| Step | Hyp | Ref
| Expression |
| 1 | | inss1 3833 |
. . . . . . . 8
⊢ (𝐵 ∩ (1[,)+∞)) ⊆
𝐵 |
| 2 | | resmpt 5449 |
. . . . . . . 8
⊢ ((𝐵 ∩ (1[,)+∞)) ⊆
𝐵 → ((𝑦 ∈ 𝐵 ↦ 𝑆) ↾ (𝐵 ∩ (1[,)+∞))) = (𝑦 ∈ (𝐵 ∩ (1[,)+∞)) ↦ 𝑆)) |
| 3 | 1, 2 | mp1i 13 |
. . . . . . 7
⊢ (𝜑 → ((𝑦 ∈ 𝐵 ↦ 𝑆) ↾ (𝐵 ∩ (1[,)+∞))) = (𝑦 ∈ (𝐵 ∩ (1[,)+∞)) ↦ 𝑆)) |
| 4 | | 0xr 10086 |
. . . . . . . . . . 11
⊢ 0 ∈
ℝ* |
| 5 | | 0lt1 10550 |
. . . . . . . . . . 11
⊢ 0 <
1 |
| 6 | | df-ioo 12179 |
. . . . . . . . . . . 12
⊢ (,) =
(𝑥 ∈
ℝ*, 𝑦
∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧 ∧ 𝑧 < 𝑦)}) |
| 7 | | df-ico 12181 |
. . . . . . . . . . . 12
⊢ [,) =
(𝑥 ∈
ℝ*, 𝑦
∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦)}) |
| 8 | | xrltletr 11988 |
. . . . . . . . . . . 12
⊢ ((0
∈ ℝ* ∧ 1 ∈ ℝ* ∧ 𝑤 ∈ ℝ*)
→ ((0 < 1 ∧ 1 ≤ 𝑤) → 0 < 𝑤)) |
| 9 | 6, 7, 8 | ixxss1 12193 |
. . . . . . . . . . 11
⊢ ((0
∈ ℝ* ∧ 0 < 1) → (1[,)+∞) ⊆
(0(,)+∞)) |
| 10 | 4, 5, 9 | mp2an 708 |
. . . . . . . . . 10
⊢
(1[,)+∞) ⊆ (0(,)+∞) |
| 11 | | ioorp 12251 |
. . . . . . . . . 10
⊢
(0(,)+∞) = ℝ+ |
| 12 | 10, 11 | sseqtri 3637 |
. . . . . . . . 9
⊢
(1[,)+∞) ⊆ ℝ+ |
| 13 | | sslin 3839 |
. . . . . . . . 9
⊢
((1[,)+∞) ⊆ ℝ+ → (𝐵 ∩ (1[,)+∞)) ⊆ (𝐵 ∩
ℝ+)) |
| 14 | 12, 13 | ax-mp 5 |
. . . . . . . 8
⊢ (𝐵 ∩ (1[,)+∞)) ⊆
(𝐵 ∩
ℝ+) |
| 15 | | resmpt 5449 |
. . . . . . . 8
⊢ ((𝐵 ∩ (1[,)+∞)) ⊆
(𝐵 ∩
ℝ+) → ((𝑦 ∈ (𝐵 ∩ ℝ+) ↦ 𝑆) ↾ (𝐵 ∩ (1[,)+∞))) = (𝑦 ∈ (𝐵 ∩ (1[,)+∞)) ↦ 𝑆)) |
| 16 | 14, 15 | mp1i 13 |
. . . . . . 7
⊢ (𝜑 → ((𝑦 ∈ (𝐵 ∩ ℝ+) ↦ 𝑆) ↾ (𝐵 ∩ (1[,)+∞))) = (𝑦 ∈ (𝐵 ∩ (1[,)+∞)) ↦ 𝑆)) |
| 17 | 3, 16 | eqtr4d 2659 |
. . . . . 6
⊢ (𝜑 → ((𝑦 ∈ 𝐵 ↦ 𝑆) ↾ (𝐵 ∩ (1[,)+∞))) = ((𝑦 ∈ (𝐵 ∩ ℝ+) ↦ 𝑆) ↾ (𝐵 ∩ (1[,)+∞)))) |
| 18 | | resres 5409 |
. . . . . 6
⊢ (((𝑦 ∈ 𝐵 ↦ 𝑆) ↾ 𝐵) ↾ (1[,)+∞)) = ((𝑦 ∈ 𝐵 ↦ 𝑆) ↾ (𝐵 ∩ (1[,)+∞))) |
| 19 | | resres 5409 |
. . . . . 6
⊢ (((𝑦 ∈ (𝐵 ∩ ℝ+) ↦ 𝑆) ↾ 𝐵) ↾ (1[,)+∞)) = ((𝑦 ∈ (𝐵 ∩ ℝ+) ↦ 𝑆) ↾ (𝐵 ∩ (1[,)+∞))) |
| 20 | 17, 18, 19 | 3eqtr4g 2681 |
. . . . 5
⊢ (𝜑 → (((𝑦 ∈ 𝐵 ↦ 𝑆) ↾ 𝐵) ↾ (1[,)+∞)) = (((𝑦 ∈ (𝐵 ∩ ℝ+) ↦ 𝑆) ↾ 𝐵) ↾ (1[,)+∞))) |
| 21 | | rlimcnp2.r |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → 𝑆 ∈ ℂ) |
| 22 | | eqid 2622 |
. . . . . . . . 9
⊢ (𝑦 ∈ 𝐵 ↦ 𝑆) = (𝑦 ∈ 𝐵 ↦ 𝑆) |
| 23 | 21, 22 | fmptd 6385 |
. . . . . . . 8
⊢ (𝜑 → (𝑦 ∈ 𝐵 ↦ 𝑆):𝐵⟶ℂ) |
| 24 | | ffn 6045 |
. . . . . . . 8
⊢ ((𝑦 ∈ 𝐵 ↦ 𝑆):𝐵⟶ℂ → (𝑦 ∈ 𝐵 ↦ 𝑆) Fn 𝐵) |
| 25 | 23, 24 | syl 17 |
. . . . . . 7
⊢ (𝜑 → (𝑦 ∈ 𝐵 ↦ 𝑆) Fn 𝐵) |
| 26 | | fnresdm 6000 |
. . . . . . 7
⊢ ((𝑦 ∈ 𝐵 ↦ 𝑆) Fn 𝐵 → ((𝑦 ∈ 𝐵 ↦ 𝑆) ↾ 𝐵) = (𝑦 ∈ 𝐵 ↦ 𝑆)) |
| 27 | 25, 26 | syl 17 |
. . . . . 6
⊢ (𝜑 → ((𝑦 ∈ 𝐵 ↦ 𝑆) ↾ 𝐵) = (𝑦 ∈ 𝐵 ↦ 𝑆)) |
| 28 | 27 | reseq1d 5395 |
. . . . 5
⊢ (𝜑 → (((𝑦 ∈ 𝐵 ↦ 𝑆) ↾ 𝐵) ↾ (1[,)+∞)) = ((𝑦 ∈ 𝐵 ↦ 𝑆) ↾ (1[,)+∞))) |
| 29 | | inss1 3833 |
. . . . . . . . . . 11
⊢ (𝐵 ∩ ℝ+)
⊆ 𝐵 |
| 30 | 29 | sseli 3599 |
. . . . . . . . . 10
⊢ (𝑦 ∈ (𝐵 ∩ ℝ+) → 𝑦 ∈ 𝐵) |
| 31 | 30, 21 | sylan2 491 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ (𝐵 ∩ ℝ+)) → 𝑆 ∈
ℂ) |
| 32 | | eqid 2622 |
. . . . . . . . 9
⊢ (𝑦 ∈ (𝐵 ∩ ℝ+) ↦ 𝑆) = (𝑦 ∈ (𝐵 ∩ ℝ+) ↦ 𝑆) |
| 33 | 31, 32 | fmptd 6385 |
. . . . . . . 8
⊢ (𝜑 → (𝑦 ∈ (𝐵 ∩ ℝ+) ↦ 𝑆):(𝐵 ∩
ℝ+)⟶ℂ) |
| 34 | | frel 6050 |
. . . . . . . 8
⊢ ((𝑦 ∈ (𝐵 ∩ ℝ+) ↦ 𝑆):(𝐵 ∩ ℝ+)⟶ℂ
→ Rel (𝑦 ∈ (𝐵 ∩ ℝ+)
↦ 𝑆)) |
| 35 | 33, 34 | syl 17 |
. . . . . . 7
⊢ (𝜑 → Rel (𝑦 ∈ (𝐵 ∩ ℝ+) ↦ 𝑆)) |
| 36 | 32, 31 | dmmptd 6024 |
. . . . . . . 8
⊢ (𝜑 → dom (𝑦 ∈ (𝐵 ∩ ℝ+) ↦ 𝑆) = (𝐵 ∩
ℝ+)) |
| 37 | 36, 29 | syl6eqss 3655 |
. . . . . . 7
⊢ (𝜑 → dom (𝑦 ∈ (𝐵 ∩ ℝ+) ↦ 𝑆) ⊆ 𝐵) |
| 38 | | relssres 5437 |
. . . . . . 7
⊢ ((Rel
(𝑦 ∈ (𝐵 ∩ ℝ+)
↦ 𝑆) ∧ dom (𝑦 ∈ (𝐵 ∩ ℝ+) ↦ 𝑆) ⊆ 𝐵) → ((𝑦 ∈ (𝐵 ∩ ℝ+) ↦ 𝑆) ↾ 𝐵) = (𝑦 ∈ (𝐵 ∩ ℝ+) ↦ 𝑆)) |
| 39 | 35, 37, 38 | syl2anc 693 |
. . . . . 6
⊢ (𝜑 → ((𝑦 ∈ (𝐵 ∩ ℝ+) ↦ 𝑆) ↾ 𝐵) = (𝑦 ∈ (𝐵 ∩ ℝ+) ↦ 𝑆)) |
| 40 | 39 | reseq1d 5395 |
. . . . 5
⊢ (𝜑 → (((𝑦 ∈ (𝐵 ∩ ℝ+) ↦ 𝑆) ↾ 𝐵) ↾ (1[,)+∞)) = ((𝑦 ∈ (𝐵 ∩ ℝ+) ↦ 𝑆) ↾
(1[,)+∞))) |
| 41 | 20, 28, 40 | 3eqtr3d 2664 |
. . . 4
⊢ (𝜑 → ((𝑦 ∈ 𝐵 ↦ 𝑆) ↾ (1[,)+∞)) = ((𝑦 ∈ (𝐵 ∩ ℝ+) ↦ 𝑆) ↾
(1[,)+∞))) |
| 42 | 41 | breq1d 4663 |
. . 3
⊢ (𝜑 → (((𝑦 ∈ 𝐵 ↦ 𝑆) ↾ (1[,)+∞))
⇝𝑟 𝐶 ↔ ((𝑦 ∈ (𝐵 ∩ ℝ+) ↦ 𝑆) ↾ (1[,)+∞))
⇝𝑟 𝐶)) |
| 43 | | rlimcnp2.b |
. . . 4
⊢ (𝜑 → 𝐵 ⊆ ℝ) |
| 44 | | 1red 10055 |
. . . 4
⊢ (𝜑 → 1 ∈
ℝ) |
| 45 | 23, 43, 44 | rlimresb 14296 |
. . 3
⊢ (𝜑 → ((𝑦 ∈ 𝐵 ↦ 𝑆) ⇝𝑟 𝐶 ↔ ((𝑦 ∈ 𝐵 ↦ 𝑆) ↾ (1[,)+∞))
⇝𝑟 𝐶)) |
| 46 | 29, 43 | syl5ss 3614 |
. . . 4
⊢ (𝜑 → (𝐵 ∩ ℝ+) ⊆
ℝ) |
| 47 | 33, 46, 44 | rlimresb 14296 |
. . 3
⊢ (𝜑 → ((𝑦 ∈ (𝐵 ∩ ℝ+) ↦ 𝑆) ⇝𝑟
𝐶 ↔ ((𝑦 ∈ (𝐵 ∩ ℝ+) ↦ 𝑆) ↾ (1[,)+∞))
⇝𝑟 𝐶)) |
| 48 | 42, 45, 47 | 3bitr4d 300 |
. 2
⊢ (𝜑 → ((𝑦 ∈ 𝐵 ↦ 𝑆) ⇝𝑟 𝐶 ↔ (𝑦 ∈ (𝐵 ∩ ℝ+) ↦ 𝑆) ⇝𝑟
𝐶)) |
| 49 | | inss2 3834 |
. . . . . . . . . . 11
⊢ (𝐵 ∩ ℝ+)
⊆ ℝ+ |
| 50 | 49 | a1i 11 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐵 ∩ ℝ+) ⊆
ℝ+) |
| 51 | 50 | sselda 3603 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ (𝐵 ∩ ℝ+)) → 𝑦 ∈
ℝ+) |
| 52 | 51 | rpreccld 11882 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ (𝐵 ∩ ℝ+)) → (1 /
𝑦) ∈
ℝ+) |
| 53 | 52 | rpne0d 11877 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ (𝐵 ∩ ℝ+)) → (1 /
𝑦) ≠ 0) |
| 54 | 53 | neneqd 2799 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ (𝐵 ∩ ℝ+)) → ¬ (1
/ 𝑦) = 0) |
| 55 | 54 | iffalsed 4097 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ (𝐵 ∩ ℝ+)) → if((1 /
𝑦) = 0, 𝐶, ⦋(1 / 𝑦) / 𝑥⦌𝑅) = ⦋(1 / 𝑦) / 𝑥⦌𝑅) |
| 56 | | oveq2 6658 |
. . . . . . . . . 10
⊢ (𝑥 = (1 / 𝑦) → (1 / 𝑥) = (1 / (1 / 𝑦))) |
| 57 | | rpcnne0 11850 |
. . . . . . . . . . 11
⊢ (𝑦 ∈ ℝ+
→ (𝑦 ∈ ℂ
∧ 𝑦 ≠
0)) |
| 58 | | recrec 10722 |
. . . . . . . . . . 11
⊢ ((𝑦 ∈ ℂ ∧ 𝑦 ≠ 0) → (1 / (1 / 𝑦)) = 𝑦) |
| 59 | 51, 57, 58 | 3syl 18 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ (𝐵 ∩ ℝ+)) → (1 / (1
/ 𝑦)) = 𝑦) |
| 60 | 56, 59 | sylan9eqr 2678 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑦 ∈ (𝐵 ∩ ℝ+)) ∧ 𝑥 = (1 / 𝑦)) → (1 / 𝑥) = 𝑦) |
| 61 | 60 | eqcomd 2628 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑦 ∈ (𝐵 ∩ ℝ+)) ∧ 𝑥 = (1 / 𝑦)) → 𝑦 = (1 / 𝑥)) |
| 62 | | rlimcnp2.s |
. . . . . . . 8
⊢ (𝑦 = (1 / 𝑥) → 𝑆 = 𝑅) |
| 63 | 61, 62 | syl 17 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑦 ∈ (𝐵 ∩ ℝ+)) ∧ 𝑥 = (1 / 𝑦)) → 𝑆 = 𝑅) |
| 64 | 63 | eqcomd 2628 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑦 ∈ (𝐵 ∩ ℝ+)) ∧ 𝑥 = (1 / 𝑦)) → 𝑅 = 𝑆) |
| 65 | 52, 64 | csbied 3560 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ (𝐵 ∩ ℝ+)) →
⦋(1 / 𝑦) /
𝑥⦌𝑅 = 𝑆) |
| 66 | 55, 65 | eqtrd 2656 |
. . . 4
⊢ ((𝜑 ∧ 𝑦 ∈ (𝐵 ∩ ℝ+)) → if((1 /
𝑦) = 0, 𝐶, ⦋(1 / 𝑦) / 𝑥⦌𝑅) = 𝑆) |
| 67 | 66 | mpteq2dva 4744 |
. . 3
⊢ (𝜑 → (𝑦 ∈ (𝐵 ∩ ℝ+) ↦ if((1 /
𝑦) = 0, 𝐶, ⦋(1 / 𝑦) / 𝑥⦌𝑅)) = (𝑦 ∈ (𝐵 ∩ ℝ+) ↦ 𝑆)) |
| 68 | 67 | breq1d 4663 |
. 2
⊢ (𝜑 → ((𝑦 ∈ (𝐵 ∩ ℝ+) ↦ if((1 /
𝑦) = 0, 𝐶, ⦋(1 / 𝑦) / 𝑥⦌𝑅)) ⇝𝑟 𝐶 ↔ (𝑦 ∈ (𝐵 ∩ ℝ+) ↦ 𝑆) ⇝𝑟
𝐶)) |
| 69 | | rlimcnp2.a |
. . . 4
⊢ (𝜑 → 𝐴 ⊆ (0[,)+∞)) |
| 70 | | rlimcnp2.0 |
. . . 4
⊢ (𝜑 → 0 ∈ 𝐴) |
| 71 | | rlimcnp2.c |
. . . . . 6
⊢ (𝜑 → 𝐶 ∈ ℂ) |
| 72 | 71 | ad2antrr 762 |
. . . . 5
⊢ (((𝜑 ∧ 𝑤 ∈ 𝐴) ∧ 𝑤 = 0) → 𝐶 ∈ ℂ) |
| 73 | 69 | sselda 3603 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → 𝑤 ∈ (0[,)+∞)) |
| 74 | | 0re 10040 |
. . . . . . . . . . . . 13
⊢ 0 ∈
ℝ |
| 75 | | pnfxr 10092 |
. . . . . . . . . . . . 13
⊢ +∞
∈ ℝ* |
| 76 | | elico2 12237 |
. . . . . . . . . . . . 13
⊢ ((0
∈ ℝ ∧ +∞ ∈ ℝ*) → (𝑤 ∈ (0[,)+∞) ↔
(𝑤 ∈ ℝ ∧ 0
≤ 𝑤 ∧ 𝑤 <
+∞))) |
| 77 | 74, 75, 76 | mp2an 708 |
. . . . . . . . . . . 12
⊢ (𝑤 ∈ (0[,)+∞) ↔
(𝑤 ∈ ℝ ∧ 0
≤ 𝑤 ∧ 𝑤 <
+∞)) |
| 78 | 73, 77 | sylib 208 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → (𝑤 ∈ ℝ ∧ 0 ≤ 𝑤 ∧ 𝑤 < +∞)) |
| 79 | 78 | simp1d 1073 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → 𝑤 ∈ ℝ) |
| 80 | 79 | adantr 481 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑤 ∈ 𝐴) ∧ ¬ 𝑤 = 0) → 𝑤 ∈ ℝ) |
| 81 | 78 | simp2d 1074 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → 0 ≤ 𝑤) |
| 82 | | leloe 10124 |
. . . . . . . . . . . . . . 15
⊢ ((0
∈ ℝ ∧ 𝑤
∈ ℝ) → (0 ≤ 𝑤 ↔ (0 < 𝑤 ∨ 0 = 𝑤))) |
| 83 | 74, 79, 82 | sylancr 695 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → (0 ≤ 𝑤 ↔ (0 < 𝑤 ∨ 0 = 𝑤))) |
| 84 | 81, 83 | mpbid 222 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → (0 < 𝑤 ∨ 0 = 𝑤)) |
| 85 | 84 | ord 392 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → (¬ 0 < 𝑤 → 0 = 𝑤)) |
| 86 | | eqcom 2629 |
. . . . . . . . . . . 12
⊢ (0 =
𝑤 ↔ 𝑤 = 0) |
| 87 | 85, 86 | syl6ib 241 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → (¬ 0 < 𝑤 → 𝑤 = 0)) |
| 88 | 87 | con1d 139 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → (¬ 𝑤 = 0 → 0 < 𝑤)) |
| 89 | 88 | imp 445 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑤 ∈ 𝐴) ∧ ¬ 𝑤 = 0) → 0 < 𝑤) |
| 90 | 80, 89 | elrpd 11869 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑤 ∈ 𝐴) ∧ ¬ 𝑤 = 0) → 𝑤 ∈ ℝ+) |
| 91 | | rpcnne0 11850 |
. . . . . . . . 9
⊢ (𝑤 ∈ ℝ+
→ (𝑤 ∈ ℂ
∧ 𝑤 ≠
0)) |
| 92 | | recrec 10722 |
. . . . . . . . 9
⊢ ((𝑤 ∈ ℂ ∧ 𝑤 ≠ 0) → (1 / (1 / 𝑤)) = 𝑤) |
| 93 | 91, 92 | syl 17 |
. . . . . . . 8
⊢ (𝑤 ∈ ℝ+
→ (1 / (1 / 𝑤)) =
𝑤) |
| 94 | 90, 93 | syl 17 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑤 ∈ 𝐴) ∧ ¬ 𝑤 = 0) → (1 / (1 / 𝑤)) = 𝑤) |
| 95 | 94 | csbeq1d 3540 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑤 ∈ 𝐴) ∧ ¬ 𝑤 = 0) → ⦋(1 / (1 / 𝑤)) / 𝑥⦌𝑅 = ⦋𝑤 / 𝑥⦌𝑅) |
| 96 | | simplr 792 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑤 ∈ 𝐴) ∧ ¬ 𝑤 = 0) → 𝑤 ∈ 𝐴) |
| 97 | | simpll 790 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑤 ∈ 𝐴) ∧ ¬ 𝑤 = 0) → 𝜑) |
| 98 | | rpreccl 11857 |
. . . . . . . . . . . . 13
⊢ (𝑤 ∈ ℝ+
→ (1 / 𝑤) ∈
ℝ+) |
| 99 | 98 | adantl 482 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑤 ∈ ℝ+) → (1 /
𝑤) ∈
ℝ+) |
| 100 | | rlimcnp2.d |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ+) → (𝑦 ∈ 𝐵 ↔ (1 / 𝑦) ∈ 𝐴)) |
| 101 | 100 | ralrimiva 2966 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ∀𝑦 ∈ ℝ+ (𝑦 ∈ 𝐵 ↔ (1 / 𝑦) ∈ 𝐴)) |
| 102 | 101 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑤 ∈ ℝ+) →
∀𝑦 ∈
ℝ+ (𝑦
∈ 𝐵 ↔ (1 / 𝑦) ∈ 𝐴)) |
| 103 | | eleq1 2689 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = (1 / 𝑤) → (𝑦 ∈ 𝐵 ↔ (1 / 𝑤) ∈ 𝐵)) |
| 104 | | oveq2 6658 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 = (1 / 𝑤) → (1 / 𝑦) = (1 / (1 / 𝑤))) |
| 105 | 104 | eleq1d 2686 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = (1 / 𝑤) → ((1 / 𝑦) ∈ 𝐴 ↔ (1 / (1 / 𝑤)) ∈ 𝐴)) |
| 106 | 103, 105 | bibi12d 335 |
. . . . . . . . . . . . 13
⊢ (𝑦 = (1 / 𝑤) → ((𝑦 ∈ 𝐵 ↔ (1 / 𝑦) ∈ 𝐴) ↔ ((1 / 𝑤) ∈ 𝐵 ↔ (1 / (1 / 𝑤)) ∈ 𝐴))) |
| 107 | 106 | rspcv 3305 |
. . . . . . . . . . . 12
⊢ ((1 /
𝑤) ∈
ℝ+ → (∀𝑦 ∈ ℝ+ (𝑦 ∈ 𝐵 ↔ (1 / 𝑦) ∈ 𝐴) → ((1 / 𝑤) ∈ 𝐵 ↔ (1 / (1 / 𝑤)) ∈ 𝐴))) |
| 108 | 99, 102, 107 | sylc 65 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑤 ∈ ℝ+) → ((1 /
𝑤) ∈ 𝐵 ↔ (1 / (1 / 𝑤)) ∈ 𝐴)) |
| 109 | 93 | adantl 482 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑤 ∈ ℝ+) → (1 / (1 /
𝑤)) = 𝑤) |
| 110 | 109 | eleq1d 2686 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑤 ∈ ℝ+) → ((1 / (1
/ 𝑤)) ∈ 𝐴 ↔ 𝑤 ∈ 𝐴)) |
| 111 | 108, 110 | bitr2d 269 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑤 ∈ ℝ+) → (𝑤 ∈ 𝐴 ↔ (1 / 𝑤) ∈ 𝐵)) |
| 112 | 97, 90, 111 | syl2anc 693 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑤 ∈ 𝐴) ∧ ¬ 𝑤 = 0) → (𝑤 ∈ 𝐴 ↔ (1 / 𝑤) ∈ 𝐵)) |
| 113 | 96, 112 | mpbid 222 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑤 ∈ 𝐴) ∧ ¬ 𝑤 = 0) → (1 / 𝑤) ∈ 𝐵) |
| 114 | 90 | rpreccld 11882 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑤 ∈ 𝐴) ∧ ¬ 𝑤 = 0) → (1 / 𝑤) ∈
ℝ+) |
| 115 | 113, 114 | elind 3798 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑤 ∈ 𝐴) ∧ ¬ 𝑤 = 0) → (1 / 𝑤) ∈ (𝐵 ∩
ℝ+)) |
| 116 | 65, 31 | eqeltrd 2701 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ (𝐵 ∩ ℝ+)) →
⦋(1 / 𝑦) /
𝑥⦌𝑅 ∈
ℂ) |
| 117 | 116 | ralrimiva 2966 |
. . . . . . . 8
⊢ (𝜑 → ∀𝑦 ∈ (𝐵 ∩ ℝ+)⦋(1
/ 𝑦) / 𝑥⦌𝑅 ∈ ℂ) |
| 118 | 117 | ad2antrr 762 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑤 ∈ 𝐴) ∧ ¬ 𝑤 = 0) → ∀𝑦 ∈ (𝐵 ∩ ℝ+)⦋(1
/ 𝑦) / 𝑥⦌𝑅 ∈ ℂ) |
| 119 | 104 | csbeq1d 3540 |
. . . . . . . . 9
⊢ (𝑦 = (1 / 𝑤) → ⦋(1 / 𝑦) / 𝑥⦌𝑅 = ⦋(1 / (1 / 𝑤)) / 𝑥⦌𝑅) |
| 120 | 119 | eleq1d 2686 |
. . . . . . . 8
⊢ (𝑦 = (1 / 𝑤) → (⦋(1 / 𝑦) / 𝑥⦌𝑅 ∈ ℂ ↔ ⦋(1 /
(1 / 𝑤)) / 𝑥⦌𝑅 ∈ ℂ)) |
| 121 | 120 | rspcv 3305 |
. . . . . . 7
⊢ ((1 /
𝑤) ∈ (𝐵 ∩ ℝ+)
→ (∀𝑦 ∈
(𝐵 ∩
ℝ+)⦋(1 / 𝑦) / 𝑥⦌𝑅 ∈ ℂ → ⦋(1 /
(1 / 𝑤)) / 𝑥⦌𝑅 ∈ ℂ)) |
| 122 | 115, 118,
121 | sylc 65 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑤 ∈ 𝐴) ∧ ¬ 𝑤 = 0) → ⦋(1 / (1 / 𝑤)) / 𝑥⦌𝑅 ∈ ℂ) |
| 123 | 95, 122 | eqeltrrd 2702 |
. . . . 5
⊢ (((𝜑 ∧ 𝑤 ∈ 𝐴) ∧ ¬ 𝑤 = 0) → ⦋𝑤 / 𝑥⦌𝑅 ∈ ℂ) |
| 124 | 72, 123 | ifclda 4120 |
. . . 4
⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → if(𝑤 = 0, 𝐶, ⦋𝑤 / 𝑥⦌𝑅) ∈ ℂ) |
| 125 | 99 | biantrud 528 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑤 ∈ ℝ+) → ((1 /
𝑤) ∈ 𝐵 ↔ ((1 / 𝑤) ∈ 𝐵 ∧ (1 / 𝑤) ∈
ℝ+))) |
| 126 | 111, 125 | bitrd 268 |
. . . . 5
⊢ ((𝜑 ∧ 𝑤 ∈ ℝ+) → (𝑤 ∈ 𝐴 ↔ ((1 / 𝑤) ∈ 𝐵 ∧ (1 / 𝑤) ∈
ℝ+))) |
| 127 | | elin 3796 |
. . . . 5
⊢ ((1 /
𝑤) ∈ (𝐵 ∩ ℝ+)
↔ ((1 / 𝑤) ∈
𝐵 ∧ (1 / 𝑤) ∈
ℝ+)) |
| 128 | 126, 127 | syl6bbr 278 |
. . . 4
⊢ ((𝜑 ∧ 𝑤 ∈ ℝ+) → (𝑤 ∈ 𝐴 ↔ (1 / 𝑤) ∈ (𝐵 ∩
ℝ+))) |
| 129 | | iftrue 4092 |
. . . 4
⊢ (𝑤 = 0 → if(𝑤 = 0, 𝐶, ⦋𝑤 / 𝑥⦌𝑅) = 𝐶) |
| 130 | | eqeq1 2626 |
. . . . 5
⊢ (𝑤 = (1 / 𝑦) → (𝑤 = 0 ↔ (1 / 𝑦) = 0)) |
| 131 | | csbeq1 3536 |
. . . . 5
⊢ (𝑤 = (1 / 𝑦) → ⦋𝑤 / 𝑥⦌𝑅 = ⦋(1 / 𝑦) / 𝑥⦌𝑅) |
| 132 | 130, 131 | ifbieq2d 4111 |
. . . 4
⊢ (𝑤 = (1 / 𝑦) → if(𝑤 = 0, 𝐶, ⦋𝑤 / 𝑥⦌𝑅) = if((1 / 𝑦) = 0, 𝐶, ⦋(1 / 𝑦) / 𝑥⦌𝑅)) |
| 133 | | rlimcnp2.j |
. . . 4
⊢ 𝐽 =
(TopOpen‘ℂfld) |
| 134 | | rlimcnp2.k |
. . . 4
⊢ 𝐾 = (𝐽 ↾t 𝐴) |
| 135 | 69, 70, 50, 124, 128, 129, 132, 133, 134 | rlimcnp 24692 |
. . 3
⊢ (𝜑 → ((𝑦 ∈ (𝐵 ∩ ℝ+) ↦ if((1 /
𝑦) = 0, 𝐶, ⦋(1 / 𝑦) / 𝑥⦌𝑅)) ⇝𝑟 𝐶 ↔ (𝑤 ∈ 𝐴 ↦ if(𝑤 = 0, 𝐶, ⦋𝑤 / 𝑥⦌𝑅)) ∈ ((𝐾 CnP 𝐽)‘0))) |
| 136 | | nfcv 2764 |
. . . . 5
⊢
Ⅎ𝑤if(𝑥 = 0, 𝐶, 𝑅) |
| 137 | | nfv 1843 |
. . . . . 6
⊢
Ⅎ𝑥 𝑤 = 0 |
| 138 | | nfcv 2764 |
. . . . . 6
⊢
Ⅎ𝑥𝐶 |
| 139 | | nfcsb1v 3549 |
. . . . . 6
⊢
Ⅎ𝑥⦋𝑤 / 𝑥⦌𝑅 |
| 140 | 137, 138,
139 | nfif 4115 |
. . . . 5
⊢
Ⅎ𝑥if(𝑤 = 0, 𝐶, ⦋𝑤 / 𝑥⦌𝑅) |
| 141 | | eqeq1 2626 |
. . . . . 6
⊢ (𝑥 = 𝑤 → (𝑥 = 0 ↔ 𝑤 = 0)) |
| 142 | | csbeq1a 3542 |
. . . . . 6
⊢ (𝑥 = 𝑤 → 𝑅 = ⦋𝑤 / 𝑥⦌𝑅) |
| 143 | 141, 142 | ifbieq2d 4111 |
. . . . 5
⊢ (𝑥 = 𝑤 → if(𝑥 = 0, 𝐶, 𝑅) = if(𝑤 = 0, 𝐶, ⦋𝑤 / 𝑥⦌𝑅)) |
| 144 | 136, 140,
143 | cbvmpt 4749 |
. . . 4
⊢ (𝑥 ∈ 𝐴 ↦ if(𝑥 = 0, 𝐶, 𝑅)) = (𝑤 ∈ 𝐴 ↦ if(𝑤 = 0, 𝐶, ⦋𝑤 / 𝑥⦌𝑅)) |
| 145 | 144 | eleq1i 2692 |
. . 3
⊢ ((𝑥 ∈ 𝐴 ↦ if(𝑥 = 0, 𝐶, 𝑅)) ∈ ((𝐾 CnP 𝐽)‘0) ↔ (𝑤 ∈ 𝐴 ↦ if(𝑤 = 0, 𝐶, ⦋𝑤 / 𝑥⦌𝑅)) ∈ ((𝐾 CnP 𝐽)‘0)) |
| 146 | 135, 145 | syl6bbr 278 |
. 2
⊢ (𝜑 → ((𝑦 ∈ (𝐵 ∩ ℝ+) ↦ if((1 /
𝑦) = 0, 𝐶, ⦋(1 / 𝑦) / 𝑥⦌𝑅)) ⇝𝑟 𝐶 ↔ (𝑥 ∈ 𝐴 ↦ if(𝑥 = 0, 𝐶, 𝑅)) ∈ ((𝐾 CnP 𝐽)‘0))) |
| 147 | 48, 68, 146 | 3bitr2d 296 |
1
⊢ (𝜑 → ((𝑦 ∈ 𝐵 ↦ 𝑆) ⇝𝑟 𝐶 ↔ (𝑥 ∈ 𝐴 ↦ if(𝑥 = 0, 𝐶, 𝑅)) ∈ ((𝐾 CnP 𝐽)‘0))) |