![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > q1peqb | Structured version Visualization version GIF version |
Description: Characterizing property of the polynomial quotient. (Contributed by Stefan O'Rear, 28-Mar-2015.) |
Ref | Expression |
---|---|
q1pval.q | ⊢ 𝑄 = (quot1p‘𝑅) |
q1pval.p | ⊢ 𝑃 = (Poly1‘𝑅) |
q1pval.b | ⊢ 𝐵 = (Base‘𝑃) |
q1pval.d | ⊢ 𝐷 = ( deg1 ‘𝑅) |
q1pval.m | ⊢ − = (-g‘𝑃) |
q1pval.t | ⊢ · = (.r‘𝑃) |
q1peqb.c | ⊢ 𝐶 = (Unic1p‘𝑅) |
Ref | Expression |
---|---|
q1peqb | ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶) → ((𝑋 ∈ 𝐵 ∧ (𝐷‘(𝐹 − (𝑋 · 𝐺))) < (𝐷‘𝐺)) ↔ (𝐹𝑄𝐺) = 𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 3212 | . . . 4 ⊢ (𝑋 ∈ 𝐵 → 𝑋 ∈ V) | |
2 | 1 | adantr 481 | . . 3 ⊢ ((𝑋 ∈ 𝐵 ∧ (𝐷‘(𝐹 − (𝑋 · 𝐺))) < (𝐷‘𝐺)) → 𝑋 ∈ V) |
3 | 2 | a1i 11 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶) → ((𝑋 ∈ 𝐵 ∧ (𝐷‘(𝐹 − (𝑋 · 𝐺))) < (𝐷‘𝐺)) → 𝑋 ∈ V)) |
4 | ovex 6678 | . . . 4 ⊢ (𝐹𝑄𝐺) ∈ V | |
5 | eleq1 2689 | . . . 4 ⊢ ((𝐹𝑄𝐺) = 𝑋 → ((𝐹𝑄𝐺) ∈ V ↔ 𝑋 ∈ V)) | |
6 | 4, 5 | mpbii 223 | . . 3 ⊢ ((𝐹𝑄𝐺) = 𝑋 → 𝑋 ∈ V) |
7 | 6 | a1i 11 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶) → ((𝐹𝑄𝐺) = 𝑋 → 𝑋 ∈ V)) |
8 | simpr 477 | . . . . 5 ⊢ (((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶) ∧ 𝑋 ∈ V) → 𝑋 ∈ V) | |
9 | q1pval.p | . . . . . . . 8 ⊢ 𝑃 = (Poly1‘𝑅) | |
10 | q1pval.d | . . . . . . . 8 ⊢ 𝐷 = ( deg1 ‘𝑅) | |
11 | q1pval.b | . . . . . . . 8 ⊢ 𝐵 = (Base‘𝑃) | |
12 | q1pval.m | . . . . . . . 8 ⊢ − = (-g‘𝑃) | |
13 | eqid 2622 | . . . . . . . 8 ⊢ (0g‘𝑃) = (0g‘𝑃) | |
14 | q1pval.t | . . . . . . . 8 ⊢ · = (.r‘𝑃) | |
15 | simp1 1061 | . . . . . . . 8 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶) → 𝑅 ∈ Ring) | |
16 | simp2 1062 | . . . . . . . 8 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶) → 𝐹 ∈ 𝐵) | |
17 | q1peqb.c | . . . . . . . . . 10 ⊢ 𝐶 = (Unic1p‘𝑅) | |
18 | 9, 11, 17 | uc1pcl 23903 | . . . . . . . . 9 ⊢ (𝐺 ∈ 𝐶 → 𝐺 ∈ 𝐵) |
19 | 18 | 3ad2ant3 1084 | . . . . . . . 8 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶) → 𝐺 ∈ 𝐵) |
20 | 9, 13, 17 | uc1pn0 23905 | . . . . . . . . 9 ⊢ (𝐺 ∈ 𝐶 → 𝐺 ≠ (0g‘𝑃)) |
21 | 20 | 3ad2ant3 1084 | . . . . . . . 8 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶) → 𝐺 ≠ (0g‘𝑃)) |
22 | eqid 2622 | . . . . . . . . . 10 ⊢ (Unit‘𝑅) = (Unit‘𝑅) | |
23 | 10, 22, 17 | uc1pldg 23908 | . . . . . . . . 9 ⊢ (𝐺 ∈ 𝐶 → ((coe1‘𝐺)‘(𝐷‘𝐺)) ∈ (Unit‘𝑅)) |
24 | 23 | 3ad2ant3 1084 | . . . . . . . 8 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶) → ((coe1‘𝐺)‘(𝐷‘𝐺)) ∈ (Unit‘𝑅)) |
25 | 9, 10, 11, 12, 13, 14, 15, 16, 19, 21, 24, 22 | ply1divalg2 23898 | . . . . . . 7 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶) → ∃!𝑞 ∈ 𝐵 (𝐷‘(𝐹 − (𝑞 · 𝐺))) < (𝐷‘𝐺)) |
26 | df-reu 2919 | . . . . . . 7 ⊢ (∃!𝑞 ∈ 𝐵 (𝐷‘(𝐹 − (𝑞 · 𝐺))) < (𝐷‘𝐺) ↔ ∃!𝑞(𝑞 ∈ 𝐵 ∧ (𝐷‘(𝐹 − (𝑞 · 𝐺))) < (𝐷‘𝐺))) | |
27 | 25, 26 | sylib 208 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶) → ∃!𝑞(𝑞 ∈ 𝐵 ∧ (𝐷‘(𝐹 − (𝑞 · 𝐺))) < (𝐷‘𝐺))) |
28 | 27 | adantr 481 | . . . . 5 ⊢ (((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶) ∧ 𝑋 ∈ V) → ∃!𝑞(𝑞 ∈ 𝐵 ∧ (𝐷‘(𝐹 − (𝑞 · 𝐺))) < (𝐷‘𝐺))) |
29 | eleq1 2689 | . . . . . . 7 ⊢ (𝑞 = 𝑋 → (𝑞 ∈ 𝐵 ↔ 𝑋 ∈ 𝐵)) | |
30 | oveq1 6657 | . . . . . . . . . 10 ⊢ (𝑞 = 𝑋 → (𝑞 · 𝐺) = (𝑋 · 𝐺)) | |
31 | 30 | oveq2d 6666 | . . . . . . . . 9 ⊢ (𝑞 = 𝑋 → (𝐹 − (𝑞 · 𝐺)) = (𝐹 − (𝑋 · 𝐺))) |
32 | 31 | fveq2d 6195 | . . . . . . . 8 ⊢ (𝑞 = 𝑋 → (𝐷‘(𝐹 − (𝑞 · 𝐺))) = (𝐷‘(𝐹 − (𝑋 · 𝐺)))) |
33 | 32 | breq1d 4663 | . . . . . . 7 ⊢ (𝑞 = 𝑋 → ((𝐷‘(𝐹 − (𝑞 · 𝐺))) < (𝐷‘𝐺) ↔ (𝐷‘(𝐹 − (𝑋 · 𝐺))) < (𝐷‘𝐺))) |
34 | 29, 33 | anbi12d 747 | . . . . . 6 ⊢ (𝑞 = 𝑋 → ((𝑞 ∈ 𝐵 ∧ (𝐷‘(𝐹 − (𝑞 · 𝐺))) < (𝐷‘𝐺)) ↔ (𝑋 ∈ 𝐵 ∧ (𝐷‘(𝐹 − (𝑋 · 𝐺))) < (𝐷‘𝐺)))) |
35 | 34 | adantl 482 | . . . . 5 ⊢ ((((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶) ∧ 𝑋 ∈ V) ∧ 𝑞 = 𝑋) → ((𝑞 ∈ 𝐵 ∧ (𝐷‘(𝐹 − (𝑞 · 𝐺))) < (𝐷‘𝐺)) ↔ (𝑋 ∈ 𝐵 ∧ (𝐷‘(𝐹 − (𝑋 · 𝐺))) < (𝐷‘𝐺)))) |
36 | 8, 28, 35 | iota2d 5876 | . . . 4 ⊢ (((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶) ∧ 𝑋 ∈ V) → ((𝑋 ∈ 𝐵 ∧ (𝐷‘(𝐹 − (𝑋 · 𝐺))) < (𝐷‘𝐺)) ↔ (℩𝑞(𝑞 ∈ 𝐵 ∧ (𝐷‘(𝐹 − (𝑞 · 𝐺))) < (𝐷‘𝐺))) = 𝑋)) |
37 | q1pval.q | . . . . . . . . 9 ⊢ 𝑄 = (quot1p‘𝑅) | |
38 | 37, 9, 11, 10, 12, 14 | q1pval 23913 | . . . . . . . 8 ⊢ ((𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) → (𝐹𝑄𝐺) = (℩𝑞 ∈ 𝐵 (𝐷‘(𝐹 − (𝑞 · 𝐺))) < (𝐷‘𝐺))) |
39 | 16, 19, 38 | syl2anc 693 | . . . . . . 7 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶) → (𝐹𝑄𝐺) = (℩𝑞 ∈ 𝐵 (𝐷‘(𝐹 − (𝑞 · 𝐺))) < (𝐷‘𝐺))) |
40 | df-riota 6611 | . . . . . . 7 ⊢ (℩𝑞 ∈ 𝐵 (𝐷‘(𝐹 − (𝑞 · 𝐺))) < (𝐷‘𝐺)) = (℩𝑞(𝑞 ∈ 𝐵 ∧ (𝐷‘(𝐹 − (𝑞 · 𝐺))) < (𝐷‘𝐺))) | |
41 | 39, 40 | syl6eq 2672 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶) → (𝐹𝑄𝐺) = (℩𝑞(𝑞 ∈ 𝐵 ∧ (𝐷‘(𝐹 − (𝑞 · 𝐺))) < (𝐷‘𝐺)))) |
42 | 41 | adantr 481 | . . . . 5 ⊢ (((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶) ∧ 𝑋 ∈ V) → (𝐹𝑄𝐺) = (℩𝑞(𝑞 ∈ 𝐵 ∧ (𝐷‘(𝐹 − (𝑞 · 𝐺))) < (𝐷‘𝐺)))) |
43 | 42 | eqeq1d 2624 | . . . 4 ⊢ (((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶) ∧ 𝑋 ∈ V) → ((𝐹𝑄𝐺) = 𝑋 ↔ (℩𝑞(𝑞 ∈ 𝐵 ∧ (𝐷‘(𝐹 − (𝑞 · 𝐺))) < (𝐷‘𝐺))) = 𝑋)) |
44 | 36, 43 | bitr4d 271 | . . 3 ⊢ (((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶) ∧ 𝑋 ∈ V) → ((𝑋 ∈ 𝐵 ∧ (𝐷‘(𝐹 − (𝑋 · 𝐺))) < (𝐷‘𝐺)) ↔ (𝐹𝑄𝐺) = 𝑋)) |
45 | 44 | ex 450 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶) → (𝑋 ∈ V → ((𝑋 ∈ 𝐵 ∧ (𝐷‘(𝐹 − (𝑋 · 𝐺))) < (𝐷‘𝐺)) ↔ (𝐹𝑄𝐺) = 𝑋))) |
46 | 3, 7, 45 | pm5.21ndd 369 | 1 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶) → ((𝑋 ∈ 𝐵 ∧ (𝐷‘(𝐹 − (𝑋 · 𝐺))) < (𝐷‘𝐺)) ↔ (𝐹𝑄𝐺) = 𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 384 ∧ w3a 1037 = wceq 1483 ∈ wcel 1990 ∃!weu 2470 ≠ wne 2794 ∃!wreu 2914 Vcvv 3200 class class class wbr 4653 ℩cio 5849 ‘cfv 5888 ℩crio 6610 (class class class)co 6650 < clt 10074 Basecbs 15857 .rcmulr 15942 0gc0g 16100 -gcsg 17424 Ringcrg 18547 Unitcui 18639 Poly1cpl1 19547 coe1cco1 19548 deg1 cdg1 23814 Unic1pcuc1p 23886 quot1pcq1p 23887 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-inf2 8538 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 ax-pre-sup 10014 ax-addf 10015 ax-mulf 10016 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-iin 4523 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-se 5074 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-isom 5897 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-of 6897 df-ofr 6898 df-om 7066 df-1st 7168 df-2nd 7169 df-supp 7296 df-tpos 7352 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-1o 7560 df-2o 7561 df-oadd 7564 df-er 7742 df-map 7859 df-pm 7860 df-ixp 7909 df-en 7956 df-dom 7957 df-sdom 7958 df-fin 7959 df-fsupp 8276 df-sup 8348 df-oi 8415 df-card 8765 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-nn 11021 df-2 11079 df-3 11080 df-4 11081 df-5 11082 df-6 11083 df-7 11084 df-8 11085 df-9 11086 df-n0 11293 df-z 11378 df-dec 11494 df-uz 11688 df-fz 12327 df-fzo 12466 df-seq 12802 df-hash 13118 df-struct 15859 df-ndx 15860 df-slot 15861 df-base 15863 df-sets 15864 df-ress 15865 df-plusg 15954 df-mulr 15955 df-starv 15956 df-sca 15957 df-vsca 15958 df-tset 15960 df-ple 15961 df-ds 15964 df-unif 15965 df-0g 16102 df-gsum 16103 df-mre 16246 df-mrc 16247 df-acs 16249 df-mgm 17242 df-sgrp 17284 df-mnd 17295 df-mhm 17335 df-submnd 17336 df-grp 17425 df-minusg 17426 df-sbg 17427 df-mulg 17541 df-subg 17591 df-ghm 17658 df-cntz 17750 df-cmn 18195 df-abl 18196 df-mgp 18490 df-ur 18502 df-ring 18549 df-cring 18550 df-oppr 18623 df-dvdsr 18641 df-unit 18642 df-invr 18672 df-subrg 18778 df-lmod 18865 df-lss 18933 df-rlreg 19283 df-psr 19356 df-mvr 19357 df-mpl 19358 df-opsr 19360 df-psr1 19550 df-vr1 19551 df-ply1 19552 df-coe1 19553 df-cnfld 19747 df-mdeg 23815 df-deg1 23816 df-uc1p 23891 df-q1p 23892 |
This theorem is referenced by: q1pcl 23915 r1pdeglt 23918 dvdsq1p 23920 |
Copyright terms: Public domain | W3C validator |