐿) → dom ((𝐺 Σg 𝑊) ∖ I ) = dom (((𝐺 Σg (𝑊 substr ⟨0, 𝐼⟩)) ∘ (𝑊𝐼)) ∖ I ))
163112, 162eleqtrrd 2704 . . 3 ((𝜑 ∧ (𝐼 + 1) = 𝐿) → 𝐴 ∈ dom ((𝐺 Σg 𝑊) ∖ I ))
16413, 163mtand 691 . 2 (𝜑 → ¬ (𝐼 + 1) = 𝐿)
165 fzostep1 12584 . . . 4 (𝐼 ∈ (0..^𝐿) → ((𝐼 + 1) ∈ (0..^𝐿) ∨ (𝐼 + 1) = 𝐿))
16635, 165syl 17 . . 3 (𝜑 → ((𝐼 + 1) ∈ (0..^𝐿) ∨ (𝐼 + 1) = 𝐿))
167166ord 392 . 2 (𝜑 → (¬ (𝐼 + 1) ∈ (0..^𝐿) → (𝐼 + 1) = 𝐿))
168164, 167mt3d 140 1 (𝜑 → (𝐼 + 1) ∈ (0..^𝐿))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 383  wa 384  wxo 1464   = wceq 1483  wcel 1990  wne 2794  wral 2912  {crab 2916  Vcvv 3200  cdif 3571  cin 3573  wss 3574  c0 3915  {csn 4177  cop 4183   class class class wbr 4653  cmpt 4729   I cid 5023  dom cdm 5114  ran crn 5115  cres 5116  ccom 5118  wf 5884  1-1-ontowf1o 5887  cfv 5888  (class class class)co 6650  Fincfn 7955  0cc0 9936  1c1 9937   + caddc 9939   < clt 10074  cmin 10266  cn 11020  0cn0 11292  cz 11377  cuz 11687  ...cfz 12326  ..^cfzo 12465  #chash 13117  Word cword 13291   lastS clsw 13292   ++ cconcat 13293  ⟨“cs1 13294   substr csubstr 13295  Basecbs 15857  +gcplusg 15941   Σg cgsu 16101  Mndcmnd 17294  SubMndcsubmnd 17334  Grpcgrp 17422  SubGrpcsubg 17588  SymGrpcsymg 17797  pmTrspcpmtr 17861
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-xor 1465  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-seq 12802  df-hash 13118  df-word 13299  df-lsw 13300  df-concat 13301  df-s1 13302  df-substr 13303  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-tset 15960  df-0g 16102  df-gsum 16103  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-grp 17425  df-minusg 17426  df-subg 17591  df-symg 17798  df-pmtr 17862
This theorem is referenced by:  psgnunilem2  17915
  Copyright terms: Public domain W3C validator