MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rlimcnp2 Structured version   Visualization version   GIF version

Theorem rlimcnp2 24693
Description: Relate a limit of a real-valued sequence at infinity to the continuity of the function 𝑆(𝑦) = 𝑅(1 / 𝑦) at zero. (Contributed by Mario Carneiro, 1-Mar-2015.)
Hypotheses
Ref Expression
rlimcnp2.a (𝜑𝐴 ⊆ (0[,)+∞))
rlimcnp2.0 (𝜑 → 0 ∈ 𝐴)
rlimcnp2.b (𝜑𝐵 ⊆ ℝ)
rlimcnp2.c (𝜑𝐶 ∈ ℂ)
rlimcnp2.r ((𝜑𝑦𝐵) → 𝑆 ∈ ℂ)
rlimcnp2.d ((𝜑𝑦 ∈ ℝ+) → (𝑦𝐵 ↔ (1 / 𝑦) ∈ 𝐴))
rlimcnp2.s (𝑦 = (1 / 𝑥) → 𝑆 = 𝑅)
rlimcnp2.j 𝐽 = (TopOpen‘ℂfld)
rlimcnp2.k 𝐾 = (𝐽t 𝐴)
Assertion
Ref Expression
rlimcnp2 (𝜑 → ((𝑦𝐵𝑆) ⇝𝑟 𝐶 ↔ (𝑥𝐴 ↦ if(𝑥 = 0, 𝐶, 𝑅)) ∈ ((𝐾 CnP 𝐽)‘0)))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦   𝜑,𝑥,𝑦   𝑦,𝑅   𝑥,𝑆
Allowed substitution hints:   𝑅(𝑥)   𝑆(𝑦)   𝐽(𝑥,𝑦)   𝐾(𝑥,𝑦)

Proof of Theorem rlimcnp2
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 inss1 3833 . . . . . . . 8 (𝐵 ∩ (1[,)+∞)) ⊆ 𝐵
2 resmpt 5449 . . . . . . . 8 ((𝐵 ∩ (1[,)+∞)) ⊆ 𝐵 → ((𝑦𝐵𝑆) ↾ (𝐵 ∩ (1[,)+∞))) = (𝑦 ∈ (𝐵 ∩ (1[,)+∞)) ↦ 𝑆))
31, 2mp1i 13 . . . . . . 7 (𝜑 → ((𝑦𝐵𝑆) ↾ (𝐵 ∩ (1[,)+∞))) = (𝑦 ∈ (𝐵 ∩ (1[,)+∞)) ↦ 𝑆))
4 0xr 10086 . . . . . . . . . . 11 0 ∈ ℝ*
5 0lt1 10550 . . . . . . . . . . 11 0 < 1
6 df-ioo 12179 . . . . . . . . . . . 12 (,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧𝑧 < 𝑦)})
7 df-ico 12181 . . . . . . . . . . . 12 [,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧 < 𝑦)})
8 xrltletr 11988 . . . . . . . . . . . 12 ((0 ∈ ℝ* ∧ 1 ∈ ℝ*𝑤 ∈ ℝ*) → ((0 < 1 ∧ 1 ≤ 𝑤) → 0 < 𝑤))
96, 7, 8ixxss1 12193 . . . . . . . . . . 11 ((0 ∈ ℝ* ∧ 0 < 1) → (1[,)+∞) ⊆ (0(,)+∞))
104, 5, 9mp2an 708 . . . . . . . . . 10 (1[,)+∞) ⊆ (0(,)+∞)
11 ioorp 12251 . . . . . . . . . 10 (0(,)+∞) = ℝ+
1210, 11sseqtri 3637 . . . . . . . . 9 (1[,)+∞) ⊆ ℝ+
13 sslin 3839 . . . . . . . . 9 ((1[,)+∞) ⊆ ℝ+ → (𝐵 ∩ (1[,)+∞)) ⊆ (𝐵 ∩ ℝ+))
1412, 13ax-mp 5 . . . . . . . 8 (𝐵 ∩ (1[,)+∞)) ⊆ (𝐵 ∩ ℝ+)
15 resmpt 5449 . . . . . . . 8 ((𝐵 ∩ (1[,)+∞)) ⊆ (𝐵 ∩ ℝ+) → ((𝑦 ∈ (𝐵 ∩ ℝ+) ↦ 𝑆) ↾ (𝐵 ∩ (1[,)+∞))) = (𝑦 ∈ (𝐵 ∩ (1[,)+∞)) ↦ 𝑆))
1614, 15mp1i 13 . . . . . . 7 (𝜑 → ((𝑦 ∈ (𝐵 ∩ ℝ+) ↦ 𝑆) ↾ (𝐵 ∩ (1[,)+∞))) = (𝑦 ∈ (𝐵 ∩ (1[,)+∞)) ↦ 𝑆))
173, 16eqtr4d 2659 . . . . . 6 (𝜑 → ((𝑦𝐵𝑆) ↾ (𝐵 ∩ (1[,)+∞))) = ((𝑦 ∈ (𝐵 ∩ ℝ+) ↦ 𝑆) ↾ (𝐵 ∩ (1[,)+∞))))
18 resres 5409 . . . . . 6 (((𝑦𝐵𝑆) ↾ 𝐵) ↾ (1[,)+∞)) = ((𝑦𝐵𝑆) ↾ (𝐵 ∩ (1[,)+∞)))
19 resres 5409 . . . . . 6 (((𝑦 ∈ (𝐵 ∩ ℝ+) ↦ 𝑆) ↾ 𝐵) ↾ (1[,)+∞)) = ((𝑦 ∈ (𝐵 ∩ ℝ+) ↦ 𝑆) ↾ (𝐵 ∩ (1[,)+∞)))
2017, 18, 193eqtr4g 2681 . . . . 5 (𝜑 → (((𝑦𝐵𝑆) ↾ 𝐵) ↾ (1[,)+∞)) = (((𝑦 ∈ (𝐵 ∩ ℝ+) ↦ 𝑆) ↾ 𝐵) ↾ (1[,)+∞)))
21 rlimcnp2.r . . . . . . . . 9 ((𝜑𝑦𝐵) → 𝑆 ∈ ℂ)
22 eqid 2622 . . . . . . . . 9 (𝑦𝐵𝑆) = (𝑦𝐵𝑆)
2321, 22fmptd 6385 . . . . . . . 8 (𝜑 → (𝑦𝐵𝑆):𝐵⟶ℂ)
24 ffn 6045 . . . . . . . 8 ((𝑦𝐵𝑆):𝐵⟶ℂ → (𝑦𝐵𝑆) Fn 𝐵)
2523, 24syl 17 . . . . . . 7 (𝜑 → (𝑦𝐵𝑆) Fn 𝐵)
26 fnresdm 6000 . . . . . . 7 ((𝑦𝐵𝑆) Fn 𝐵 → ((𝑦𝐵𝑆) ↾ 𝐵) = (𝑦𝐵𝑆))
2725, 26syl 17 . . . . . 6 (𝜑 → ((𝑦𝐵𝑆) ↾ 𝐵) = (𝑦𝐵𝑆))
2827reseq1d 5395 . . . . 5 (𝜑 → (((𝑦𝐵𝑆) ↾ 𝐵) ↾ (1[,)+∞)) = ((𝑦𝐵𝑆) ↾ (1[,)+∞)))
29 inss1 3833 . . . . . . . . . . 11 (𝐵 ∩ ℝ+) ⊆ 𝐵
3029sseli 3599 . . . . . . . . . 10 (𝑦 ∈ (𝐵 ∩ ℝ+) → 𝑦𝐵)
3130, 21sylan2 491 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝐵 ∩ ℝ+)) → 𝑆 ∈ ℂ)
32 eqid 2622 . . . . . . . . 9 (𝑦 ∈ (𝐵 ∩ ℝ+) ↦ 𝑆) = (𝑦 ∈ (𝐵 ∩ ℝ+) ↦ 𝑆)
3331, 32fmptd 6385 . . . . . . . 8 (𝜑 → (𝑦 ∈ (𝐵 ∩ ℝ+) ↦ 𝑆):(𝐵 ∩ ℝ+)⟶ℂ)
34 frel 6050 . . . . . . . 8 ((𝑦 ∈ (𝐵 ∩ ℝ+) ↦ 𝑆):(𝐵 ∩ ℝ+)⟶ℂ → Rel (𝑦 ∈ (𝐵 ∩ ℝ+) ↦ 𝑆))
3533, 34syl 17 . . . . . . 7 (𝜑 → Rel (𝑦 ∈ (𝐵 ∩ ℝ+) ↦ 𝑆))
3632, 31dmmptd 6024 . . . . . . . 8 (𝜑 → dom (𝑦 ∈ (𝐵 ∩ ℝ+) ↦ 𝑆) = (𝐵 ∩ ℝ+))
3736, 29syl6eqss 3655 . . . . . . 7 (𝜑 → dom (𝑦 ∈ (𝐵 ∩ ℝ+) ↦ 𝑆) ⊆ 𝐵)
38 relssres 5437 . . . . . . 7 ((Rel (𝑦 ∈ (𝐵 ∩ ℝ+) ↦ 𝑆) ∧ dom (𝑦 ∈ (𝐵 ∩ ℝ+) ↦ 𝑆) ⊆ 𝐵) → ((𝑦 ∈ (𝐵 ∩ ℝ+) ↦ 𝑆) ↾ 𝐵) = (𝑦 ∈ (𝐵 ∩ ℝ+) ↦ 𝑆))
3935, 37, 38syl2anc 693 . . . . . 6 (𝜑 → ((𝑦 ∈ (𝐵 ∩ ℝ+) ↦ 𝑆) ↾ 𝐵) = (𝑦 ∈ (𝐵 ∩ ℝ+) ↦ 𝑆))
4039reseq1d 5395 . . . . 5 (𝜑 → (((𝑦 ∈ (𝐵 ∩ ℝ+) ↦ 𝑆) ↾ 𝐵) ↾ (1[,)+∞)) = ((𝑦 ∈ (𝐵 ∩ ℝ+) ↦ 𝑆) ↾ (1[,)+∞)))
4120, 28, 403eqtr3d 2664 . . . 4 (𝜑 → ((𝑦𝐵𝑆) ↾ (1[,)+∞)) = ((𝑦 ∈ (𝐵 ∩ ℝ+) ↦ 𝑆) ↾ (1[,)+∞)))
4241breq1d 4663 . . 3 (𝜑 → (((𝑦𝐵𝑆) ↾ (1[,)+∞)) ⇝𝑟 𝐶 ↔ ((𝑦 ∈ (𝐵 ∩ ℝ+) ↦ 𝑆) ↾ (1[,)+∞)) ⇝𝑟 𝐶))
43 rlimcnp2.b . . . 4 (𝜑𝐵 ⊆ ℝ)
44 1red 10055 . . . 4 (𝜑 → 1 ∈ ℝ)
4523, 43, 44rlimresb 14296 . . 3 (𝜑 → ((𝑦𝐵𝑆) ⇝𝑟 𝐶 ↔ ((𝑦𝐵𝑆) ↾ (1[,)+∞)) ⇝𝑟 𝐶))
4629, 43syl5ss 3614 . . . 4 (𝜑 → (𝐵 ∩ ℝ+) ⊆ ℝ)
4733, 46, 44rlimresb 14296 . . 3 (𝜑 → ((𝑦 ∈ (𝐵 ∩ ℝ+) ↦ 𝑆) ⇝𝑟 𝐶 ↔ ((𝑦 ∈ (𝐵 ∩ ℝ+) ↦ 𝑆) ↾ (1[,)+∞)) ⇝𝑟 𝐶))
4842, 45, 473bitr4d 300 . 2 (𝜑 → ((𝑦𝐵𝑆) ⇝𝑟 𝐶 ↔ (𝑦 ∈ (𝐵 ∩ ℝ+) ↦ 𝑆) ⇝𝑟 𝐶))
49 inss2 3834 . . . . . . . . . . 11 (𝐵 ∩ ℝ+) ⊆ ℝ+
5049a1i 11 . . . . . . . . . 10 (𝜑 → (𝐵 ∩ ℝ+) ⊆ ℝ+)
5150sselda 3603 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝐵 ∩ ℝ+)) → 𝑦 ∈ ℝ+)
5251rpreccld 11882 . . . . . . . 8 ((𝜑𝑦 ∈ (𝐵 ∩ ℝ+)) → (1 / 𝑦) ∈ ℝ+)
5352rpne0d 11877 . . . . . . 7 ((𝜑𝑦 ∈ (𝐵 ∩ ℝ+)) → (1 / 𝑦) ≠ 0)
5453neneqd 2799 . . . . . 6 ((𝜑𝑦 ∈ (𝐵 ∩ ℝ+)) → ¬ (1 / 𝑦) = 0)
5554iffalsed 4097 . . . . 5 ((𝜑𝑦 ∈ (𝐵 ∩ ℝ+)) → if((1 / 𝑦) = 0, 𝐶, (1 / 𝑦) / 𝑥𝑅) = (1 / 𝑦) / 𝑥𝑅)
56 oveq2 6658 . . . . . . . . . 10 (𝑥 = (1 / 𝑦) → (1 / 𝑥) = (1 / (1 / 𝑦)))
57 rpcnne0 11850 . . . . . . . . . . 11 (𝑦 ∈ ℝ+ → (𝑦 ∈ ℂ ∧ 𝑦 ≠ 0))
58 recrec 10722 . . . . . . . . . . 11 ((𝑦 ∈ ℂ ∧ 𝑦 ≠ 0) → (1 / (1 / 𝑦)) = 𝑦)
5951, 57, 583syl 18 . . . . . . . . . 10 ((𝜑𝑦 ∈ (𝐵 ∩ ℝ+)) → (1 / (1 / 𝑦)) = 𝑦)
6056, 59sylan9eqr 2678 . . . . . . . . 9 (((𝜑𝑦 ∈ (𝐵 ∩ ℝ+)) ∧ 𝑥 = (1 / 𝑦)) → (1 / 𝑥) = 𝑦)
6160eqcomd 2628 . . . . . . . 8 (((𝜑𝑦 ∈ (𝐵 ∩ ℝ+)) ∧ 𝑥 = (1 / 𝑦)) → 𝑦 = (1 / 𝑥))
62 rlimcnp2.s . . . . . . . 8 (𝑦 = (1 / 𝑥) → 𝑆 = 𝑅)
6361, 62syl 17 . . . . . . 7 (((𝜑𝑦 ∈ (𝐵 ∩ ℝ+)) ∧ 𝑥 = (1 / 𝑦)) → 𝑆 = 𝑅)
6463eqcomd 2628 . . . . . 6 (((𝜑𝑦 ∈ (𝐵 ∩ ℝ+)) ∧ 𝑥 = (1 / 𝑦)) → 𝑅 = 𝑆)
6552, 64csbied 3560 . . . . 5 ((𝜑𝑦 ∈ (𝐵 ∩ ℝ+)) → (1 / 𝑦) / 𝑥𝑅 = 𝑆)
6655, 65eqtrd 2656 . . . 4 ((𝜑𝑦 ∈ (𝐵 ∩ ℝ+)) → if((1 / 𝑦) = 0, 𝐶, (1 / 𝑦) / 𝑥𝑅) = 𝑆)
6766mpteq2dva 4744 . . 3 (𝜑 → (𝑦 ∈ (𝐵 ∩ ℝ+) ↦ if((1 / 𝑦) = 0, 𝐶, (1 / 𝑦) / 𝑥𝑅)) = (𝑦 ∈ (𝐵 ∩ ℝ+) ↦ 𝑆))
6867breq1d 4663 . 2 (𝜑 → ((𝑦 ∈ (𝐵 ∩ ℝ+) ↦ if((1 / 𝑦) = 0, 𝐶, (1 / 𝑦) / 𝑥𝑅)) ⇝𝑟 𝐶 ↔ (𝑦 ∈ (𝐵 ∩ ℝ+) ↦ 𝑆) ⇝𝑟 𝐶))
69 rlimcnp2.a . . . 4 (𝜑𝐴 ⊆ (0[,)+∞))
70 rlimcnp2.0 . . . 4 (𝜑 → 0 ∈ 𝐴)
71 rlimcnp2.c . . . . . 6 (𝜑𝐶 ∈ ℂ)
7271ad2antrr 762 . . . . 5 (((𝜑𝑤𝐴) ∧ 𝑤 = 0) → 𝐶 ∈ ℂ)
7369sselda 3603 . . . . . . . . . . . 12 ((𝜑𝑤𝐴) → 𝑤 ∈ (0[,)+∞))
74 0re 10040 . . . . . . . . . . . . 13 0 ∈ ℝ
75 pnfxr 10092 . . . . . . . . . . . . 13 +∞ ∈ ℝ*
76 elico2 12237 . . . . . . . . . . . . 13 ((0 ∈ ℝ ∧ +∞ ∈ ℝ*) → (𝑤 ∈ (0[,)+∞) ↔ (𝑤 ∈ ℝ ∧ 0 ≤ 𝑤𝑤 < +∞)))
7774, 75, 76mp2an 708 . . . . . . . . . . . 12 (𝑤 ∈ (0[,)+∞) ↔ (𝑤 ∈ ℝ ∧ 0 ≤ 𝑤𝑤 < +∞))
7873, 77sylib 208 . . . . . . . . . . 11 ((𝜑𝑤𝐴) → (𝑤 ∈ ℝ ∧ 0 ≤ 𝑤𝑤 < +∞))
7978simp1d 1073 . . . . . . . . . 10 ((𝜑𝑤𝐴) → 𝑤 ∈ ℝ)
8079adantr 481 . . . . . . . . 9 (((𝜑𝑤𝐴) ∧ ¬ 𝑤 = 0) → 𝑤 ∈ ℝ)
8178simp2d 1074 . . . . . . . . . . . . . 14 ((𝜑𝑤𝐴) → 0 ≤ 𝑤)
82 leloe 10124 . . . . . . . . . . . . . . 15 ((0 ∈ ℝ ∧ 𝑤 ∈ ℝ) → (0 ≤ 𝑤 ↔ (0 < 𝑤 ∨ 0 = 𝑤)))
8374, 79, 82sylancr 695 . . . . . . . . . . . . . 14 ((𝜑𝑤𝐴) → (0 ≤ 𝑤 ↔ (0 < 𝑤 ∨ 0 = 𝑤)))
8481, 83mpbid 222 . . . . . . . . . . . . 13 ((𝜑𝑤𝐴) → (0 < 𝑤 ∨ 0 = 𝑤))
8584ord 392 . . . . . . . . . . . 12 ((𝜑𝑤𝐴) → (¬ 0 < 𝑤 → 0 = 𝑤))
86 eqcom 2629 . . . . . . . . . . . 12 (0 = 𝑤𝑤 = 0)
8785, 86syl6ib 241 . . . . . . . . . . 11 ((𝜑𝑤𝐴) → (¬ 0 < 𝑤𝑤 = 0))
8887con1d 139 . . . . . . . . . 10 ((𝜑𝑤𝐴) → (¬ 𝑤 = 0 → 0 < 𝑤))
8988imp 445 . . . . . . . . 9 (((𝜑𝑤𝐴) ∧ ¬ 𝑤 = 0) → 0 < 𝑤)
9080, 89elrpd 11869 . . . . . . . 8 (((𝜑𝑤𝐴) ∧ ¬ 𝑤 = 0) → 𝑤 ∈ ℝ+)
91 rpcnne0 11850 . . . . . . . . 9 (𝑤 ∈ ℝ+ → (𝑤 ∈ ℂ ∧ 𝑤 ≠ 0))
92 recrec 10722 . . . . . . . . 9 ((𝑤 ∈ ℂ ∧ 𝑤 ≠ 0) → (1 / (1 / 𝑤)) = 𝑤)
9391, 92syl 17 . . . . . . . 8 (𝑤 ∈ ℝ+ → (1 / (1 / 𝑤)) = 𝑤)
9490, 93syl 17 . . . . . . 7 (((𝜑𝑤𝐴) ∧ ¬ 𝑤 = 0) → (1 / (1 / 𝑤)) = 𝑤)
9594csbeq1d 3540 . . . . . 6 (((𝜑𝑤𝐴) ∧ ¬ 𝑤 = 0) → (1 / (1 / 𝑤)) / 𝑥𝑅 = 𝑤 / 𝑥𝑅)
96 simplr 792 . . . . . . . . 9 (((𝜑𝑤𝐴) ∧ ¬ 𝑤 = 0) → 𝑤𝐴)
97 simpll 790 . . . . . . . . . 10 (((𝜑𝑤𝐴) ∧ ¬ 𝑤 = 0) → 𝜑)
98 rpreccl 11857 . . . . . . . . . . . . 13 (𝑤 ∈ ℝ+ → (1 / 𝑤) ∈ ℝ+)
9998adantl 482 . . . . . . . . . . . 12 ((𝜑𝑤 ∈ ℝ+) → (1 / 𝑤) ∈ ℝ+)
100 rlimcnp2.d . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ ℝ+) → (𝑦𝐵 ↔ (1 / 𝑦) ∈ 𝐴))
101100ralrimiva 2966 . . . . . . . . . . . . 13 (𝜑 → ∀𝑦 ∈ ℝ+ (𝑦𝐵 ↔ (1 / 𝑦) ∈ 𝐴))
102101adantr 481 . . . . . . . . . . . 12 ((𝜑𝑤 ∈ ℝ+) → ∀𝑦 ∈ ℝ+ (𝑦𝐵 ↔ (1 / 𝑦) ∈ 𝐴))
103 eleq1 2689 . . . . . . . . . . . . . 14 (𝑦 = (1 / 𝑤) → (𝑦𝐵 ↔ (1 / 𝑤) ∈ 𝐵))
104 oveq2 6658 . . . . . . . . . . . . . . 15 (𝑦 = (1 / 𝑤) → (1 / 𝑦) = (1 / (1 / 𝑤)))
105104eleq1d 2686 . . . . . . . . . . . . . 14 (𝑦 = (1 / 𝑤) → ((1 / 𝑦) ∈ 𝐴 ↔ (1 / (1 / 𝑤)) ∈ 𝐴))
106103, 105bibi12d 335 . . . . . . . . . . . . 13 (𝑦 = (1 / 𝑤) → ((𝑦𝐵 ↔ (1 / 𝑦) ∈ 𝐴) ↔ ((1 / 𝑤) ∈ 𝐵 ↔ (1 / (1 / 𝑤)) ∈ 𝐴)))
107106rspcv 3305 . . . . . . . . . . . 12 ((1 / 𝑤) ∈ ℝ+ → (∀𝑦 ∈ ℝ+ (𝑦𝐵 ↔ (1 / 𝑦) ∈ 𝐴) → ((1 / 𝑤) ∈ 𝐵 ↔ (1 / (1 / 𝑤)) ∈ 𝐴)))
10899, 102, 107sylc 65 . . . . . . . . . . 11 ((𝜑𝑤 ∈ ℝ+) → ((1 / 𝑤) ∈ 𝐵 ↔ (1 / (1 / 𝑤)) ∈ 𝐴))
10993adantl 482 . . . . . . . . . . . 12 ((𝜑𝑤 ∈ ℝ+) → (1 / (1 / 𝑤)) = 𝑤)
110109eleq1d 2686 . . . . . . . . . . 11 ((𝜑𝑤 ∈ ℝ+) → ((1 / (1 / 𝑤)) ∈ 𝐴𝑤𝐴))
111108, 110bitr2d 269 . . . . . . . . . 10 ((𝜑𝑤 ∈ ℝ+) → (𝑤𝐴 ↔ (1 / 𝑤) ∈ 𝐵))
11297, 90, 111syl2anc 693 . . . . . . . . 9 (((𝜑𝑤𝐴) ∧ ¬ 𝑤 = 0) → (𝑤𝐴 ↔ (1 / 𝑤) ∈ 𝐵))
11396, 112mpbid 222 . . . . . . . 8 (((𝜑𝑤𝐴) ∧ ¬ 𝑤 = 0) → (1 / 𝑤) ∈ 𝐵)
11490rpreccld 11882 . . . . . . . 8 (((𝜑𝑤𝐴) ∧ ¬ 𝑤 = 0) → (1 / 𝑤) ∈ ℝ+)
115113, 114elind 3798 . . . . . . 7 (((𝜑𝑤𝐴) ∧ ¬ 𝑤 = 0) → (1 / 𝑤) ∈ (𝐵 ∩ ℝ+))
11665, 31eqeltrd 2701 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝐵 ∩ ℝ+)) → (1 / 𝑦) / 𝑥𝑅 ∈ ℂ)
117116ralrimiva 2966 . . . . . . . 8 (𝜑 → ∀𝑦 ∈ (𝐵 ∩ ℝ+)(1 / 𝑦) / 𝑥𝑅 ∈ ℂ)
118117ad2antrr 762 . . . . . . 7 (((𝜑𝑤𝐴) ∧ ¬ 𝑤 = 0) → ∀𝑦 ∈ (𝐵 ∩ ℝ+)(1 / 𝑦) / 𝑥𝑅 ∈ ℂ)
119104csbeq1d 3540 . . . . . . . . 9 (𝑦 = (1 / 𝑤) → (1 / 𝑦) / 𝑥𝑅 = (1 / (1 / 𝑤)) / 𝑥𝑅)
120119eleq1d 2686 . . . . . . . 8 (𝑦 = (1 / 𝑤) → ((1 / 𝑦) / 𝑥𝑅 ∈ ℂ ↔ (1 / (1 / 𝑤)) / 𝑥𝑅 ∈ ℂ))
121120rspcv 3305 . . . . . . 7 ((1 / 𝑤) ∈ (𝐵 ∩ ℝ+) → (∀𝑦 ∈ (𝐵 ∩ ℝ+)(1 / 𝑦) / 𝑥𝑅 ∈ ℂ → (1 / (1 / 𝑤)) / 𝑥𝑅 ∈ ℂ))
122115, 118, 121sylc 65 . . . . . 6 (((𝜑𝑤𝐴) ∧ ¬ 𝑤 = 0) → (1 / (1 / 𝑤)) / 𝑥𝑅 ∈ ℂ)
12395, 122eqeltrrd 2702 . . . . 5 (((𝜑𝑤𝐴) ∧ ¬ 𝑤 = 0) → 𝑤 / 𝑥𝑅 ∈ ℂ)
12472, 123ifclda 4120 . . . 4 ((𝜑𝑤𝐴) → if(𝑤 = 0, 𝐶, 𝑤 / 𝑥𝑅) ∈ ℂ)
12599biantrud 528 . . . . . 6 ((𝜑𝑤 ∈ ℝ+) → ((1 / 𝑤) ∈ 𝐵 ↔ ((1 / 𝑤) ∈ 𝐵 ∧ (1 / 𝑤) ∈ ℝ+)))
126111, 125bitrd 268 . . . . 5 ((𝜑𝑤 ∈ ℝ+) → (𝑤𝐴 ↔ ((1 / 𝑤) ∈ 𝐵 ∧ (1 / 𝑤) ∈ ℝ+)))
127 elin 3796 . . . . 5 ((1 / 𝑤) ∈ (𝐵 ∩ ℝ+) ↔ ((1 / 𝑤) ∈ 𝐵 ∧ (1 / 𝑤) ∈ ℝ+))
128126, 127syl6bbr 278 . . . 4 ((𝜑𝑤 ∈ ℝ+) → (𝑤𝐴 ↔ (1 / 𝑤) ∈ (𝐵 ∩ ℝ+)))
129 iftrue 4092 . . . 4 (𝑤 = 0 → if(𝑤 = 0, 𝐶, 𝑤 / 𝑥𝑅) = 𝐶)
130 eqeq1 2626 . . . . 5 (𝑤 = (1 / 𝑦) → (𝑤 = 0 ↔ (1 / 𝑦) = 0))
131 csbeq1 3536 . . . . 5 (𝑤 = (1 / 𝑦) → 𝑤 / 𝑥𝑅 = (1 / 𝑦) / 𝑥𝑅)
132130, 131ifbieq2d 4111 . . . 4 (𝑤 = (1 / 𝑦) → if(𝑤 = 0, 𝐶, 𝑤 / 𝑥𝑅) = if((1 / 𝑦) = 0, 𝐶, (1 / 𝑦) / 𝑥𝑅))
133 rlimcnp2.j . . . 4 𝐽 = (TopOpen‘ℂfld)
134 rlimcnp2.k . . . 4 𝐾 = (𝐽t 𝐴)
13569, 70, 50, 124, 128, 129, 132, 133, 134rlimcnp 24692 . . 3 (𝜑 → ((𝑦 ∈ (𝐵 ∩ ℝ+) ↦ if((1 / 𝑦) = 0, 𝐶, (1 / 𝑦) / 𝑥𝑅)) ⇝𝑟 𝐶 ↔ (𝑤𝐴 ↦ if(𝑤 = 0, 𝐶, 𝑤 / 𝑥𝑅)) ∈ ((𝐾 CnP 𝐽)‘0)))
136 nfcv 2764 . . . . 5 𝑤if(𝑥 = 0, 𝐶, 𝑅)
137 nfv 1843 . . . . . 6 𝑥 𝑤 = 0
138 nfcv 2764 . . . . . 6 𝑥𝐶
139 nfcsb1v 3549 . . . . . 6 𝑥𝑤 / 𝑥𝑅
140137, 138, 139nfif 4115 . . . . 5 𝑥if(𝑤 = 0, 𝐶, 𝑤 / 𝑥𝑅)
141 eqeq1 2626 . . . . . 6 (𝑥 = 𝑤 → (𝑥 = 0 ↔ 𝑤 = 0))
142 csbeq1a 3542 . . . . . 6 (𝑥 = 𝑤𝑅 = 𝑤 / 𝑥𝑅)
143141, 142ifbieq2d 4111 . . . . 5 (𝑥 = 𝑤 → if(𝑥 = 0, 𝐶, 𝑅) = if(𝑤 = 0, 𝐶, 𝑤 / 𝑥𝑅))
144136, 140, 143cbvmpt 4749 . . . 4 (𝑥𝐴 ↦ if(𝑥 = 0, 𝐶, 𝑅)) = (𝑤𝐴 ↦ if(𝑤 = 0, 𝐶, 𝑤 / 𝑥𝑅))
145144eleq1i 2692 . . 3 ((𝑥𝐴 ↦ if(𝑥 = 0, 𝐶, 𝑅)) ∈ ((𝐾 CnP 𝐽)‘0) ↔ (𝑤𝐴 ↦ if(𝑤 = 0, 𝐶, 𝑤 / 𝑥𝑅)) ∈ ((𝐾 CnP 𝐽)‘0))
146135, 145syl6bbr 278 . 2 (𝜑 → ((𝑦 ∈ (𝐵 ∩ ℝ+) ↦ if((1 / 𝑦) = 0, 𝐶, (1 / 𝑦) / 𝑥𝑅)) ⇝𝑟 𝐶 ↔ (𝑥𝐴 ↦ if(𝑥 = 0, 𝐶, 𝑅)) ∈ ((𝐾 CnP 𝐽)‘0)))
14748, 68, 1463bitr2d 296 1 (𝜑 → ((𝑦𝐵𝑆) ⇝𝑟 𝐶 ↔ (𝑥𝐴 ↦ if(𝑥 = 0, 𝐶, 𝑅)) ∈ ((𝐾 CnP 𝐽)‘0)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 383  wa 384  w3a 1037   = wceq 1483  wcel 1990  wne 2794  wral 2912  csb 3533  cin 3573  wss 3574  ifcif 4086   class class class wbr 4653  cmpt 4729  dom cdm 5114  cres 5116  Rel wrel 5119   Fn wfn 5883  wf 5884  cfv 5888  (class class class)co 6650  cc 9934  cr 9935  0cc0 9936  1c1 9937  +∞cpnf 10071  *cxr 10073   < clt 10074  cle 10075   / cdiv 10684  +crp 11832  (,)cioo 12175  [,)cico 12177  𝑟 crli 14216  t crest 16081  TopOpenctopn 16082  fldccnfld 19746   CnP ccnp 21029
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ico 12181  df-fz 12327  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-rlim 14220  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-plusg 15954  df-mulr 15955  df-starv 15956  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-rest 16083  df-topn 16084  df-topgen 16104  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-cnfld 19747  df-top 20699  df-topon 20716  df-bases 20750  df-cnp 21032
This theorem is referenced by:  rlimcnp3  24694
  Copyright terms: Public domain W3C validator