MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0ringnnzr Structured version   Visualization version   Unicode version

Theorem 0ringnnzr 19269
Description: A ring is a zero ring iff it is not a nonzero ring. (Contributed by AV, 14-Apr-2019.)
Assertion
Ref Expression
0ringnnzr  |-  ( R  e.  Ring  ->  ( (
# `  ( Base `  R ) )  =  1  <->  -.  R  e. NzRing ) )

Proof of Theorem 0ringnnzr
StepHypRef Expression
1 1re 10039 . . . . . . . 8  |-  1  e.  RR
21ltnri 10146 . . . . . . 7  |-  -.  1  <  1
3 breq2 4657 . . . . . . 7  |-  ( (
# `  ( Base `  R ) )  =  1  ->  ( 1  <  ( # `  ( Base `  R ) )  <->  1  <  1 ) )
42, 3mtbiri 317 . . . . . 6  |-  ( (
# `  ( Base `  R ) )  =  1  ->  -.  1  <  ( # `  ( Base `  R ) ) )
54adantl 482 . . . . 5  |-  ( ( R  e.  Ring  /\  ( # `
 ( Base `  R
) )  =  1 )  ->  -.  1  <  ( # `  ( Base `  R ) ) )
65intnand 962 . . . 4  |-  ( ( R  e.  Ring  /\  ( # `
 ( Base `  R
) )  =  1 )  ->  -.  ( R  e.  Ring  /\  1  <  ( # `  ( Base `  R ) ) ) )
76ex 450 . . 3  |-  ( R  e.  Ring  ->  ( (
# `  ( Base `  R ) )  =  1  ->  -.  ( R  e.  Ring  /\  1  <  ( # `  ( Base `  R ) ) ) ) )
8 ianor 509 . . . . 5  |-  ( -.  ( R  e.  Ring  /\  1  <  ( # `  ( Base `  R
) ) )  <->  ( -.  R  e.  Ring  \/  -.  1  <  ( # `  ( Base `  R ) ) ) )
9 pm2.21 120 . . . . . 6  |-  ( -.  R  e.  Ring  ->  ( R  e.  Ring  ->  (
# `  ( Base `  R ) )  =  1 ) )
10 fvex 6201 . . . . . . . . . 10  |-  ( Base `  R )  e.  _V
11 hashxrcl 13148 . . . . . . . . . 10  |-  ( (
Base `  R )  e.  _V  ->  ( # `  ( Base `  R ) )  e.  RR* )
1210, 11ax-mp 5 . . . . . . . . 9  |-  ( # `  ( Base `  R
) )  e.  RR*
131rexri 10097 . . . . . . . . 9  |-  1  e.  RR*
14 xrlenlt 10103 . . . . . . . . 9  |-  ( ( ( # `  ( Base `  R ) )  e.  RR*  /\  1  e.  RR* )  ->  (
( # `  ( Base `  R ) )  <_ 
1  <->  -.  1  <  (
# `  ( Base `  R ) ) ) )
1512, 13, 14mp2an 708 . . . . . . . 8  |-  ( (
# `  ( Base `  R ) )  <_ 
1  <->  -.  1  <  (
# `  ( Base `  R ) ) )
1615bicomi 214 . . . . . . 7  |-  ( -.  1  <  ( # `  ( Base `  R
) )  <->  ( # `  ( Base `  R ) )  <_  1 )
17 simpr 477 . . . . . . . . . 10  |-  ( ( ( Base `  R
)  =/=  (/)  /\  ( # `
 ( Base `  R
) )  <_  1
)  ->  ( # `  ( Base `  R ) )  <_  1 )
1810a1i 11 . . . . . . . . . . . . 13  |-  ( ( ( Base `  R
)  =/=  (/)  /\  ( # `
 ( Base `  R
) )  <_  1
)  ->  ( Base `  R )  e.  _V )
19 1nn0 11308 . . . . . . . . . . . . . 14  |-  1  e.  NN0
2019a1i 11 . . . . . . . . . . . . 13  |-  ( ( ( Base `  R
)  =/=  (/)  /\  ( # `
 ( Base `  R
) )  <_  1
)  ->  1  e.  NN0 )
21 hashbnd 13123 . . . . . . . . . . . . 13  |-  ( ( ( Base `  R
)  e.  _V  /\  1  e.  NN0  /\  ( # `
 ( Base `  R
) )  <_  1
)  ->  ( Base `  R )  e.  Fin )
2218, 20, 17, 21syl3anc 1326 . . . . . . . . . . . 12  |-  ( ( ( Base `  R
)  =/=  (/)  /\  ( # `
 ( Base `  R
) )  <_  1
)  ->  ( Base `  R )  e.  Fin )
23 hashcl 13147 . . . . . . . . . . . . 13  |-  ( (
Base `  R )  e.  Fin  ->  ( # `  ( Base `  R ) )  e.  NN0 )
24 simpr 477 . . . . . . . . . . . . . . . . 17  |-  ( ( ( Base `  R
)  =/=  (/)  /\  ( # `
 ( Base `  R
) )  e.  NN0 )  ->  ( # `  ( Base `  R ) )  e.  NN0 )
2510a1i 11 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
# `  ( Base `  R ) )  e. 
NN0  ->  ( Base `  R
)  e.  _V )
26 hasheq0 13154 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
Base `  R )  e.  _V  ->  ( ( # `
 ( Base `  R
) )  =  0  <-> 
( Base `  R )  =  (/) ) )
2725, 26syl 17 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
# `  ( Base `  R ) )  e. 
NN0  ->  ( ( # `  ( Base `  R
) )  =  0  <-> 
( Base `  R )  =  (/) ) )
2827biimpd 219 . . . . . . . . . . . . . . . . . . 19  |-  ( (
# `  ( Base `  R ) )  e. 
NN0  ->  ( ( # `  ( Base `  R
) )  =  0  ->  ( Base `  R
)  =  (/) ) )
2928necon3d 2815 . . . . . . . . . . . . . . . . . 18  |-  ( (
# `  ( Base `  R ) )  e. 
NN0  ->  ( ( Base `  R )  =/=  (/)  ->  ( # `
 ( Base `  R
) )  =/=  0
) )
3029impcom 446 . . . . . . . . . . . . . . . . 17  |-  ( ( ( Base `  R
)  =/=  (/)  /\  ( # `
 ( Base `  R
) )  e.  NN0 )  ->  ( # `  ( Base `  R ) )  =/=  0 )
31 elnnne0 11306 . . . . . . . . . . . . . . . . 17  |-  ( (
# `  ( Base `  R ) )  e.  NN  <->  ( ( # `  ( Base `  R
) )  e.  NN0  /\  ( # `  ( Base `  R ) )  =/=  0 ) )
3224, 30, 31sylanbrc 698 . . . . . . . . . . . . . . . 16  |-  ( ( ( Base `  R
)  =/=  (/)  /\  ( # `
 ( Base `  R
) )  e.  NN0 )  ->  ( # `  ( Base `  R ) )  e.  NN )
3332ex 450 . . . . . . . . . . . . . . 15  |-  ( (
Base `  R )  =/=  (/)  ->  ( ( # `
 ( Base `  R
) )  e.  NN0  ->  ( # `  ( Base `  R ) )  e.  NN ) )
3433adantr 481 . . . . . . . . . . . . . 14  |-  ( ( ( Base `  R
)  =/=  (/)  /\  ( # `
 ( Base `  R
) )  <_  1
)  ->  ( ( # `
 ( Base `  R
) )  e.  NN0  ->  ( # `  ( Base `  R ) )  e.  NN ) )
3534com12 32 . . . . . . . . . . . . 13  |-  ( (
# `  ( Base `  R ) )  e. 
NN0  ->  ( ( (
Base `  R )  =/=  (/)  /\  ( # `  ( Base `  R
) )  <_  1
)  ->  ( # `  ( Base `  R ) )  e.  NN ) )
3623, 35syl 17 . . . . . . . . . . . 12  |-  ( (
Base `  R )  e.  Fin  ->  ( (
( Base `  R )  =/=  (/)  /\  ( # `  ( Base `  R
) )  <_  1
)  ->  ( # `  ( Base `  R ) )  e.  NN ) )
3722, 36mpcom 38 . . . . . . . . . . 11  |-  ( ( ( Base `  R
)  =/=  (/)  /\  ( # `
 ( Base `  R
) )  <_  1
)  ->  ( # `  ( Base `  R ) )  e.  NN )
38 nnle1eq1 11048 . . . . . . . . . . 11  |-  ( (
# `  ( Base `  R ) )  e.  NN  ->  ( ( # `
 ( Base `  R
) )  <_  1  <->  (
# `  ( Base `  R ) )  =  1 ) )
3937, 38syl 17 . . . . . . . . . 10  |-  ( ( ( Base `  R
)  =/=  (/)  /\  ( # `
 ( Base `  R
) )  <_  1
)  ->  ( ( # `
 ( Base `  R
) )  <_  1  <->  (
# `  ( Base `  R ) )  =  1 ) )
4017, 39mpbid 222 . . . . . . . . 9  |-  ( ( ( Base `  R
)  =/=  (/)  /\  ( # `
 ( Base `  R
) )  <_  1
)  ->  ( # `  ( Base `  R ) )  =  1 )
4140ex 450 . . . . . . . 8  |-  ( (
Base `  R )  =/=  (/)  ->  ( ( # `
 ( Base `  R
) )  <_  1  ->  ( # `  ( Base `  R ) )  =  1 ) )
42 ringgrp 18552 . . . . . . . . 9  |-  ( R  e.  Ring  ->  R  e. 
Grp )
43 eqid 2622 . . . . . . . . . 10  |-  ( Base `  R )  =  (
Base `  R )
4443grpbn0 17451 . . . . . . . . 9  |-  ( R  e.  Grp  ->  ( Base `  R )  =/=  (/) )
4542, 44syl 17 . . . . . . . 8  |-  ( R  e.  Ring  ->  ( Base `  R )  =/=  (/) )
4641, 45syl11 33 . . . . . . 7  |-  ( (
# `  ( Base `  R ) )  <_ 
1  ->  ( R  e.  Ring  ->  ( # `  ( Base `  R ) )  =  1 ) )
4716, 46sylbi 207 . . . . . 6  |-  ( -.  1  <  ( # `  ( Base `  R
) )  ->  ( R  e.  Ring  ->  ( # `
 ( Base `  R
) )  =  1 ) )
489, 47jaoi 394 . . . . 5  |-  ( ( -.  R  e.  Ring  \/ 
-.  1  <  ( # `
 ( Base `  R
) ) )  -> 
( R  e.  Ring  -> 
( # `  ( Base `  R ) )  =  1 ) )
498, 48sylbi 207 . . . 4  |-  ( -.  ( R  e.  Ring  /\  1  <  ( # `  ( Base `  R
) ) )  -> 
( R  e.  Ring  -> 
( # `  ( Base `  R ) )  =  1 ) )
5049com12 32 . . 3  |-  ( R  e.  Ring  ->  ( -.  ( R  e.  Ring  /\  1  <  ( # `  ( Base `  R
) ) )  -> 
( # `  ( Base `  R ) )  =  1 ) )
517, 50impbid 202 . 2  |-  ( R  e.  Ring  ->  ( (
# `  ( Base `  R ) )  =  1  <->  -.  ( R  e.  Ring  /\  1  <  (
# `  ( Base `  R ) ) ) ) )
5243isnzr2hash 19264 . . . 4  |-  ( R  e. NzRing 
<->  ( R  e.  Ring  /\  1  <  ( # `  ( Base `  R
) ) ) )
5352bicomi 214 . . 3  |-  ( ( R  e.  Ring  /\  1  <  ( # `  ( Base `  R ) ) )  <->  R  e. NzRing )
5453notbii 310 . 2  |-  ( -.  ( R  e.  Ring  /\  1  <  ( # `  ( Base `  R
) ) )  <->  -.  R  e. NzRing )
5551, 54syl6bb 276 1  |-  ( R  e.  Ring  ->  ( (
# `  ( Base `  R ) )  =  1  <->  -.  R  e. NzRing ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   _Vcvv 3200   (/)c0 3915   class class class wbr 4653   ` cfv 5888   Fincfn 7955   0cc0 9936   1c1 9937   RR*cxr 10073    < clt 10074    <_ cle 10075   NNcn 11020   NN0cn0 11292   #chash 13117   Basecbs 15857   Grpcgrp 17422   Ringcrg 18547  NzRingcnzr 19257
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-n0 11293  df-xnn0 11364  df-z 11378  df-uz 11688  df-fz 12327  df-hash 13118  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-plusg 15954  df-0g 16102  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-grp 17425  df-minusg 17426  df-mgp 18490  df-ur 18502  df-ring 18549  df-nzr 19258
This theorem is referenced by:  rng1nnzr  19274  lmod0rng  41868  0ringdif  41870  0ring1eq0  41872  lindszr  42258
  Copyright terms: Public domain W3C validator