MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rlimcnp2 Structured version   Visualization version   Unicode version

Theorem rlimcnp2 24693
Description: Relate a limit of a real-valued sequence at infinity to the continuity of the function  S ( y )  =  R ( 1  /  y ) at zero. (Contributed by Mario Carneiro, 1-Mar-2015.)
Hypotheses
Ref Expression
rlimcnp2.a  |-  ( ph  ->  A  C_  ( 0 [,) +oo ) )
rlimcnp2.0  |-  ( ph  ->  0  e.  A )
rlimcnp2.b  |-  ( ph  ->  B  C_  RR )
rlimcnp2.c  |-  ( ph  ->  C  e.  CC )
rlimcnp2.r  |-  ( (
ph  /\  y  e.  B )  ->  S  e.  CC )
rlimcnp2.d  |-  ( (
ph  /\  y  e.  RR+ )  ->  ( y  e.  B  <->  ( 1  / 
y )  e.  A
) )
rlimcnp2.s  |-  ( y  =  ( 1  /  x )  ->  S  =  R )
rlimcnp2.j  |-  J  =  ( TopOpen ` fld )
rlimcnp2.k  |-  K  =  ( Jt  A )
Assertion
Ref Expression
rlimcnp2  |-  ( ph  ->  ( ( y  e.  B  |->  S )  ~~> r  C  <->  ( x  e.  A  |->  if ( x  =  0 ,  C ,  R
) )  e.  ( ( K  CnP  J
) `  0 )
) )
Distinct variable groups:    x, y, A    x, B, y    x, C, y    ph, x, y   
y, R    x, S
Allowed substitution hints:    R( x)    S( y)    J( x, y)    K( x, y)

Proof of Theorem rlimcnp2
Dummy variables  w  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 inss1 3833 . . . . . . . 8  |-  ( B  i^i  ( 1 [,) +oo ) )  C_  B
2 resmpt 5449 . . . . . . . 8  |-  ( ( B  i^i  ( 1 [,) +oo ) ) 
C_  B  ->  (
( y  e.  B  |->  S )  |`  ( B  i^i  ( 1 [,) +oo ) ) )  =  ( y  e.  ( B  i^i  ( 1 [,) +oo ) ) 
|->  S ) )
31, 2mp1i 13 . . . . . . 7  |-  ( ph  ->  ( ( y  e.  B  |->  S )  |`  ( B  i^i  (
1 [,) +oo )
) )  =  ( y  e.  ( B  i^i  ( 1 [,) +oo ) )  |->  S ) )
4 0xr 10086 . . . . . . . . . . 11  |-  0  e.  RR*
5 0lt1 10550 . . . . . . . . . . 11  |-  0  <  1
6 df-ioo 12179 . . . . . . . . . . . 12  |-  (,)  =  ( x  e.  RR* ,  y  e.  RR*  |->  { z  e.  RR*  |  (
x  <  z  /\  z  <  y ) } )
7 df-ico 12181 . . . . . . . . . . . 12  |-  [,)  =  ( x  e.  RR* ,  y  e.  RR*  |->  { z  e.  RR*  |  (
x  <_  z  /\  z  <  y ) } )
8 xrltletr 11988 . . . . . . . . . . . 12  |-  ( ( 0  e.  RR*  /\  1  e.  RR*  /\  w  e. 
RR* )  ->  (
( 0  <  1  /\  1  <_  w )  ->  0  <  w
) )
96, 7, 8ixxss1 12193 . . . . . . . . . . 11  |-  ( ( 0  e.  RR*  /\  0  <  1 )  ->  (
1 [,) +oo )  C_  ( 0 (,) +oo ) )
104, 5, 9mp2an 708 . . . . . . . . . 10  |-  ( 1 [,) +oo )  C_  ( 0 (,) +oo )
11 ioorp 12251 . . . . . . . . . 10  |-  ( 0 (,) +oo )  = 
RR+
1210, 11sseqtri 3637 . . . . . . . . 9  |-  ( 1 [,) +oo )  C_  RR+
13 sslin 3839 . . . . . . . . 9  |-  ( ( 1 [,) +oo )  C_  RR+  ->  ( B  i^i  ( 1 [,) +oo ) )  C_  ( B  i^i  RR+ ) )
1412, 13ax-mp 5 . . . . . . . 8  |-  ( B  i^i  ( 1 [,) +oo ) )  C_  ( B  i^i  RR+ )
15 resmpt 5449 . . . . . . . 8  |-  ( ( B  i^i  ( 1 [,) +oo ) ) 
C_  ( B  i^i  RR+ )  ->  ( (
y  e.  ( B  i^i  RR+ )  |->  S )  |`  ( B  i^i  (
1 [,) +oo )
) )  =  ( y  e.  ( B  i^i  ( 1 [,) +oo ) )  |->  S ) )
1614, 15mp1i 13 . . . . . . 7  |-  ( ph  ->  ( ( y  e.  ( B  i^i  RR+ )  |->  S )  |`  ( B  i^i  ( 1 [,) +oo ) ) )  =  ( y  e.  ( B  i^i  ( 1 [,) +oo ) ) 
|->  S ) )
173, 16eqtr4d 2659 . . . . . 6  |-  ( ph  ->  ( ( y  e.  B  |->  S )  |`  ( B  i^i  (
1 [,) +oo )
) )  =  ( ( y  e.  ( B  i^i  RR+ )  |->  S )  |`  ( B  i^i  ( 1 [,) +oo ) ) ) )
18 resres 5409 . . . . . 6  |-  ( ( ( y  e.  B  |->  S )  |`  B )  |`  ( 1 [,) +oo ) )  =  ( ( y  e.  B  |->  S )  |`  ( B  i^i  ( 1 [,) +oo ) ) )
19 resres 5409 . . . . . 6  |-  ( ( ( y  e.  ( B  i^i  RR+ )  |->  S )  |`  B )  |`  ( 1 [,) +oo ) )  =  ( ( y  e.  ( B  i^i  RR+ )  |->  S )  |`  ( B  i^i  ( 1 [,) +oo ) ) )
2017, 18, 193eqtr4g 2681 . . . . 5  |-  ( ph  ->  ( ( ( y  e.  B  |->  S )  |`  B )  |`  (
1 [,) +oo )
)  =  ( ( ( y  e.  ( B  i^i  RR+ )  |->  S )  |`  B )  |`  ( 1 [,) +oo ) ) )
21 rlimcnp2.r . . . . . . . . 9  |-  ( (
ph  /\  y  e.  B )  ->  S  e.  CC )
22 eqid 2622 . . . . . . . . 9  |-  ( y  e.  B  |->  S )  =  ( y  e.  B  |->  S )
2321, 22fmptd 6385 . . . . . . . 8  |-  ( ph  ->  ( y  e.  B  |->  S ) : B --> CC )
24 ffn 6045 . . . . . . . 8  |-  ( ( y  e.  B  |->  S ) : B --> CC  ->  ( y  e.  B  |->  S )  Fn  B )
2523, 24syl 17 . . . . . . 7  |-  ( ph  ->  ( y  e.  B  |->  S )  Fn  B
)
26 fnresdm 6000 . . . . . . 7  |-  ( ( y  e.  B  |->  S )  Fn  B  -> 
( ( y  e.  B  |->  S )  |`  B )  =  ( y  e.  B  |->  S ) )
2725, 26syl 17 . . . . . 6  |-  ( ph  ->  ( ( y  e.  B  |->  S )  |`  B )  =  ( y  e.  B  |->  S ) )
2827reseq1d 5395 . . . . 5  |-  ( ph  ->  ( ( ( y  e.  B  |->  S )  |`  B )  |`  (
1 [,) +oo )
)  =  ( ( y  e.  B  |->  S )  |`  ( 1 [,) +oo ) ) )
29 inss1 3833 . . . . . . . . . . 11  |-  ( B  i^i  RR+ )  C_  B
3029sseli 3599 . . . . . . . . . 10  |-  ( y  e.  ( B  i^i  RR+ )  ->  y  e.  B )
3130, 21sylan2 491 . . . . . . . . 9  |-  ( (
ph  /\  y  e.  ( B  i^i  RR+ )
)  ->  S  e.  CC )
32 eqid 2622 . . . . . . . . 9  |-  ( y  e.  ( B  i^i  RR+ )  |->  S )  =  ( y  e.  ( B  i^i  RR+ )  |->  S )
3331, 32fmptd 6385 . . . . . . . 8  |-  ( ph  ->  ( y  e.  ( B  i^i  RR+ )  |->  S ) : ( B  i^i  RR+ ) --> CC )
34 frel 6050 . . . . . . . 8  |-  ( ( y  e.  ( B  i^i  RR+ )  |->  S ) : ( B  i^i  RR+ ) --> CC  ->  Rel  ( y  e.  ( B  i^i  RR+ )  |->  S ) )
3533, 34syl 17 . . . . . . 7  |-  ( ph  ->  Rel  ( y  e.  ( B  i^i  RR+ )  |->  S ) )
3632, 31dmmptd 6024 . . . . . . . 8  |-  ( ph  ->  dom  ( y  e.  ( B  i^i  RR+ )  |->  S )  =  ( B  i^i  RR+ )
)
3736, 29syl6eqss 3655 . . . . . . 7  |-  ( ph  ->  dom  ( y  e.  ( B  i^i  RR+ )  |->  S )  C_  B
)
38 relssres 5437 . . . . . . 7  |-  ( ( Rel  ( y  e.  ( B  i^i  RR+ )  |->  S )  /\  dom  ( y  e.  ( B  i^i  RR+ )  |->  S )  C_  B
)  ->  ( (
y  e.  ( B  i^i  RR+ )  |->  S )  |`  B )  =  ( y  e.  ( B  i^i  RR+ )  |->  S ) )
3935, 37, 38syl2anc 693 . . . . . 6  |-  ( ph  ->  ( ( y  e.  ( B  i^i  RR+ )  |->  S )  |`  B )  =  ( y  e.  ( B  i^i  RR+ )  |->  S ) )
4039reseq1d 5395 . . . . 5  |-  ( ph  ->  ( ( ( y  e.  ( B  i^i  RR+ )  |->  S )  |`  B )  |`  (
1 [,) +oo )
)  =  ( ( y  e.  ( B  i^i  RR+ )  |->  S )  |`  ( 1 [,) +oo ) ) )
4120, 28, 403eqtr3d 2664 . . . 4  |-  ( ph  ->  ( ( y  e.  B  |->  S )  |`  ( 1 [,) +oo ) )  =  ( ( y  e.  ( B  i^i  RR+ )  |->  S )  |`  (
1 [,) +oo )
) )
4241breq1d 4663 . . 3  |-  ( ph  ->  ( ( ( y  e.  B  |->  S )  |`  ( 1 [,) +oo ) )  ~~> r  C  <->  ( ( y  e.  ( B  i^i  RR+ )  |->  S )  |`  (
1 [,) +oo )
)  ~~> r  C ) )
43 rlimcnp2.b . . . 4  |-  ( ph  ->  B  C_  RR )
44 1red 10055 . . . 4  |-  ( ph  ->  1  e.  RR )
4523, 43, 44rlimresb 14296 . . 3  |-  ( ph  ->  ( ( y  e.  B  |->  S )  ~~> r  C  <->  ( ( y  e.  B  |->  S )  |`  (
1 [,) +oo )
)  ~~> r  C ) )
4629, 43syl5ss 3614 . . . 4  |-  ( ph  ->  ( B  i^i  RR+ )  C_  RR )
4733, 46, 44rlimresb 14296 . . 3  |-  ( ph  ->  ( ( y  e.  ( B  i^i  RR+ )  |->  S )  ~~> r  C  <->  ( ( y  e.  ( B  i^i  RR+ )  |->  S )  |`  (
1 [,) +oo )
)  ~~> r  C ) )
4842, 45, 473bitr4d 300 . 2  |-  ( ph  ->  ( ( y  e.  B  |->  S )  ~~> r  C  <->  ( y  e.  ( B  i^i  RR+ )  |->  S )  ~~> r  C ) )
49 inss2 3834 . . . . . . . . . . 11  |-  ( B  i^i  RR+ )  C_  RR+
5049a1i 11 . . . . . . . . . 10  |-  ( ph  ->  ( B  i^i  RR+ )  C_  RR+ )
5150sselda 3603 . . . . . . . . 9  |-  ( (
ph  /\  y  e.  ( B  i^i  RR+ )
)  ->  y  e.  RR+ )
5251rpreccld 11882 . . . . . . . 8  |-  ( (
ph  /\  y  e.  ( B  i^i  RR+ )
)  ->  ( 1  /  y )  e.  RR+ )
5352rpne0d 11877 . . . . . . 7  |-  ( (
ph  /\  y  e.  ( B  i^i  RR+ )
)  ->  ( 1  /  y )  =/=  0 )
5453neneqd 2799 . . . . . 6  |-  ( (
ph  /\  y  e.  ( B  i^i  RR+ )
)  ->  -.  (
1  /  y )  =  0 )
5554iffalsed 4097 . . . . 5  |-  ( (
ph  /\  y  e.  ( B  i^i  RR+ )
)  ->  if (
( 1  /  y
)  =  0 ,  C ,  [_ (
1  /  y )  /  x ]_ R
)  =  [_ (
1  /  y )  /  x ]_ R
)
56 oveq2 6658 . . . . . . . . . 10  |-  ( x  =  ( 1  / 
y )  ->  (
1  /  x )  =  ( 1  / 
( 1  /  y
) ) )
57 rpcnne0 11850 . . . . . . . . . . 11  |-  ( y  e.  RR+  ->  ( y  e.  CC  /\  y  =/=  0 ) )
58 recrec 10722 . . . . . . . . . . 11  |-  ( ( y  e.  CC  /\  y  =/=  0 )  -> 
( 1  /  (
1  /  y ) )  =  y )
5951, 57, 583syl 18 . . . . . . . . . 10  |-  ( (
ph  /\  y  e.  ( B  i^i  RR+ )
)  ->  ( 1  /  ( 1  / 
y ) )  =  y )
6056, 59sylan9eqr 2678 . . . . . . . . 9  |-  ( ( ( ph  /\  y  e.  ( B  i^i  RR+ )
)  /\  x  =  ( 1  /  y
) )  ->  (
1  /  x )  =  y )
6160eqcomd 2628 . . . . . . . 8  |-  ( ( ( ph  /\  y  e.  ( B  i^i  RR+ )
)  /\  x  =  ( 1  /  y
) )  ->  y  =  ( 1  /  x ) )
62 rlimcnp2.s . . . . . . . 8  |-  ( y  =  ( 1  /  x )  ->  S  =  R )
6361, 62syl 17 . . . . . . 7  |-  ( ( ( ph  /\  y  e.  ( B  i^i  RR+ )
)  /\  x  =  ( 1  /  y
) )  ->  S  =  R )
6463eqcomd 2628 . . . . . 6  |-  ( ( ( ph  /\  y  e.  ( B  i^i  RR+ )
)  /\  x  =  ( 1  /  y
) )  ->  R  =  S )
6552, 64csbied 3560 . . . . 5  |-  ( (
ph  /\  y  e.  ( B  i^i  RR+ )
)  ->  [_ ( 1  /  y )  /  x ]_ R  =  S )
6655, 65eqtrd 2656 . . . 4  |-  ( (
ph  /\  y  e.  ( B  i^i  RR+ )
)  ->  if (
( 1  /  y
)  =  0 ,  C ,  [_ (
1  /  y )  /  x ]_ R
)  =  S )
6766mpteq2dva 4744 . . 3  |-  ( ph  ->  ( y  e.  ( B  i^i  RR+ )  |->  if ( ( 1  /  y )  =  0 ,  C ,  [_ ( 1  /  y
)  /  x ]_ R ) )  =  ( y  e.  ( B  i^i  RR+ )  |->  S ) )
6867breq1d 4663 . 2  |-  ( ph  ->  ( ( y  e.  ( B  i^i  RR+ )  |->  if ( ( 1  /  y )  =  0 ,  C ,  [_ ( 1  /  y
)  /  x ]_ R ) )  ~~> r  C  <->  ( y  e.  ( B  i^i  RR+ )  |->  S )  ~~> r  C ) )
69 rlimcnp2.a . . . 4  |-  ( ph  ->  A  C_  ( 0 [,) +oo ) )
70 rlimcnp2.0 . . . 4  |-  ( ph  ->  0  e.  A )
71 rlimcnp2.c . . . . . 6  |-  ( ph  ->  C  e.  CC )
7271ad2antrr 762 . . . . 5  |-  ( ( ( ph  /\  w  e.  A )  /\  w  =  0 )  ->  C  e.  CC )
7369sselda 3603 . . . . . . . . . . . 12  |-  ( (
ph  /\  w  e.  A )  ->  w  e.  ( 0 [,) +oo ) )
74 0re 10040 . . . . . . . . . . . . 13  |-  0  e.  RR
75 pnfxr 10092 . . . . . . . . . . . . 13  |- +oo  e.  RR*
76 elico2 12237 . . . . . . . . . . . . 13  |-  ( ( 0  e.  RR  /\ +oo  e.  RR* )  ->  (
w  e.  ( 0 [,) +oo )  <->  ( w  e.  RR  /\  0  <_  w  /\  w  < +oo ) ) )
7774, 75, 76mp2an 708 . . . . . . . . . . . 12  |-  ( w  e.  ( 0 [,) +oo )  <->  ( w  e.  RR  /\  0  <_  w  /\  w  < +oo ) )
7873, 77sylib 208 . . . . . . . . . . 11  |-  ( (
ph  /\  w  e.  A )  ->  (
w  e.  RR  /\  0  <_  w  /\  w  < +oo ) )
7978simp1d 1073 . . . . . . . . . 10  |-  ( (
ph  /\  w  e.  A )  ->  w  e.  RR )
8079adantr 481 . . . . . . . . 9  |-  ( ( ( ph  /\  w  e.  A )  /\  -.  w  =  0 )  ->  w  e.  RR )
8178simp2d 1074 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  w  e.  A )  ->  0  <_  w )
82 leloe 10124 . . . . . . . . . . . . . . 15  |-  ( ( 0  e.  RR  /\  w  e.  RR )  ->  ( 0  <_  w  <->  ( 0  <  w  \/  0  =  w ) ) )
8374, 79, 82sylancr 695 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  w  e.  A )  ->  (
0  <_  w  <->  ( 0  <  w  \/  0  =  w ) ) )
8481, 83mpbid 222 . . . . . . . . . . . . 13  |-  ( (
ph  /\  w  e.  A )  ->  (
0  <  w  \/  0  =  w )
)
8584ord 392 . . . . . . . . . . . 12  |-  ( (
ph  /\  w  e.  A )  ->  ( -.  0  <  w  -> 
0  =  w ) )
86 eqcom 2629 . . . . . . . . . . . 12  |-  ( 0  =  w  <->  w  = 
0 )
8785, 86syl6ib 241 . . . . . . . . . . 11  |-  ( (
ph  /\  w  e.  A )  ->  ( -.  0  <  w  ->  w  =  0 ) )
8887con1d 139 . . . . . . . . . 10  |-  ( (
ph  /\  w  e.  A )  ->  ( -.  w  =  0  ->  0  <  w ) )
8988imp 445 . . . . . . . . 9  |-  ( ( ( ph  /\  w  e.  A )  /\  -.  w  =  0 )  ->  0  <  w
)
9080, 89elrpd 11869 . . . . . . . 8  |-  ( ( ( ph  /\  w  e.  A )  /\  -.  w  =  0 )  ->  w  e.  RR+ )
91 rpcnne0 11850 . . . . . . . . 9  |-  ( w  e.  RR+  ->  ( w  e.  CC  /\  w  =/=  0 ) )
92 recrec 10722 . . . . . . . . 9  |-  ( ( w  e.  CC  /\  w  =/=  0 )  -> 
( 1  /  (
1  /  w ) )  =  w )
9391, 92syl 17 . . . . . . . 8  |-  ( w  e.  RR+  ->  ( 1  /  ( 1  /  w ) )  =  w )
9490, 93syl 17 . . . . . . 7  |-  ( ( ( ph  /\  w  e.  A )  /\  -.  w  =  0 )  ->  ( 1  / 
( 1  /  w
) )  =  w )
9594csbeq1d 3540 . . . . . 6  |-  ( ( ( ph  /\  w  e.  A )  /\  -.  w  =  0 )  ->  [_ ( 1  / 
( 1  /  w
) )  /  x ]_ R  =  [_ w  /  x ]_ R )
96 simplr 792 . . . . . . . . 9  |-  ( ( ( ph  /\  w  e.  A )  /\  -.  w  =  0 )  ->  w  e.  A
)
97 simpll 790 . . . . . . . . . 10  |-  ( ( ( ph  /\  w  e.  A )  /\  -.  w  =  0 )  ->  ph )
98 rpreccl 11857 . . . . . . . . . . . . 13  |-  ( w  e.  RR+  ->  ( 1  /  w )  e.  RR+ )
9998adantl 482 . . . . . . . . . . . 12  |-  ( (
ph  /\  w  e.  RR+ )  ->  ( 1  /  w )  e.  RR+ )
100 rlimcnp2.d . . . . . . . . . . . . . 14  |-  ( (
ph  /\  y  e.  RR+ )  ->  ( y  e.  B  <->  ( 1  / 
y )  e.  A
) )
101100ralrimiva 2966 . . . . . . . . . . . . 13  |-  ( ph  ->  A. y  e.  RR+  ( y  e.  B  <->  ( 1  /  y )  e.  A ) )
102101adantr 481 . . . . . . . . . . . 12  |-  ( (
ph  /\  w  e.  RR+ )  ->  A. y  e.  RR+  ( y  e.  B  <->  ( 1  / 
y )  e.  A
) )
103 eleq1 2689 . . . . . . . . . . . . . 14  |-  ( y  =  ( 1  /  w )  ->  (
y  e.  B  <->  ( 1  /  w )  e.  B ) )
104 oveq2 6658 . . . . . . . . . . . . . . 15  |-  ( y  =  ( 1  /  w )  ->  (
1  /  y )  =  ( 1  / 
( 1  /  w
) ) )
105104eleq1d 2686 . . . . . . . . . . . . . 14  |-  ( y  =  ( 1  /  w )  ->  (
( 1  /  y
)  e.  A  <->  ( 1  /  ( 1  /  w ) )  e.  A ) )
106103, 105bibi12d 335 . . . . . . . . . . . . 13  |-  ( y  =  ( 1  /  w )  ->  (
( y  e.  B  <->  ( 1  /  y )  e.  A )  <->  ( (
1  /  w )  e.  B  <->  ( 1  /  ( 1  /  w ) )  e.  A ) ) )
107106rspcv 3305 . . . . . . . . . . . 12  |-  ( ( 1  /  w )  e.  RR+  ->  ( A. y  e.  RR+  ( y  e.  B  <->  ( 1  /  y )  e.  A )  ->  (
( 1  /  w
)  e.  B  <->  ( 1  /  ( 1  /  w ) )  e.  A ) ) )
10899, 102, 107sylc 65 . . . . . . . . . . 11  |-  ( (
ph  /\  w  e.  RR+ )  ->  ( (
1  /  w )  e.  B  <->  ( 1  /  ( 1  /  w ) )  e.  A ) )
10993adantl 482 . . . . . . . . . . . 12  |-  ( (
ph  /\  w  e.  RR+ )  ->  ( 1  /  ( 1  /  w ) )  =  w )
110109eleq1d 2686 . . . . . . . . . . 11  |-  ( (
ph  /\  w  e.  RR+ )  ->  ( (
1  /  ( 1  /  w ) )  e.  A  <->  w  e.  A ) )
111108, 110bitr2d 269 . . . . . . . . . 10  |-  ( (
ph  /\  w  e.  RR+ )  ->  ( w  e.  A  <->  ( 1  /  w )  e.  B
) )
11297, 90, 111syl2anc 693 . . . . . . . . 9  |-  ( ( ( ph  /\  w  e.  A )  /\  -.  w  =  0 )  ->  ( w  e.  A  <->  ( 1  /  w )  e.  B
) )
11396, 112mpbid 222 . . . . . . . 8  |-  ( ( ( ph  /\  w  e.  A )  /\  -.  w  =  0 )  ->  ( 1  /  w )  e.  B
)
11490rpreccld 11882 . . . . . . . 8  |-  ( ( ( ph  /\  w  e.  A )  /\  -.  w  =  0 )  ->  ( 1  /  w )  e.  RR+ )
115113, 114elind 3798 . . . . . . 7  |-  ( ( ( ph  /\  w  e.  A )  /\  -.  w  =  0 )  ->  ( 1  /  w )  e.  ( B  i^i  RR+ )
)
11665, 31eqeltrd 2701 . . . . . . . . 9  |-  ( (
ph  /\  y  e.  ( B  i^i  RR+ )
)  ->  [_ ( 1  /  y )  /  x ]_ R  e.  CC )
117116ralrimiva 2966 . . . . . . . 8  |-  ( ph  ->  A. y  e.  ( B  i^i  RR+ ) [_ ( 1  /  y
)  /  x ]_ R  e.  CC )
118117ad2antrr 762 . . . . . . 7  |-  ( ( ( ph  /\  w  e.  A )  /\  -.  w  =  0 )  ->  A. y  e.  ( B  i^i  RR+ ) [_ ( 1  /  y
)  /  x ]_ R  e.  CC )
119104csbeq1d 3540 . . . . . . . . 9  |-  ( y  =  ( 1  /  w )  ->  [_ (
1  /  y )  /  x ]_ R  =  [_ ( 1  / 
( 1  /  w
) )  /  x ]_ R )
120119eleq1d 2686 . . . . . . . 8  |-  ( y  =  ( 1  /  w )  ->  ( [_ ( 1  /  y
)  /  x ]_ R  e.  CC  <->  [_ ( 1  /  ( 1  /  w ) )  /  x ]_ R  e.  CC ) )
121120rspcv 3305 . . . . . . 7  |-  ( ( 1  /  w )  e.  ( B  i^i  RR+ )  ->  ( A. y  e.  ( B  i^i  RR+ ) [_ (
1  /  y )  /  x ]_ R  e.  CC  ->  [_ ( 1  /  ( 1  /  w ) )  /  x ]_ R  e.  CC ) )
122115, 118, 121sylc 65 . . . . . 6  |-  ( ( ( ph  /\  w  e.  A )  /\  -.  w  =  0 )  ->  [_ ( 1  / 
( 1  /  w
) )  /  x ]_ R  e.  CC )
12395, 122eqeltrrd 2702 . . . . 5  |-  ( ( ( ph  /\  w  e.  A )  /\  -.  w  =  0 )  ->  [_ w  /  x ]_ R  e.  CC )
12472, 123ifclda 4120 . . . 4  |-  ( (
ph  /\  w  e.  A )  ->  if ( w  =  0 ,  C ,  [_ w  /  x ]_ R )  e.  CC )
12599biantrud 528 . . . . . 6  |-  ( (
ph  /\  w  e.  RR+ )  ->  ( (
1  /  w )  e.  B  <->  ( (
1  /  w )  e.  B  /\  (
1  /  w )  e.  RR+ ) ) )
126111, 125bitrd 268 . . . . 5  |-  ( (
ph  /\  w  e.  RR+ )  ->  ( w  e.  A  <->  ( ( 1  /  w )  e.  B  /\  ( 1  /  w )  e.  RR+ ) ) )
127 elin 3796 . . . . 5  |-  ( ( 1  /  w )  e.  ( B  i^i  RR+ )  <->  ( ( 1  /  w )  e.  B  /\  ( 1  /  w )  e.  RR+ ) )
128126, 127syl6bbr 278 . . . 4  |-  ( (
ph  /\  w  e.  RR+ )  ->  ( w  e.  A  <->  ( 1  /  w )  e.  ( B  i^i  RR+ )
) )
129 iftrue 4092 . . . 4  |-  ( w  =  0  ->  if ( w  =  0 ,  C ,  [_ w  /  x ]_ R )  =  C )
130 eqeq1 2626 . . . . 5  |-  ( w  =  ( 1  / 
y )  ->  (
w  =  0  <->  (
1  /  y )  =  0 ) )
131 csbeq1 3536 . . . . 5  |-  ( w  =  ( 1  / 
y )  ->  [_ w  /  x ]_ R  = 
[_ ( 1  / 
y )  /  x ]_ R )
132130, 131ifbieq2d 4111 . . . 4  |-  ( w  =  ( 1  / 
y )  ->  if ( w  =  0 ,  C ,  [_ w  /  x ]_ R )  =  if ( ( 1  /  y )  =  0 ,  C ,  [_ ( 1  / 
y )  /  x ]_ R ) )
133 rlimcnp2.j . . . 4  |-  J  =  ( TopOpen ` fld )
134 rlimcnp2.k . . . 4  |-  K  =  ( Jt  A )
13569, 70, 50, 124, 128, 129, 132, 133, 134rlimcnp 24692 . . 3  |-  ( ph  ->  ( ( y  e.  ( B  i^i  RR+ )  |->  if ( ( 1  /  y )  =  0 ,  C ,  [_ ( 1  /  y
)  /  x ]_ R ) )  ~~> r  C  <->  ( w  e.  A  |->  if ( w  =  0 ,  C ,  [_ w  /  x ]_ R
) )  e.  ( ( K  CnP  J
) `  0 )
) )
136 nfcv 2764 . . . . 5  |-  F/_ w if ( x  =  0 ,  C ,  R
)
137 nfv 1843 . . . . . 6  |-  F/ x  w  =  0
138 nfcv 2764 . . . . . 6  |-  F/_ x C
139 nfcsb1v 3549 . . . . . 6  |-  F/_ x [_ w  /  x ]_ R
140137, 138, 139nfif 4115 . . . . 5  |-  F/_ x if ( w  =  0 ,  C ,  [_ w  /  x ]_ R
)
141 eqeq1 2626 . . . . . 6  |-  ( x  =  w  ->  (
x  =  0  <->  w  =  0 ) )
142 csbeq1a 3542 . . . . . 6  |-  ( x  =  w  ->  R  =  [_ w  /  x ]_ R )
143141, 142ifbieq2d 4111 . . . . 5  |-  ( x  =  w  ->  if ( x  =  0 ,  C ,  R )  =  if ( w  =  0 ,  C ,  [_ w  /  x ]_ R ) )
144136, 140, 143cbvmpt 4749 . . . 4  |-  ( x  e.  A  |->  if ( x  =  0 ,  C ,  R ) )  =  ( w  e.  A  |->  if ( w  =  0 ,  C ,  [_ w  /  x ]_ R ) )
145144eleq1i 2692 . . 3  |-  ( ( x  e.  A  |->  if ( x  =  0 ,  C ,  R
) )  e.  ( ( K  CnP  J
) `  0 )  <->  ( w  e.  A  |->  if ( w  =  0 ,  C ,  [_ w  /  x ]_ R
) )  e.  ( ( K  CnP  J
) `  0 )
)
146135, 145syl6bbr 278 . 2  |-  ( ph  ->  ( ( y  e.  ( B  i^i  RR+ )  |->  if ( ( 1  /  y )  =  0 ,  C ,  [_ ( 1  /  y
)  /  x ]_ R ) )  ~~> r  C  <->  ( x  e.  A  |->  if ( x  =  0 ,  C ,  R
) )  e.  ( ( K  CnP  J
) `  0 )
) )
14748, 68, 1463bitr2d 296 1  |-  ( ph  ->  ( ( y  e.  B  |->  S )  ~~> r  C  <->  ( x  e.  A  |->  if ( x  =  0 ,  C ,  R
) )  e.  ( ( K  CnP  J
) `  0 )
) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912   [_csb 3533    i^i cin 3573    C_ wss 3574   ifcif 4086   class class class wbr 4653    |-> cmpt 4729   dom cdm 5114    |` cres 5116   Rel wrel 5119    Fn wfn 5883   -->wf 5884   ` cfv 5888  (class class class)co 6650   CCcc 9934   RRcr 9935   0cc0 9936   1c1 9937   +oocpnf 10071   RR*cxr 10073    < clt 10074    <_ cle 10075    / cdiv 10684   RR+crp 11832   (,)cioo 12175   [,)cico 12177    ~~> r crli 14216   ↾t crest 16081   TopOpenctopn 16082  ℂfldccnfld 19746    CnP ccnp 21029
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ico 12181  df-fz 12327  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-rlim 14220  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-plusg 15954  df-mulr 15955  df-starv 15956  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-rest 16083  df-topn 16084  df-topgen 16104  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-cnfld 19747  df-top 20699  df-topon 20716  df-bases 20750  df-cnp 21032
This theorem is referenced by:  rlimcnp3  24694
  Copyright terms: Public domain W3C validator