| Step | Hyp | Ref
| Expression |
| 1 | | noel 3919 |
. . . 4
⊢ ¬
𝐴 ∈
∅ |
| 2 | | psgnunilem2.id |
. . . . . . . 8
⊢ (𝜑 → (𝐺 Σg 𝑊) = ( I ↾ 𝐷)) |
| 3 | 2 | difeq1d 3727 |
. . . . . . 7
⊢ (𝜑 → ((𝐺 Σg 𝑊) ∖ I ) = (( I ↾
𝐷) ∖ I
)) |
| 4 | 3 | dmeqd 5326 |
. . . . . 6
⊢ (𝜑 → dom ((𝐺 Σg 𝑊) ∖ I ) = dom (( I ↾
𝐷) ∖ I
)) |
| 5 | | resss 5422 |
. . . . . . . . 9
⊢ ( I
↾ 𝐷) ⊆
I |
| 6 | | ssdif0 3942 |
. . . . . . . . 9
⊢ (( I
↾ 𝐷) ⊆ I ↔
(( I ↾ 𝐷) ∖ I )
= ∅) |
| 7 | 5, 6 | mpbi 220 |
. . . . . . . 8
⊢ (( I
↾ 𝐷) ∖ I ) =
∅ |
| 8 | 7 | dmeqi 5325 |
. . . . . . 7
⊢ dom (( I
↾ 𝐷) ∖ I ) =
dom ∅ |
| 9 | | dm0 5339 |
. . . . . . 7
⊢ dom
∅ = ∅ |
| 10 | 8, 9 | eqtri 2644 |
. . . . . 6
⊢ dom (( I
↾ 𝐷) ∖ I ) =
∅ |
| 11 | 4, 10 | syl6eq 2672 |
. . . . 5
⊢ (𝜑 → dom ((𝐺 Σg 𝑊) ∖ I ) =
∅) |
| 12 | 11 | eleq2d 2687 |
. . . 4
⊢ (𝜑 → (𝐴 ∈ dom ((𝐺 Σg 𝑊) ∖ I ) ↔ 𝐴 ∈
∅)) |
| 13 | 1, 12 | mtbiri 317 |
. . 3
⊢ (𝜑 → ¬ 𝐴 ∈ dom ((𝐺 Σg 𝑊) ∖ I )) |
| 14 | | psgnunilem2.d |
. . . . . . . . 9
⊢ (𝜑 → 𝐷 ∈ 𝑉) |
| 15 | | psgnunilem2.g |
. . . . . . . . . 10
⊢ 𝐺 = (SymGrp‘𝐷) |
| 16 | 15 | symggrp 17820 |
. . . . . . . . 9
⊢ (𝐷 ∈ 𝑉 → 𝐺 ∈ Grp) |
| 17 | | grpmnd 17429 |
. . . . . . . . 9
⊢ (𝐺 ∈ Grp → 𝐺 ∈ Mnd) |
| 18 | 14, 16, 17 | 3syl 18 |
. . . . . . . 8
⊢ (𝜑 → 𝐺 ∈ Mnd) |
| 19 | | psgnunilem2.t |
. . . . . . . . . . . 12
⊢ 𝑇 = ran (pmTrsp‘𝐷) |
| 20 | | eqid 2622 |
. . . . . . . . . . . 12
⊢
(Base‘𝐺) =
(Base‘𝐺) |
| 21 | 19, 15, 20 | symgtrf 17889 |
. . . . . . . . . . 11
⊢ 𝑇 ⊆ (Base‘𝐺) |
| 22 | | sswrd 13313 |
. . . . . . . . . . 11
⊢ (𝑇 ⊆ (Base‘𝐺) → Word 𝑇 ⊆ Word (Base‘𝐺)) |
| 23 | 21, 22 | mp1i 13 |
. . . . . . . . . 10
⊢ (𝜑 → Word 𝑇 ⊆ Word (Base‘𝐺)) |
| 24 | | psgnunilem2.w |
. . . . . . . . . 10
⊢ (𝜑 → 𝑊 ∈ Word 𝑇) |
| 25 | 23, 24 | sseldd 3604 |
. . . . . . . . 9
⊢ (𝜑 → 𝑊 ∈ Word (Base‘𝐺)) |
| 26 | | swrdcl 13419 |
. . . . . . . . 9
⊢ (𝑊 ∈ Word (Base‘𝐺) → (𝑊 substr 〈0, 𝐼〉) ∈ Word (Base‘𝐺)) |
| 27 | 25, 26 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → (𝑊 substr 〈0, 𝐼〉) ∈ Word (Base‘𝐺)) |
| 28 | 20 | gsumwcl 17377 |
. . . . . . . 8
⊢ ((𝐺 ∈ Mnd ∧ (𝑊 substr 〈0, 𝐼〉) ∈ Word
(Base‘𝐺)) →
(𝐺
Σg (𝑊 substr 〈0, 𝐼〉)) ∈ (Base‘𝐺)) |
| 29 | 18, 27, 28 | syl2anc 693 |
. . . . . . 7
⊢ (𝜑 → (𝐺 Σg (𝑊 substr 〈0, 𝐼〉)) ∈
(Base‘𝐺)) |
| 30 | 15, 20 | symgbasf1o 17803 |
. . . . . . 7
⊢ ((𝐺 Σg
(𝑊 substr 〈0, 𝐼〉)) ∈
(Base‘𝐺) →
(𝐺
Σg (𝑊 substr 〈0, 𝐼〉)):𝐷–1-1-onto→𝐷) |
| 31 | 29, 30 | syl 17 |
. . . . . 6
⊢ (𝜑 → (𝐺 Σg (𝑊 substr 〈0, 𝐼〉)):𝐷–1-1-onto→𝐷) |
| 32 | 31 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ (𝐼 + 1) = 𝐿) → (𝐺 Σg (𝑊 substr 〈0, 𝐼〉)):𝐷–1-1-onto→𝐷) |
| 33 | | wrdf 13310 |
. . . . . . . . . 10
⊢ (𝑊 ∈ Word 𝑇 → 𝑊:(0..^(#‘𝑊))⟶𝑇) |
| 34 | 24, 33 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → 𝑊:(0..^(#‘𝑊))⟶𝑇) |
| 35 | | psgnunilem2.ix |
. . . . . . . . . 10
⊢ (𝜑 → 𝐼 ∈ (0..^𝐿)) |
| 36 | | psgnunilem2.l |
. . . . . . . . . . 11
⊢ (𝜑 → (#‘𝑊) = 𝐿) |
| 37 | 36 | oveq2d 6666 |
. . . . . . . . . 10
⊢ (𝜑 → (0..^(#‘𝑊)) = (0..^𝐿)) |
| 38 | 35, 37 | eleqtrrd 2704 |
. . . . . . . . 9
⊢ (𝜑 → 𝐼 ∈ (0..^(#‘𝑊))) |
| 39 | 34, 38 | ffvelrnd 6360 |
. . . . . . . 8
⊢ (𝜑 → (𝑊‘𝐼) ∈ 𝑇) |
| 40 | 21, 39 | sseldi 3601 |
. . . . . . 7
⊢ (𝜑 → (𝑊‘𝐼) ∈ (Base‘𝐺)) |
| 41 | 15, 20 | symgbasf1o 17803 |
. . . . . . 7
⊢ ((𝑊‘𝐼) ∈ (Base‘𝐺) → (𝑊‘𝐼):𝐷–1-1-onto→𝐷) |
| 42 | 40, 41 | syl 17 |
. . . . . 6
⊢ (𝜑 → (𝑊‘𝐼):𝐷–1-1-onto→𝐷) |
| 43 | 42 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ (𝐼 + 1) = 𝐿) → (𝑊‘𝐼):𝐷–1-1-onto→𝐷) |
| 44 | 15, 20 | symgsssg 17887 |
. . . . . . . . . . . 12
⊢ (𝐷 ∈ 𝑉 → {𝑗 ∈ (Base‘𝐺) ∣ dom (𝑗 ∖ I ) ⊆ (V ∖ {𝐴})} ∈ (SubGrp‘𝐺)) |
| 45 | | subgsubm 17616 |
. . . . . . . . . . . 12
⊢ ({𝑗 ∈ (Base‘𝐺) ∣ dom (𝑗 ∖ I ) ⊆ (V ∖
{𝐴})} ∈
(SubGrp‘𝐺) →
{𝑗 ∈ (Base‘𝐺) ∣ dom (𝑗 ∖ I ) ⊆ (V ∖
{𝐴})} ∈
(SubMnd‘𝐺)) |
| 46 | 14, 44, 45 | 3syl 18 |
. . . . . . . . . . 11
⊢ (𝜑 → {𝑗 ∈ (Base‘𝐺) ∣ dom (𝑗 ∖ I ) ⊆ (V ∖ {𝐴})} ∈ (SubMnd‘𝐺)) |
| 47 | 46 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝐼 + 1) = 𝐿) → {𝑗 ∈ (Base‘𝐺) ∣ dom (𝑗 ∖ I ) ⊆ (V ∖ {𝐴})} ∈ (SubMnd‘𝐺)) |
| 48 | | fzossfz 12488 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(0..^𝐿) ⊆
(0...𝐿) |
| 49 | 48, 35 | sseldi 3601 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → 𝐼 ∈ (0...𝐿)) |
| 50 | | elfzuz3 12339 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝐼 ∈ (0...𝐿) → 𝐿 ∈ (ℤ≥‘𝐼)) |
| 51 | 49, 50 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → 𝐿 ∈ (ℤ≥‘𝐼)) |
| 52 | 36, 51 | eqeltrd 2701 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → (#‘𝑊) ∈ (ℤ≥‘𝐼)) |
| 53 | | fzoss2 12496 |
. . . . . . . . . . . . . . . . . 18
⊢
((#‘𝑊) ∈
(ℤ≥‘𝐼) → (0..^𝐼) ⊆ (0..^(#‘𝑊))) |
| 54 | 52, 53 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (0..^𝐼) ⊆ (0..^(#‘𝑊))) |
| 55 | 54 | sselda 3603 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑠 ∈ (0..^𝐼)) → 𝑠 ∈ (0..^(#‘𝑊))) |
| 56 | 34 | ffvelrnda 6359 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑠 ∈ (0..^(#‘𝑊))) → (𝑊‘𝑠) ∈ 𝑇) |
| 57 | 21, 56 | sseldi 3601 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑠 ∈ (0..^(#‘𝑊))) → (𝑊‘𝑠) ∈ (Base‘𝐺)) |
| 58 | 55, 57 | syldan 487 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑠 ∈ (0..^𝐼)) → (𝑊‘𝑠) ∈ (Base‘𝐺)) |
| 59 | | psgnunilem2.al |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → ∀𝑘 ∈ (0..^𝐼) ¬ 𝐴 ∈ dom ((𝑊‘𝑘) ∖ I )) |
| 60 | | fveq2 6191 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑘 = 𝑠 → (𝑊‘𝑘) = (𝑊‘𝑠)) |
| 61 | 60 | difeq1d 3727 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑘 = 𝑠 → ((𝑊‘𝑘) ∖ I ) = ((𝑊‘𝑠) ∖ I )) |
| 62 | 61 | dmeqd 5326 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑘 = 𝑠 → dom ((𝑊‘𝑘) ∖ I ) = dom ((𝑊‘𝑠) ∖ I )) |
| 63 | 62 | eleq2d 2687 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑘 = 𝑠 → (𝐴 ∈ dom ((𝑊‘𝑘) ∖ I ) ↔ 𝐴 ∈ dom ((𝑊‘𝑠) ∖ I ))) |
| 64 | 63 | notbid 308 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑘 = 𝑠 → (¬ 𝐴 ∈ dom ((𝑊‘𝑘) ∖ I ) ↔ ¬ 𝐴 ∈ dom ((𝑊‘𝑠) ∖ I ))) |
| 65 | 64 | cbvralv 3171 |
. . . . . . . . . . . . . . . . 17
⊢
(∀𝑘 ∈
(0..^𝐼) ¬ 𝐴 ∈ dom ((𝑊‘𝑘) ∖ I ) ↔ ∀𝑠 ∈ (0..^𝐼) ¬ 𝐴 ∈ dom ((𝑊‘𝑠) ∖ I )) |
| 66 | 59, 65 | sylib 208 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → ∀𝑠 ∈ (0..^𝐼) ¬ 𝐴 ∈ dom ((𝑊‘𝑠) ∖ I )) |
| 67 | 66 | r19.21bi 2932 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑠 ∈ (0..^𝐼)) → ¬ 𝐴 ∈ dom ((𝑊‘𝑠) ∖ I )) |
| 68 | | difeq1 3721 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑗 = (𝑊‘𝑠) → (𝑗 ∖ I ) = ((𝑊‘𝑠) ∖ I )) |
| 69 | 68 | dmeqd 5326 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑗 = (𝑊‘𝑠) → dom (𝑗 ∖ I ) = dom ((𝑊‘𝑠) ∖ I )) |
| 70 | 69 | sseq1d 3632 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑗 = (𝑊‘𝑠) → (dom (𝑗 ∖ I ) ⊆ (V ∖ {𝐴}) ↔ dom ((𝑊‘𝑠) ∖ I ) ⊆ (V ∖ {𝐴}))) |
| 71 | | disj2 4024 |
. . . . . . . . . . . . . . . . . 18
⊢ ((dom
((𝑊‘𝑠) ∖ I ) ∩ {𝐴}) = ∅ ↔ dom ((𝑊‘𝑠) ∖ I ) ⊆ (V ∖ {𝐴})) |
| 72 | | disjsn 4246 |
. . . . . . . . . . . . . . . . . 18
⊢ ((dom
((𝑊‘𝑠) ∖ I ) ∩ {𝐴}) = ∅ ↔ ¬ 𝐴 ∈ dom ((𝑊‘𝑠) ∖ I )) |
| 73 | 71, 72 | bitr3i 266 |
. . . . . . . . . . . . . . . . 17
⊢ (dom
((𝑊‘𝑠) ∖ I ) ⊆ (V ∖
{𝐴}) ↔ ¬ 𝐴 ∈ dom ((𝑊‘𝑠) ∖ I )) |
| 74 | 70, 73 | syl6bb 276 |
. . . . . . . . . . . . . . . 16
⊢ (𝑗 = (𝑊‘𝑠) → (dom (𝑗 ∖ I ) ⊆ (V ∖ {𝐴}) ↔ ¬ 𝐴 ∈ dom ((𝑊‘𝑠) ∖ I ))) |
| 75 | 74 | elrab 3363 |
. . . . . . . . . . . . . . 15
⊢ ((𝑊‘𝑠) ∈ {𝑗 ∈ (Base‘𝐺) ∣ dom (𝑗 ∖ I ) ⊆ (V ∖ {𝐴})} ↔ ((𝑊‘𝑠) ∈ (Base‘𝐺) ∧ ¬ 𝐴 ∈ dom ((𝑊‘𝑠) ∖ I ))) |
| 76 | 58, 67, 75 | sylanbrc 698 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑠 ∈ (0..^𝐼)) → (𝑊‘𝑠) ∈ {𝑗 ∈ (Base‘𝐺) ∣ dom (𝑗 ∖ I ) ⊆ (V ∖ {𝐴})}) |
| 77 | | eqid 2622 |
. . . . . . . . . . . . . 14
⊢ (𝑠 ∈ (0..^𝐼) ↦ (𝑊‘𝑠)) = (𝑠 ∈ (0..^𝐼) ↦ (𝑊‘𝑠)) |
| 78 | 76, 77 | fmptd 6385 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑠 ∈ (0..^𝐼) ↦ (𝑊‘𝑠)):(0..^𝐼)⟶{𝑗 ∈ (Base‘𝐺) ∣ dom (𝑗 ∖ I ) ⊆ (V ∖ {𝐴})}) |
| 79 | 36 | oveq2d 6666 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (0...(#‘𝑊)) = (0...𝐿)) |
| 80 | 49, 79 | eleqtrrd 2704 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝐼 ∈ (0...(#‘𝑊))) |
| 81 | | swrd0val 13421 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑊 ∈ Word 𝑇 ∧ 𝐼 ∈ (0...(#‘𝑊))) → (𝑊 substr 〈0, 𝐼〉) = (𝑊 ↾ (0..^𝐼))) |
| 82 | 24, 80, 81 | syl2anc 693 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝑊 substr 〈0, 𝐼〉) = (𝑊 ↾ (0..^𝐼))) |
| 83 | 34 | feqmptd 6249 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝑊 = (𝑠 ∈ (0..^(#‘𝑊)) ↦ (𝑊‘𝑠))) |
| 84 | 83 | reseq1d 5395 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝑊 ↾ (0..^𝐼)) = ((𝑠 ∈ (0..^(#‘𝑊)) ↦ (𝑊‘𝑠)) ↾ (0..^𝐼))) |
| 85 | | resmpt 5449 |
. . . . . . . . . . . . . . . 16
⊢
((0..^𝐼) ⊆
(0..^(#‘𝑊)) →
((𝑠 ∈
(0..^(#‘𝑊)) ↦
(𝑊‘𝑠)) ↾ (0..^𝐼)) = (𝑠 ∈ (0..^𝐼) ↦ (𝑊‘𝑠))) |
| 86 | 52, 53, 85 | 3syl 18 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → ((𝑠 ∈ (0..^(#‘𝑊)) ↦ (𝑊‘𝑠)) ↾ (0..^𝐼)) = (𝑠 ∈ (0..^𝐼) ↦ (𝑊‘𝑠))) |
| 87 | 82, 84, 86 | 3eqtrd 2660 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑊 substr 〈0, 𝐼〉) = (𝑠 ∈ (0..^𝐼) ↦ (𝑊‘𝑠))) |
| 88 | 87 | feq1d 6030 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ((𝑊 substr 〈0, 𝐼〉):(0..^𝐼)⟶{𝑗 ∈ (Base‘𝐺) ∣ dom (𝑗 ∖ I ) ⊆ (V ∖ {𝐴})} ↔ (𝑠 ∈ (0..^𝐼) ↦ (𝑊‘𝑠)):(0..^𝐼)⟶{𝑗 ∈ (Base‘𝐺) ∣ dom (𝑗 ∖ I ) ⊆ (V ∖ {𝐴})})) |
| 89 | 78, 88 | mpbird 247 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑊 substr 〈0, 𝐼〉):(0..^𝐼)⟶{𝑗 ∈ (Base‘𝐺) ∣ dom (𝑗 ∖ I ) ⊆ (V ∖ {𝐴})}) |
| 90 | 89 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝐼 + 1) = 𝐿) → (𝑊 substr 〈0, 𝐼〉):(0..^𝐼)⟶{𝑗 ∈ (Base‘𝐺) ∣ dom (𝑗 ∖ I ) ⊆ (V ∖ {𝐴})}) |
| 91 | | iswrdi 13309 |
. . . . . . . . . . 11
⊢ ((𝑊 substr 〈0, 𝐼〉):(0..^𝐼)⟶{𝑗 ∈ (Base‘𝐺) ∣ dom (𝑗 ∖ I ) ⊆ (V ∖ {𝐴})} → (𝑊 substr 〈0, 𝐼〉) ∈ Word {𝑗 ∈ (Base‘𝐺) ∣ dom (𝑗 ∖ I ) ⊆ (V ∖ {𝐴})}) |
| 92 | 90, 91 | syl 17 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝐼 + 1) = 𝐿) → (𝑊 substr 〈0, 𝐼〉) ∈ Word {𝑗 ∈ (Base‘𝐺) ∣ dom (𝑗 ∖ I ) ⊆ (V ∖ {𝐴})}) |
| 93 | | gsumwsubmcl 17375 |
. . . . . . . . . 10
⊢ (({𝑗 ∈ (Base‘𝐺) ∣ dom (𝑗 ∖ I ) ⊆ (V ∖
{𝐴})} ∈
(SubMnd‘𝐺) ∧
(𝑊 substr 〈0, 𝐼〉) ∈ Word {𝑗 ∈ (Base‘𝐺) ∣ dom (𝑗 ∖ I ) ⊆ (V ∖
{𝐴})}) → (𝐺 Σg
(𝑊 substr 〈0, 𝐼〉)) ∈ {𝑗 ∈ (Base‘𝐺) ∣ dom (𝑗 ∖ I ) ⊆ (V ∖
{𝐴})}) |
| 94 | 47, 92, 93 | syl2anc 693 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝐼 + 1) = 𝐿) → (𝐺 Σg (𝑊 substr 〈0, 𝐼〉)) ∈ {𝑗 ∈ (Base‘𝐺) ∣ dom (𝑗 ∖ I ) ⊆ (V ∖
{𝐴})}) |
| 95 | | difeq1 3721 |
. . . . . . . . . . . . . 14
⊢ (𝑗 = (𝐺 Σg (𝑊 substr 〈0, 𝐼〉)) → (𝑗 ∖ I ) = ((𝐺 Σg
(𝑊 substr 〈0, 𝐼〉)) ∖ I
)) |
| 96 | 95 | dmeqd 5326 |
. . . . . . . . . . . . 13
⊢ (𝑗 = (𝐺 Σg (𝑊 substr 〈0, 𝐼〉)) → dom (𝑗 ∖ I ) = dom ((𝐺 Σg
(𝑊 substr 〈0, 𝐼〉)) ∖ I
)) |
| 97 | 96 | sseq1d 3632 |
. . . . . . . . . . . 12
⊢ (𝑗 = (𝐺 Σg (𝑊 substr 〈0, 𝐼〉)) → (dom (𝑗 ∖ I ) ⊆ (V ∖
{𝐴}) ↔ dom ((𝐺 Σg
(𝑊 substr 〈0, 𝐼〉)) ∖ I ) ⊆ (V
∖ {𝐴}))) |
| 98 | 97 | elrab 3363 |
. . . . . . . . . . 11
⊢ ((𝐺 Σg
(𝑊 substr 〈0, 𝐼〉)) ∈ {𝑗 ∈ (Base‘𝐺) ∣ dom (𝑗 ∖ I ) ⊆ (V ∖
{𝐴})} ↔ ((𝐺 Σg
(𝑊 substr 〈0, 𝐼〉)) ∈
(Base‘𝐺) ∧ dom
((𝐺
Σg (𝑊 substr 〈0, 𝐼〉)) ∖ I ) ⊆ (V ∖
{𝐴}))) |
| 99 | 98 | simprbi 480 |
. . . . . . . . . 10
⊢ ((𝐺 Σg
(𝑊 substr 〈0, 𝐼〉)) ∈ {𝑗 ∈ (Base‘𝐺) ∣ dom (𝑗 ∖ I ) ⊆ (V ∖
{𝐴})} → dom ((𝐺 Σg
(𝑊 substr 〈0, 𝐼〉)) ∖ I ) ⊆ (V
∖ {𝐴})) |
| 100 | | disj2 4024 |
. . . . . . . . . . 11
⊢ ((dom
((𝐺
Σg (𝑊 substr 〈0, 𝐼〉)) ∖ I ) ∩ {𝐴}) = ∅ ↔ dom ((𝐺 Σg
(𝑊 substr 〈0, 𝐼〉)) ∖ I ) ⊆ (V
∖ {𝐴})) |
| 101 | | disjsn 4246 |
. . . . . . . . . . 11
⊢ ((dom
((𝐺
Σg (𝑊 substr 〈0, 𝐼〉)) ∖ I ) ∩ {𝐴}) = ∅ ↔ ¬ 𝐴 ∈ dom ((𝐺 Σg (𝑊 substr 〈0, 𝐼〉)) ∖ I
)) |
| 102 | 100, 101 | bitr3i 266 |
. . . . . . . . . 10
⊢ (dom
((𝐺
Σg (𝑊 substr 〈0, 𝐼〉)) ∖ I ) ⊆ (V ∖
{𝐴}) ↔ ¬ 𝐴 ∈ dom ((𝐺 Σg (𝑊 substr 〈0, 𝐼〉)) ∖ I
)) |
| 103 | 99, 102 | sylib 208 |
. . . . . . . . 9
⊢ ((𝐺 Σg
(𝑊 substr 〈0, 𝐼〉)) ∈ {𝑗 ∈ (Base‘𝐺) ∣ dom (𝑗 ∖ I ) ⊆ (V ∖
{𝐴})} → ¬ 𝐴 ∈ dom ((𝐺 Σg (𝑊 substr 〈0, 𝐼〉)) ∖ I
)) |
| 104 | 94, 103 | syl 17 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝐼 + 1) = 𝐿) → ¬ 𝐴 ∈ dom ((𝐺 Σg (𝑊 substr 〈0, 𝐼〉)) ∖ I
)) |
| 105 | | psgnunilem2.a |
. . . . . . . . 9
⊢ (𝜑 → 𝐴 ∈ dom ((𝑊‘𝐼) ∖ I )) |
| 106 | 105 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝐼 + 1) = 𝐿) → 𝐴 ∈ dom ((𝑊‘𝐼) ∖ I )) |
| 107 | 104, 106 | jca 554 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝐼 + 1) = 𝐿) → (¬ 𝐴 ∈ dom ((𝐺 Σg (𝑊 substr 〈0, 𝐼〉)) ∖ I ) ∧ 𝐴 ∈ dom ((𝑊‘𝐼) ∖ I ))) |
| 108 | 107 | olcd 408 |
. . . . . 6
⊢ ((𝜑 ∧ (𝐼 + 1) = 𝐿) → ((𝐴 ∈ dom ((𝐺 Σg (𝑊 substr 〈0, 𝐼〉)) ∖ I ) ∧ ¬
𝐴 ∈ dom ((𝑊‘𝐼) ∖ I )) ∨ (¬ 𝐴 ∈ dom ((𝐺 Σg (𝑊 substr 〈0, 𝐼〉)) ∖ I ) ∧ 𝐴 ∈ dom ((𝑊‘𝐼) ∖ I )))) |
| 109 | | excxor 1469 |
. . . . . 6
⊢ ((𝐴 ∈ dom ((𝐺 Σg (𝑊 substr 〈0, 𝐼〉)) ∖ I ) ⊻
𝐴 ∈ dom ((𝑊‘𝐼) ∖ I )) ↔ ((𝐴 ∈ dom ((𝐺 Σg (𝑊 substr 〈0, 𝐼〉)) ∖ I ) ∧ ¬
𝐴 ∈ dom ((𝑊‘𝐼) ∖ I )) ∨ (¬ 𝐴 ∈ dom ((𝐺 Σg (𝑊 substr 〈0, 𝐼〉)) ∖ I ) ∧ 𝐴 ∈ dom ((𝑊‘𝐼) ∖ I )))) |
| 110 | 108, 109 | sylibr 224 |
. . . . 5
⊢ ((𝜑 ∧ (𝐼 + 1) = 𝐿) → (𝐴 ∈ dom ((𝐺 Σg (𝑊 substr 〈0, 𝐼〉)) ∖ I ) ⊻
𝐴 ∈ dom ((𝑊‘𝐼) ∖ I ))) |
| 111 | | f1omvdco3 17869 |
. . . . 5
⊢ (((𝐺 Σg
(𝑊 substr 〈0, 𝐼〉)):𝐷–1-1-onto→𝐷 ∧ (𝑊‘𝐼):𝐷–1-1-onto→𝐷 ∧ (𝐴 ∈ dom ((𝐺 Σg (𝑊 substr 〈0, 𝐼〉)) ∖ I ) ⊻
𝐴 ∈ dom ((𝑊‘𝐼) ∖ I ))) → 𝐴 ∈ dom (((𝐺 Σg (𝑊 substr 〈0, 𝐼〉)) ∘ (𝑊‘𝐼)) ∖ I )) |
| 112 | 32, 43, 110, 111 | syl3anc 1326 |
. . . 4
⊢ ((𝜑 ∧ (𝐼 + 1) = 𝐿) → 𝐴 ∈ dom (((𝐺 Σg (𝑊 substr 〈0, 𝐼〉)) ∘ (𝑊‘𝐼)) ∖ I )) |
| 113 | 24 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝐼 + 1) = 𝐿) → 𝑊 ∈ Word 𝑇) |
| 114 | | elfzo0 12508 |
. . . . . . . . . . . . . . 15
⊢ (𝐼 ∈ (0..^𝐿) ↔ (𝐼 ∈ ℕ0 ∧ 𝐿 ∈ ℕ ∧ 𝐼 < 𝐿)) |
| 115 | 114 | simp2bi 1077 |
. . . . . . . . . . . . . 14
⊢ (𝐼 ∈ (0..^𝐿) → 𝐿 ∈ ℕ) |
| 116 | 35, 115 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐿 ∈ ℕ) |
| 117 | 36, 116 | eqeltrd 2701 |
. . . . . . . . . . . 12
⊢ (𝜑 → (#‘𝑊) ∈ ℕ) |
| 118 | | wrdfin 13323 |
. . . . . . . . . . . . 13
⊢ (𝑊 ∈ Word 𝑇 → 𝑊 ∈ Fin) |
| 119 | | hashnncl 13157 |
. . . . . . . . . . . . 13
⊢ (𝑊 ∈ Fin →
((#‘𝑊) ∈ ℕ
↔ 𝑊 ≠
∅)) |
| 120 | 24, 118, 119 | 3syl 18 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((#‘𝑊) ∈ ℕ ↔ 𝑊 ≠ ∅)) |
| 121 | 117, 120 | mpbid 222 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑊 ≠ ∅) |
| 122 | 121 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝐼 + 1) = 𝐿) → 𝑊 ≠ ∅) |
| 123 | | swrdccatwrd 13468 |
. . . . . . . . . . 11
⊢ ((𝑊 ∈ Word 𝑇 ∧ 𝑊 ≠ ∅) → ((𝑊 substr 〈0, ((#‘𝑊) − 1)〉) ++ 〈“( lastS
‘𝑊)”〉) =
𝑊) |
| 124 | 123 | eqcomd 2628 |
. . . . . . . . . 10
⊢ ((𝑊 ∈ Word 𝑇 ∧ 𝑊 ≠ ∅) → 𝑊 = ((𝑊 substr 〈0, ((#‘𝑊) − 1)〉) ++ 〈“( lastS
‘𝑊)”〉)) |
| 125 | 113, 122,
124 | syl2anc 693 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝐼 + 1) = 𝐿) → 𝑊 = ((𝑊 substr 〈0, ((#‘𝑊) − 1)〉) ++ 〈“( lastS
‘𝑊)”〉)) |
| 126 | 36 | oveq1d 6665 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((#‘𝑊) − 1) = (𝐿 − 1)) |
| 127 | 126 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝐼 + 1) = 𝐿) → ((#‘𝑊) − 1) = (𝐿 − 1)) |
| 128 | 116 | nncnd 11036 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐿 ∈ ℂ) |
| 129 | | 1cnd 10056 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 1 ∈
ℂ) |
| 130 | | elfzoelz 12470 |
. . . . . . . . . . . . . . 15
⊢ (𝐼 ∈ (0..^𝐿) → 𝐼 ∈ ℤ) |
| 131 | 35, 130 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐼 ∈ ℤ) |
| 132 | 131 | zcnd 11483 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐼 ∈ ℂ) |
| 133 | 128, 129,
132 | subadd2d 10411 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((𝐿 − 1) = 𝐼 ↔ (𝐼 + 1) = 𝐿)) |
| 134 | 133 | biimpar 502 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝐼 + 1) = 𝐿) → (𝐿 − 1) = 𝐼) |
| 135 | 127, 134 | eqtrd 2656 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝐼 + 1) = 𝐿) → ((#‘𝑊) − 1) = 𝐼) |
| 136 | | opeq2 4403 |
. . . . . . . . . . . . 13
⊢
(((#‘𝑊)
− 1) = 𝐼 →
〈0, ((#‘𝑊)
− 1)〉 = 〈0, 𝐼〉) |
| 137 | 136 | oveq2d 6666 |
. . . . . . . . . . . 12
⊢
(((#‘𝑊)
− 1) = 𝐼 →
(𝑊 substr 〈0,
((#‘𝑊) −
1)〉) = (𝑊 substr
〈0, 𝐼〉)) |
| 138 | 137 | adantl 482 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ ((#‘𝑊) − 1) = 𝐼) → (𝑊 substr 〈0, ((#‘𝑊) − 1)〉) = (𝑊 substr 〈0, 𝐼〉)) |
| 139 | | lsw 13351 |
. . . . . . . . . . . . . 14
⊢ (𝑊 ∈ Word 𝑇 → ( lastS ‘𝑊) = (𝑊‘((#‘𝑊) − 1))) |
| 140 | 24, 139 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ( lastS ‘𝑊) = (𝑊‘((#‘𝑊) − 1))) |
| 141 | | fveq2 6191 |
. . . . . . . . . . . . 13
⊢
(((#‘𝑊)
− 1) = 𝐼 →
(𝑊‘((#‘𝑊) − 1)) = (𝑊‘𝐼)) |
| 142 | 140, 141 | sylan9eq 2676 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ ((#‘𝑊) − 1) = 𝐼) → ( lastS ‘𝑊) = (𝑊‘𝐼)) |
| 143 | 142 | s1eqd 13381 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ ((#‘𝑊) − 1) = 𝐼) → 〈“( lastS ‘𝑊)”〉 =
〈“(𝑊‘𝐼)”〉) |
| 144 | 138, 143 | oveq12d 6668 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ((#‘𝑊) − 1) = 𝐼) → ((𝑊 substr 〈0, ((#‘𝑊) − 1)〉) ++ 〈“( lastS
‘𝑊)”〉) =
((𝑊 substr 〈0, 𝐼〉) ++ 〈“(𝑊‘𝐼)”〉)) |
| 145 | 135, 144 | syldan 487 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝐼 + 1) = 𝐿) → ((𝑊 substr 〈0, ((#‘𝑊) − 1)〉) ++ 〈“( lastS
‘𝑊)”〉) =
((𝑊 substr 〈0, 𝐼〉) ++ 〈“(𝑊‘𝐼)”〉)) |
| 146 | 125, 145 | eqtrd 2656 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝐼 + 1) = 𝐿) → 𝑊 = ((𝑊 substr 〈0, 𝐼〉) ++ 〈“(𝑊‘𝐼)”〉)) |
| 147 | 146 | oveq2d 6666 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝐼 + 1) = 𝐿) → (𝐺 Σg 𝑊) = (𝐺 Σg ((𝑊 substr 〈0, 𝐼〉) ++ 〈“(𝑊‘𝐼)”〉))) |
| 148 | 40 | s1cld 13383 |
. . . . . . . . 9
⊢ (𝜑 → 〈“(𝑊‘𝐼)”〉 ∈ Word (Base‘𝐺)) |
| 149 | | eqid 2622 |
. . . . . . . . . 10
⊢
(+g‘𝐺) = (+g‘𝐺) |
| 150 | 20, 149 | gsumccat 17378 |
. . . . . . . . 9
⊢ ((𝐺 ∈ Mnd ∧ (𝑊 substr 〈0, 𝐼〉) ∈ Word
(Base‘𝐺) ∧
〈“(𝑊‘𝐼)”〉 ∈ Word
(Base‘𝐺)) →
(𝐺
Σg ((𝑊 substr 〈0, 𝐼〉) ++ 〈“(𝑊‘𝐼)”〉)) = ((𝐺 Σg (𝑊 substr 〈0, 𝐼〉))(+g‘𝐺)(𝐺 Σg
〈“(𝑊‘𝐼)”〉))) |
| 151 | 18, 27, 148, 150 | syl3anc 1326 |
. . . . . . . 8
⊢ (𝜑 → (𝐺 Σg ((𝑊 substr 〈0, 𝐼〉) ++ 〈“(𝑊‘𝐼)”〉)) = ((𝐺 Σg (𝑊 substr 〈0, 𝐼〉))(+g‘𝐺)(𝐺 Σg
〈“(𝑊‘𝐼)”〉))) |
| 152 | 151 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝐼 + 1) = 𝐿) → (𝐺 Σg ((𝑊 substr 〈0, 𝐼〉) ++ 〈“(𝑊‘𝐼)”〉)) = ((𝐺 Σg (𝑊 substr 〈0, 𝐼〉))(+g‘𝐺)(𝐺 Σg
〈“(𝑊‘𝐼)”〉))) |
| 153 | 20 | gsumws1 17376 |
. . . . . . . . . . 11
⊢ ((𝑊‘𝐼) ∈ (Base‘𝐺) → (𝐺 Σg
〈“(𝑊‘𝐼)”〉) = (𝑊‘𝐼)) |
| 154 | 40, 153 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐺 Σg
〈“(𝑊‘𝐼)”〉) = (𝑊‘𝐼)) |
| 155 | 154 | oveq2d 6666 |
. . . . . . . . 9
⊢ (𝜑 → ((𝐺 Σg (𝑊 substr 〈0, 𝐼〉))(+g‘𝐺)(𝐺 Σg
〈“(𝑊‘𝐼)”〉)) = ((𝐺 Σg
(𝑊 substr 〈0, 𝐼〉))(+g‘𝐺)(𝑊‘𝐼))) |
| 156 | 15, 20, 149 | symgov 17810 |
. . . . . . . . . 10
⊢ (((𝐺 Σg
(𝑊 substr 〈0, 𝐼〉)) ∈
(Base‘𝐺) ∧ (𝑊‘𝐼) ∈ (Base‘𝐺)) → ((𝐺 Σg (𝑊 substr 〈0, 𝐼〉))(+g‘𝐺)(𝑊‘𝐼)) = ((𝐺 Σg (𝑊 substr 〈0, 𝐼〉)) ∘ (𝑊‘𝐼))) |
| 157 | 29, 40, 156 | syl2anc 693 |
. . . . . . . . 9
⊢ (𝜑 → ((𝐺 Σg (𝑊 substr 〈0, 𝐼〉))(+g‘𝐺)(𝑊‘𝐼)) = ((𝐺 Σg (𝑊 substr 〈0, 𝐼〉)) ∘ (𝑊‘𝐼))) |
| 158 | 155, 157 | eqtrd 2656 |
. . . . . . . 8
⊢ (𝜑 → ((𝐺 Σg (𝑊 substr 〈0, 𝐼〉))(+g‘𝐺)(𝐺 Σg
〈“(𝑊‘𝐼)”〉)) = ((𝐺 Σg
(𝑊 substr 〈0, 𝐼〉)) ∘ (𝑊‘𝐼))) |
| 159 | 158 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝐼 + 1) = 𝐿) → ((𝐺 Σg (𝑊 substr 〈0, 𝐼〉))(+g‘𝐺)(𝐺 Σg
〈“(𝑊‘𝐼)”〉)) = ((𝐺 Σg
(𝑊 substr 〈0, 𝐼〉)) ∘ (𝑊‘𝐼))) |
| 160 | 147, 152,
159 | 3eqtrd 2660 |
. . . . . 6
⊢ ((𝜑 ∧ (𝐼 + 1) = 𝐿) → (𝐺 Σg 𝑊) = ((𝐺 Σg (𝑊 substr 〈0, 𝐼〉)) ∘ (𝑊‘𝐼))) |
| 161 | 160 | difeq1d 3727 |
. . . . 5
⊢ ((𝜑 ∧ (𝐼 + 1) = 𝐿) → ((𝐺 Σg 𝑊) ∖ I ) = (((𝐺 Σg
(𝑊 substr 〈0, 𝐼〉)) ∘ (𝑊‘𝐼)) ∖ I )) |
| 162 | 161 | dmeqd 5326 |
. . . 4
⊢ ((𝜑 ∧ (𝐼 + 1) = 𝐿) → dom ((𝐺 Σg 𝑊) ∖ I ) = dom (((𝐺 Σg
(𝑊 substr 〈0, 𝐼〉)) ∘ (𝑊‘𝐼)) ∖ I )) |
| 163 | 112, 162 | eleqtrrd 2704 |
. . 3
⊢ ((𝜑 ∧ (𝐼 + 1) = 𝐿) → 𝐴 ∈ dom ((𝐺 Σg 𝑊) ∖ I )) |
| 164 | 13, 163 | mtand 691 |
. 2
⊢ (𝜑 → ¬ (𝐼 + 1) = 𝐿) |
| 165 | | fzostep1 12584 |
. . . 4
⊢ (𝐼 ∈ (0..^𝐿) → ((𝐼 + 1) ∈ (0..^𝐿) ∨ (𝐼 + 1) = 𝐿)) |
| 166 | 35, 165 | syl 17 |
. . 3
⊢ (𝜑 → ((𝐼 + 1) ∈ (0..^𝐿) ∨ (𝐼 + 1) = 𝐿)) |
| 167 | 166 | ord 392 |
. 2
⊢ (𝜑 → (¬ (𝐼 + 1) ∈ (0..^𝐿) → (𝐼 + 1) = 𝐿)) |
| 168 | 164, 167 | mt3d 140 |
1
⊢ (𝜑 → (𝐼 + 1) ∈ (0..^𝐿)) |