MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psgnunilem4 Structured version   Visualization version   Unicode version

Theorem psgnunilem4 17917
Description: Lemma for psgnuni 17919. An odd-length representation of the identity is impossible, as it could be repeatedly shortened to a length of 1, but a length 1 permutation must be a transposition. (Contributed by Stefan O'Rear, 25-Aug-2015.)
Hypotheses
Ref Expression
psgnunilem4.g  |-  G  =  ( SymGrp `  D )
psgnunilem4.t  |-  T  =  ran  (pmTrsp `  D
)
psgnunilem4.d  |-  ( ph  ->  D  e.  V )
psgnunilem4.w1  |-  ( ph  ->  W  e. Word  T )
psgnunilem4.w2  |-  ( ph  ->  ( G  gsumg  W )  =  (  _I  |`  D )
)
Assertion
Ref Expression
psgnunilem4  |-  ( ph  ->  ( -u 1 ^ ( # `  W
) )  =  1 )

Proof of Theorem psgnunilem4
Dummy variables  x  w  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 psgnunilem4.w1 . 2  |-  ( ph  ->  W  e. Word  T )
2 psgnunilem4.w2 . 2  |-  ( ph  ->  ( G  gsumg  W )  =  (  _I  |`  D )
)
3 wrdfin 13323 . . . . 5  |-  ( W  e. Word  T  ->  W  e.  Fin )
4 hashcl 13147 . . . . 5  |-  ( W  e.  Fin  ->  ( # `
 W )  e. 
NN0 )
51, 3, 43syl 18 . . . 4  |-  ( ph  ->  ( # `  W
)  e.  NN0 )
6 nn0uz 11722 . . . 4  |-  NN0  =  ( ZZ>= `  0 )
75, 6syl6eleq 2711 . . 3  |-  ( ph  ->  ( # `  W
)  e.  ( ZZ>= ` 
0 ) )
8 fveq2 6191 . . . . . . . . 9  |-  ( w  =  (/)  ->  ( # `  w )  =  (
# `  (/) ) )
9 hash0 13158 . . . . . . . . 9  |-  ( # `  (/) )  =  0
108, 9syl6eq 2672 . . . . . . . 8  |-  ( w  =  (/)  ->  ( # `  w )  =  0 )
1110oveq2d 6666 . . . . . . 7  |-  ( w  =  (/)  ->  ( -u
1 ^ ( # `  w ) )  =  ( -u 1 ^ 0 ) )
12 neg1cn 11124 . . . . . . . 8  |-  -u 1  e.  CC
13 exp0 12864 . . . . . . . 8  |-  ( -u
1  e.  CC  ->  (
-u 1 ^ 0 )  =  1 )
1412, 13ax-mp 5 . . . . . . 7  |-  ( -u
1 ^ 0 )  =  1
1511, 14syl6eq 2672 . . . . . 6  |-  ( w  =  (/)  ->  ( -u
1 ^ ( # `  w ) )  =  1 )
16152a1d 26 . . . . 5  |-  ( w  =  (/)  ->  ( (
ph  /\  A. x
( ( # `  x
)  e.  ( 0..^ ( # `  w
) )  ->  (
( x  e. Word  T  /\  ( G  gsumg  x )  =  (  _I  |`  D )
)  ->  ( -u 1 ^ ( # `  x
) )  =  1 ) ) )  -> 
( ( w  e. Word  T  /\  ( G  gsumg  w )  =  (  _I  |`  D ) )  ->  ( -u 1 ^ ( # `  w
) )  =  1 ) ) )
17 psgnunilem4.g . . . . . . . . . . . . 13  |-  G  =  ( SymGrp `  D )
18 psgnunilem4.t . . . . . . . . . . . . 13  |-  T  =  ran  (pmTrsp `  D
)
19 simpl1 1064 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  w  =/=  (/)  /\  ( w  e. Word  T  /\  ( G  gsumg  w )  =  (  _I  |`  D )
) )  /\  -.  E. x  e. Word  T ( ( # `  x
)  =  ( (
# `  w )  -  2 )  /\  ( G  gsumg  x )  =  (  _I  |`  D )
) )  ->  ph )
20 psgnunilem4.d . . . . . . . . . . . . . 14  |-  ( ph  ->  D  e.  V )
2119, 20syl 17 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  w  =/=  (/)  /\  ( w  e. Word  T  /\  ( G  gsumg  w )  =  (  _I  |`  D )
) )  /\  -.  E. x  e. Word  T ( ( # `  x
)  =  ( (
# `  w )  -  2 )  /\  ( G  gsumg  x )  =  (  _I  |`  D )
) )  ->  D  e.  V )
22 simpl3l 1116 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  w  =/=  (/)  /\  ( w  e. Word  T  /\  ( G  gsumg  w )  =  (  _I  |`  D )
) )  /\  -.  E. x  e. Word  T ( ( # `  x
)  =  ( (
# `  w )  -  2 )  /\  ( G  gsumg  x )  =  (  _I  |`  D )
) )  ->  w  e. Word  T )
23 eqidd 2623 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  w  =/=  (/)  /\  ( w  e. Word  T  /\  ( G  gsumg  w )  =  (  _I  |`  D )
) )  /\  -.  E. x  e. Word  T ( ( # `  x
)  =  ( (
# `  w )  -  2 )  /\  ( G  gsumg  x )  =  (  _I  |`  D )
) )  ->  ( # `
 w )  =  ( # `  w
) )
24 wrdfin 13323 . . . . . . . . . . . . . . 15  |-  ( w  e. Word  T  ->  w  e.  Fin )
2522, 24syl 17 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  w  =/=  (/)  /\  ( w  e. Word  T  /\  ( G  gsumg  w )  =  (  _I  |`  D )
) )  /\  -.  E. x  e. Word  T ( ( # `  x
)  =  ( (
# `  w )  -  2 )  /\  ( G  gsumg  x )  =  (  _I  |`  D )
) )  ->  w  e.  Fin )
26 simpl2 1065 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  w  =/=  (/)  /\  ( w  e. Word  T  /\  ( G  gsumg  w )  =  (  _I  |`  D )
) )  /\  -.  E. x  e. Word  T ( ( # `  x
)  =  ( (
# `  w )  -  2 )  /\  ( G  gsumg  x )  =  (  _I  |`  D )
) )  ->  w  =/=  (/) )
27 hashnncl 13157 . . . . . . . . . . . . . . 15  |-  ( w  e.  Fin  ->  (
( # `  w )  e.  NN  <->  w  =/=  (/) ) )
2827biimpar 502 . . . . . . . . . . . . . 14  |-  ( ( w  e.  Fin  /\  w  =/=  (/) )  ->  ( # `
 w )  e.  NN )
2925, 26, 28syl2anc 693 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  w  =/=  (/)  /\  ( w  e. Word  T  /\  ( G  gsumg  w )  =  (  _I  |`  D )
) )  /\  -.  E. x  e. Word  T ( ( # `  x
)  =  ( (
# `  w )  -  2 )  /\  ( G  gsumg  x )  =  (  _I  |`  D )
) )  ->  ( # `
 w )  e.  NN )
30 simpl3r 1117 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  w  =/=  (/)  /\  ( w  e. Word  T  /\  ( G  gsumg  w )  =  (  _I  |`  D )
) )  /\  -.  E. x  e. Word  T ( ( # `  x
)  =  ( (
# `  w )  -  2 )  /\  ( G  gsumg  x )  =  (  _I  |`  D )
) )  ->  ( G  gsumg  w )  =  (  _I  |`  D )
)
31 fveq2 6191 . . . . . . . . . . . . . . . . . . 19  |-  ( x  =  y  ->  ( # `
 x )  =  ( # `  y
) )
3231eqeq1d 2624 . . . . . . . . . . . . . . . . . 18  |-  ( x  =  y  ->  (
( # `  x )  =  ( ( # `  w )  -  2 )  <->  ( # `  y
)  =  ( (
# `  w )  -  2 ) ) )
33 oveq2 6658 . . . . . . . . . . . . . . . . . . 19  |-  ( x  =  y  ->  ( G  gsumg  x )  =  ( G  gsumg  y ) )
3433eqeq1d 2624 . . . . . . . . . . . . . . . . . 18  |-  ( x  =  y  ->  (
( G  gsumg  x )  =  (  _I  |`  D )  <->  ( G  gsumg  y )  =  (  _I  |`  D )
) )
3532, 34anbi12d 747 . . . . . . . . . . . . . . . . 17  |-  ( x  =  y  ->  (
( ( # `  x
)  =  ( (
# `  w )  -  2 )  /\  ( G  gsumg  x )  =  (  _I  |`  D )
)  <->  ( ( # `  y )  =  ( ( # `  w
)  -  2 )  /\  ( G  gsumg  y )  =  (  _I  |`  D ) ) ) )
3635cbvrexv 3172 . . . . . . . . . . . . . . . 16  |-  ( E. x  e. Word  T ( ( # `  x
)  =  ( (
# `  w )  -  2 )  /\  ( G  gsumg  x )  =  (  _I  |`  D )
)  <->  E. y  e. Word  T
( ( # `  y
)  =  ( (
# `  w )  -  2 )  /\  ( G  gsumg  y )  =  (  _I  |`  D )
) )
3736notbii 310 . . . . . . . . . . . . . . 15  |-  ( -. 
E. x  e. Word  T
( ( # `  x
)  =  ( (
# `  w )  -  2 )  /\  ( G  gsumg  x )  =  (  _I  |`  D )
)  <->  -.  E. y  e. Word  T ( ( # `  y )  =  ( ( # `  w
)  -  2 )  /\  ( G  gsumg  y )  =  (  _I  |`  D ) ) )
3837biimpi 206 . . . . . . . . . . . . . 14  |-  ( -. 
E. x  e. Word  T
( ( # `  x
)  =  ( (
# `  w )  -  2 )  /\  ( G  gsumg  x )  =  (  _I  |`  D )
)  ->  -.  E. y  e. Word  T ( ( # `  y )  =  ( ( # `  w
)  -  2 )  /\  ( G  gsumg  y )  =  (  _I  |`  D ) ) )
3938adantl 482 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  w  =/=  (/)  /\  ( w  e. Word  T  /\  ( G  gsumg  w )  =  (  _I  |`  D )
) )  /\  -.  E. x  e. Word  T ( ( # `  x
)  =  ( (
# `  w )  -  2 )  /\  ( G  gsumg  x )  =  (  _I  |`  D )
) )  ->  -.  E. y  e. Word  T ( ( # `  y
)  =  ( (
# `  w )  -  2 )  /\  ( G  gsumg  y )  =  (  _I  |`  D )
) )
4017, 18, 21, 22, 23, 29, 30, 39psgnunilem3 17916 . . . . . . . . . . . 12  |-  -.  (
( ph  /\  w  =/=  (/)  /\  ( w  e. Word  T  /\  ( G  gsumg  w )  =  (  _I  |`  D )
) )  /\  -.  E. x  e. Word  T ( ( # `  x
)  =  ( (
# `  w )  -  2 )  /\  ( G  gsumg  x )  =  (  _I  |`  D )
) )
41 iman 440 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  w  =/=  (/)  /\  ( w  e. Word  T  /\  ( G  gsumg  w )  =  (  _I  |`  D )
) )  ->  E. x  e. Word  T ( ( # `  x )  =  ( ( # `  w
)  -  2 )  /\  ( G  gsumg  x )  =  (  _I  |`  D ) ) )  <->  -.  (
( ph  /\  w  =/=  (/)  /\  ( w  e. Word  T  /\  ( G  gsumg  w )  =  (  _I  |`  D )
) )  /\  -.  E. x  e. Word  T ( ( # `  x
)  =  ( (
# `  w )  -  2 )  /\  ( G  gsumg  x )  =  (  _I  |`  D )
) ) )
4240, 41mpbir 221 . . . . . . . . . . 11  |-  ( (
ph  /\  w  =/=  (/) 
/\  ( w  e. Word  T  /\  ( G  gsumg  w )  =  (  _I  |`  D ) ) )  ->  E. x  e. Word  T ( ( # `  x )  =  ( ( # `  w
)  -  2 )  /\  ( G  gsumg  x )  =  (  _I  |`  D ) ) )
43 df-rex 2918 . . . . . . . . . . 11  |-  ( E. x  e. Word  T ( ( # `  x
)  =  ( (
# `  w )  -  2 )  /\  ( G  gsumg  x )  =  (  _I  |`  D )
)  <->  E. x ( x  e. Word  T  /\  (
( # `  x )  =  ( ( # `  w )  -  2 )  /\  ( G 
gsumg  x )  =  (  _I  |`  D )
) ) )
4442, 43sylib 208 . . . . . . . . . 10  |-  ( (
ph  /\  w  =/=  (/) 
/\  ( w  e. Word  T  /\  ( G  gsumg  w )  =  (  _I  |`  D ) ) )  ->  E. x
( x  e. Word  T  /\  ( ( # `  x
)  =  ( (
# `  w )  -  2 )  /\  ( G  gsumg  x )  =  (  _I  |`  D )
) ) )
45 simprl 794 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  w  =/=  (/)  /\  ( w  e. Word  T  /\  ( G  gsumg  w )  =  (  _I  |`  D )
) )  /\  (
x  e. Word  T  /\  ( ( # `  x
)  =  ( (
# `  w )  -  2 )  /\  ( G  gsumg  x )  =  (  _I  |`  D )
) ) )  ->  x  e. Word  T )
46 simprrr 805 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  w  =/=  (/)  /\  ( w  e. Word  T  /\  ( G  gsumg  w )  =  (  _I  |`  D )
) )  /\  (
x  e. Word  T  /\  ( ( # `  x
)  =  ( (
# `  w )  -  2 )  /\  ( G  gsumg  x )  =  (  _I  |`  D )
) ) )  -> 
( G  gsumg  x )  =  (  _I  |`  D )
)
4745, 46jca 554 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  w  =/=  (/)  /\  ( w  e. Word  T  /\  ( G  gsumg  w )  =  (  _I  |`  D )
) )  /\  (
x  e. Word  T  /\  ( ( # `  x
)  =  ( (
# `  w )  -  2 )  /\  ( G  gsumg  x )  =  (  _I  |`  D )
) ) )  -> 
( x  e. Word  T  /\  ( G  gsumg  x )  =  (  _I  |`  D )
) )
48 wrdfin 13323 . . . . . . . . . . . . . . . . . 18  |-  ( x  e. Word  T  ->  x  e.  Fin )
49 hashcl 13147 . . . . . . . . . . . . . . . . . 18  |-  ( x  e.  Fin  ->  ( # `
 x )  e. 
NN0 )
5045, 48, 493syl 18 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  w  =/=  (/)  /\  ( w  e. Word  T  /\  ( G  gsumg  w )  =  (  _I  |`  D )
) )  /\  (
x  e. Word  T  /\  ( ( # `  x
)  =  ( (
# `  w )  -  2 )  /\  ( G  gsumg  x )  =  (  _I  |`  D )
) ) )  -> 
( # `  x )  e.  NN0 )
51 simp3l 1089 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  w  =/=  (/) 
/\  ( w  e. Word  T  /\  ( G  gsumg  w )  =  (  _I  |`  D ) ) )  ->  w  e. Word  T )
5251, 24syl 17 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  w  =/=  (/) 
/\  ( w  e. Word  T  /\  ( G  gsumg  w )  =  (  _I  |`  D ) ) )  ->  w  e.  Fin )
53 simp2 1062 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  w  =/=  (/) 
/\  ( w  e. Word  T  /\  ( G  gsumg  w )  =  (  _I  |`  D ) ) )  ->  w  =/=  (/) )
5452, 53, 28syl2anc 693 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  w  =/=  (/) 
/\  ( w  e. Word  T  /\  ( G  gsumg  w )  =  (  _I  |`  D ) ) )  ->  ( # `
 w )  e.  NN )
5554adantr 481 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  w  =/=  (/)  /\  ( w  e. Word  T  /\  ( G  gsumg  w )  =  (  _I  |`  D )
) )  /\  (
x  e. Word  T  /\  ( ( # `  x
)  =  ( (
# `  w )  -  2 )  /\  ( G  gsumg  x )  =  (  _I  |`  D )
) ) )  -> 
( # `  w )  e.  NN )
56 simprrl 804 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  w  =/=  (/)  /\  ( w  e. Word  T  /\  ( G  gsumg  w )  =  (  _I  |`  D )
) )  /\  (
x  e. Word  T  /\  ( ( # `  x
)  =  ( (
# `  w )  -  2 )  /\  ( G  gsumg  x )  =  (  _I  |`  D )
) ) )  -> 
( # `  x )  =  ( ( # `  w )  -  2 ) )
5755nnred 11035 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  w  =/=  (/)  /\  ( w  e. Word  T  /\  ( G  gsumg  w )  =  (  _I  |`  D )
) )  /\  (
x  e. Word  T  /\  ( ( # `  x
)  =  ( (
# `  w )  -  2 )  /\  ( G  gsumg  x )  =  (  _I  |`  D )
) ) )  -> 
( # `  w )  e.  RR )
58 2rp 11837 . . . . . . . . . . . . . . . . . . 19  |-  2  e.  RR+
59 ltsubrp 11866 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( # `  w
)  e.  RR  /\  2  e.  RR+ )  -> 
( ( # `  w
)  -  2 )  <  ( # `  w
) )
6057, 58, 59sylancl 694 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  w  =/=  (/)  /\  ( w  e. Word  T  /\  ( G  gsumg  w )  =  (  _I  |`  D )
) )  /\  (
x  e. Word  T  /\  ( ( # `  x
)  =  ( (
# `  w )  -  2 )  /\  ( G  gsumg  x )  =  (  _I  |`  D )
) ) )  -> 
( ( # `  w
)  -  2 )  <  ( # `  w
) )
6156, 60eqbrtrd 4675 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  w  =/=  (/)  /\  ( w  e. Word  T  /\  ( G  gsumg  w )  =  (  _I  |`  D )
) )  /\  (
x  e. Word  T  /\  ( ( # `  x
)  =  ( (
# `  w )  -  2 )  /\  ( G  gsumg  x )  =  (  _I  |`  D )
) ) )  -> 
( # `  x )  <  ( # `  w
) )
62 elfzo0 12508 . . . . . . . . . . . . . . . . 17  |-  ( (
# `  x )  e.  ( 0..^ ( # `  w ) )  <->  ( ( # `
 x )  e. 
NN0  /\  ( # `  w
)  e.  NN  /\  ( # `  x )  <  ( # `  w
) ) )
6350, 55, 61, 62syl3anbrc 1246 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  w  =/=  (/)  /\  ( w  e. Word  T  /\  ( G  gsumg  w )  =  (  _I  |`  D )
) )  /\  (
x  e. Word  T  /\  ( ( # `  x
)  =  ( (
# `  w )  -  2 )  /\  ( G  gsumg  x )  =  (  _I  |`  D )
) ) )  -> 
( # `  x )  e.  ( 0..^ (
# `  w )
) )
64 id 22 . . . . . . . . . . . . . . . . 17  |-  ( ( ( # `  x
)  e.  ( 0..^ ( # `  w
) )  ->  (
( x  e. Word  T  /\  ( G  gsumg  x )  =  (  _I  |`  D )
)  ->  ( -u 1 ^ ( # `  x
) )  =  1 ) )  ->  (
( # `  x )  e.  ( 0..^ (
# `  w )
)  ->  ( (
x  e. Word  T  /\  ( G  gsumg  x )  =  (  _I  |`  D )
)  ->  ( -u 1 ^ ( # `  x
) )  =  1 ) ) )
6564com13 88 . . . . . . . . . . . . . . . 16  |-  ( ( x  e. Word  T  /\  ( G  gsumg  x )  =  (  _I  |`  D )
)  ->  ( ( # `
 x )  e.  ( 0..^ ( # `  w ) )  -> 
( ( ( # `  x )  e.  ( 0..^ ( # `  w
) )  ->  (
( x  e. Word  T  /\  ( G  gsumg  x )  =  (  _I  |`  D )
)  ->  ( -u 1 ^ ( # `  x
) )  =  1 ) )  ->  ( -u 1 ^ ( # `  x ) )  =  1 ) ) )
6647, 63, 65sylc 65 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  w  =/=  (/)  /\  ( w  e. Word  T  /\  ( G  gsumg  w )  =  (  _I  |`  D )
) )  /\  (
x  e. Word  T  /\  ( ( # `  x
)  =  ( (
# `  w )  -  2 )  /\  ( G  gsumg  x )  =  (  _I  |`  D )
) ) )  -> 
( ( ( # `  x )  e.  ( 0..^ ( # `  w
) )  ->  (
( x  e. Word  T  /\  ( G  gsumg  x )  =  (  _I  |`  D )
)  ->  ( -u 1 ^ ( # `  x
) )  =  1 ) )  ->  ( -u 1 ^ ( # `  x ) )  =  1 ) )
6756oveq2d 6666 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  w  =/=  (/)  /\  ( w  e. Word  T  /\  ( G  gsumg  w )  =  (  _I  |`  D )
) )  /\  (
x  e. Word  T  /\  ( ( # `  x
)  =  ( (
# `  w )  -  2 )  /\  ( G  gsumg  x )  =  (  _I  |`  D )
) ) )  -> 
( -u 1 ^ ( # `
 x ) )  =  ( -u 1 ^ ( ( # `  w )  -  2 ) ) )
6812a1i 11 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  w  =/=  (/)  /\  ( w  e. Word  T  /\  ( G  gsumg  w )  =  (  _I  |`  D )
) )  /\  (
x  e. Word  T  /\  ( ( # `  x
)  =  ( (
# `  w )  -  2 )  /\  ( G  gsumg  x )  =  (  _I  |`  D )
) ) )  ->  -u 1  e.  CC )
69 neg1ne0 11126 . . . . . . . . . . . . . . . . . . 19  |-  -u 1  =/=  0
7069a1i 11 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  w  =/=  (/)  /\  ( w  e. Word  T  /\  ( G  gsumg  w )  =  (  _I  |`  D )
) )  /\  (
x  e. Word  T  /\  ( ( # `  x
)  =  ( (
# `  w )  -  2 )  /\  ( G  gsumg  x )  =  (  _I  |`  D )
) ) )  ->  -u 1  =/=  0 )
71 2z 11409 . . . . . . . . . . . . . . . . . . 19  |-  2  e.  ZZ
7271a1i 11 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  w  =/=  (/)  /\  ( w  e. Word  T  /\  ( G  gsumg  w )  =  (  _I  |`  D )
) )  /\  (
x  e. Word  T  /\  ( ( # `  x
)  =  ( (
# `  w )  -  2 )  /\  ( G  gsumg  x )  =  (  _I  |`  D )
) ) )  -> 
2  e.  ZZ )
7355nnzd 11481 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  w  =/=  (/)  /\  ( w  e. Word  T  /\  ( G  gsumg  w )  =  (  _I  |`  D )
) )  /\  (
x  e. Word  T  /\  ( ( # `  x
)  =  ( (
# `  w )  -  2 )  /\  ( G  gsumg  x )  =  (  _I  |`  D )
) ) )  -> 
( # `  w )  e.  ZZ )
7468, 70, 72, 73expsubd 13019 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  w  =/=  (/)  /\  ( w  e. Word  T  /\  ( G  gsumg  w )  =  (  _I  |`  D )
) )  /\  (
x  e. Word  T  /\  ( ( # `  x
)  =  ( (
# `  w )  -  2 )  /\  ( G  gsumg  x )  =  (  _I  |`  D )
) ) )  -> 
( -u 1 ^ (
( # `  w )  -  2 ) )  =  ( ( -u
1 ^ ( # `  w ) )  / 
( -u 1 ^ 2 ) ) )
75 neg1sqe1 12959 . . . . . . . . . . . . . . . . . . 19  |-  ( -u
1 ^ 2 )  =  1
7675oveq2i 6661 . . . . . . . . . . . . . . . . . 18  |-  ( (
-u 1 ^ ( # `
 w ) )  /  ( -u 1 ^ 2 ) )  =  ( ( -u
1 ^ ( # `  w ) )  / 
1 )
77 m1expcl 12883 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
# `  w )  e.  ZZ  ->  ( -u 1 ^ ( # `  w
) )  e.  ZZ )
7877zcnd 11483 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
# `  w )  e.  ZZ  ->  ( -u 1 ^ ( # `  w
) )  e.  CC )
7973, 78syl 17 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  w  =/=  (/)  /\  ( w  e. Word  T  /\  ( G  gsumg  w )  =  (  _I  |`  D )
) )  /\  (
x  e. Word  T  /\  ( ( # `  x
)  =  ( (
# `  w )  -  2 )  /\  ( G  gsumg  x )  =  (  _I  |`  D )
) ) )  -> 
( -u 1 ^ ( # `
 w ) )  e.  CC )
8079div1d 10793 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  w  =/=  (/)  /\  ( w  e. Word  T  /\  ( G  gsumg  w )  =  (  _I  |`  D )
) )  /\  (
x  e. Word  T  /\  ( ( # `  x
)  =  ( (
# `  w )  -  2 )  /\  ( G  gsumg  x )  =  (  _I  |`  D )
) ) )  -> 
( ( -u 1 ^ ( # `  w
) )  /  1
)  =  ( -u
1 ^ ( # `  w ) ) )
8176, 80syl5eq 2668 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  w  =/=  (/)  /\  ( w  e. Word  T  /\  ( G  gsumg  w )  =  (  _I  |`  D )
) )  /\  (
x  e. Word  T  /\  ( ( # `  x
)  =  ( (
# `  w )  -  2 )  /\  ( G  gsumg  x )  =  (  _I  |`  D )
) ) )  -> 
( ( -u 1 ^ ( # `  w
) )  /  ( -u 1 ^ 2 ) )  =  ( -u
1 ^ ( # `  w ) ) )
8267, 74, 813eqtrd 2660 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  w  =/=  (/)  /\  ( w  e. Word  T  /\  ( G  gsumg  w )  =  (  _I  |`  D )
) )  /\  (
x  e. Word  T  /\  ( ( # `  x
)  =  ( (
# `  w )  -  2 )  /\  ( G  gsumg  x )  =  (  _I  |`  D )
) ) )  -> 
( -u 1 ^ ( # `
 x ) )  =  ( -u 1 ^ ( # `  w
) ) )
8382eqeq1d 2624 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  w  =/=  (/)  /\  ( w  e. Word  T  /\  ( G  gsumg  w )  =  (  _I  |`  D )
) )  /\  (
x  e. Word  T  /\  ( ( # `  x
)  =  ( (
# `  w )  -  2 )  /\  ( G  gsumg  x )  =  (  _I  |`  D )
) ) )  -> 
( ( -u 1 ^ ( # `  x
) )  =  1  <-> 
( -u 1 ^ ( # `
 w ) )  =  1 ) )
8466, 83sylibd 229 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  w  =/=  (/)  /\  ( w  e. Word  T  /\  ( G  gsumg  w )  =  (  _I  |`  D )
) )  /\  (
x  e. Word  T  /\  ( ( # `  x
)  =  ( (
# `  w )  -  2 )  /\  ( G  gsumg  x )  =  (  _I  |`  D )
) ) )  -> 
( ( ( # `  x )  e.  ( 0..^ ( # `  w
) )  ->  (
( x  e. Word  T  /\  ( G  gsumg  x )  =  (  _I  |`  D )
)  ->  ( -u 1 ^ ( # `  x
) )  =  1 ) )  ->  ( -u 1 ^ ( # `  w ) )  =  1 ) )
8584ex 450 . . . . . . . . . . . . 13  |-  ( (
ph  /\  w  =/=  (/) 
/\  ( w  e. Word  T  /\  ( G  gsumg  w )  =  (  _I  |`  D ) ) )  ->  (
( x  e. Word  T  /\  ( ( # `  x
)  =  ( (
# `  w )  -  2 )  /\  ( G  gsumg  x )  =  (  _I  |`  D )
) )  ->  (
( ( # `  x
)  e.  ( 0..^ ( # `  w
) )  ->  (
( x  e. Word  T  /\  ( G  gsumg  x )  =  (  _I  |`  D )
)  ->  ( -u 1 ^ ( # `  x
) )  =  1 ) )  ->  ( -u 1 ^ ( # `  w ) )  =  1 ) ) )
8685com23 86 . . . . . . . . . . . 12  |-  ( (
ph  /\  w  =/=  (/) 
/\  ( w  e. Word  T  /\  ( G  gsumg  w )  =  (  _I  |`  D ) ) )  ->  (
( ( # `  x
)  e.  ( 0..^ ( # `  w
) )  ->  (
( x  e. Word  T  /\  ( G  gsumg  x )  =  (  _I  |`  D )
)  ->  ( -u 1 ^ ( # `  x
) )  =  1 ) )  ->  (
( x  e. Word  T  /\  ( ( # `  x
)  =  ( (
# `  w )  -  2 )  /\  ( G  gsumg  x )  =  (  _I  |`  D )
) )  ->  ( -u 1 ^ ( # `  w ) )  =  1 ) ) )
8786alimdv 1845 . . . . . . . . . . 11  |-  ( (
ph  /\  w  =/=  (/) 
/\  ( w  e. Word  T  /\  ( G  gsumg  w )  =  (  _I  |`  D ) ) )  ->  ( A. x ( ( # `  x )  e.  ( 0..^ ( # `  w
) )  ->  (
( x  e. Word  T  /\  ( G  gsumg  x )  =  (  _I  |`  D )
)  ->  ( -u 1 ^ ( # `  x
) )  =  1 ) )  ->  A. x
( ( x  e. Word  T  /\  ( ( # `  x )  =  ( ( # `  w
)  -  2 )  /\  ( G  gsumg  x )  =  (  _I  |`  D ) ) )  ->  ( -u 1 ^ ( # `  w ) )  =  1 ) ) )
88 19.23v 1902 . . . . . . . . . . 11  |-  ( A. x ( ( x  e. Word  T  /\  (
( # `  x )  =  ( ( # `  w )  -  2 )  /\  ( G 
gsumg  x )  =  (  _I  |`  D )
) )  ->  ( -u 1 ^ ( # `  w ) )  =  1 )  <->  ( E. x ( x  e. Word  T  /\  ( ( # `  x )  =  ( ( # `  w
)  -  2 )  /\  ( G  gsumg  x )  =  (  _I  |`  D ) ) )  ->  ( -u 1 ^ ( # `  w ) )  =  1 ) )
8987, 88syl6ib 241 . . . . . . . . . 10  |-  ( (
ph  /\  w  =/=  (/) 
/\  ( w  e. Word  T  /\  ( G  gsumg  w )  =  (  _I  |`  D ) ) )  ->  ( A. x ( ( # `  x )  e.  ( 0..^ ( # `  w
) )  ->  (
( x  e. Word  T  /\  ( G  gsumg  x )  =  (  _I  |`  D )
)  ->  ( -u 1 ^ ( # `  x
) )  =  1 ) )  ->  ( E. x ( x  e. Word  T  /\  ( ( # `  x )  =  ( ( # `  w
)  -  2 )  /\  ( G  gsumg  x )  =  (  _I  |`  D ) ) )  ->  ( -u 1 ^ ( # `  w ) )  =  1 ) ) )
9044, 89mpid 44 . . . . . . . . 9  |-  ( (
ph  /\  w  =/=  (/) 
/\  ( w  e. Word  T  /\  ( G  gsumg  w )  =  (  _I  |`  D ) ) )  ->  ( A. x ( ( # `  x )  e.  ( 0..^ ( # `  w
) )  ->  (
( x  e. Word  T  /\  ( G  gsumg  x )  =  (  _I  |`  D )
)  ->  ( -u 1 ^ ( # `  x
) )  =  1 ) )  ->  ( -u 1 ^ ( # `  w ) )  =  1 ) )
91903exp 1264 . . . . . . . 8  |-  ( ph  ->  ( w  =/=  (/)  ->  (
( w  e. Word  T  /\  ( G  gsumg  w )  =  (  _I  |`  D )
)  ->  ( A. x ( ( # `  x )  e.  ( 0..^ ( # `  w
) )  ->  (
( x  e. Word  T  /\  ( G  gsumg  x )  =  (  _I  |`  D )
)  ->  ( -u 1 ^ ( # `  x
) )  =  1 ) )  ->  ( -u 1 ^ ( # `  w ) )  =  1 ) ) ) )
9291com34 91 . . . . . . 7  |-  ( ph  ->  ( w  =/=  (/)  ->  ( A. x ( ( # `  x )  e.  ( 0..^ ( # `  w
) )  ->  (
( x  e. Word  T  /\  ( G  gsumg  x )  =  (  _I  |`  D )
)  ->  ( -u 1 ^ ( # `  x
) )  =  1 ) )  ->  (
( w  e. Word  T  /\  ( G  gsumg  w )  =  (  _I  |`  D )
)  ->  ( -u 1 ^ ( # `  w
) )  =  1 ) ) ) )
9392com12 32 . . . . . 6  |-  ( w  =/=  (/)  ->  ( ph  ->  ( A. x ( ( # `  x
)  e.  ( 0..^ ( # `  w
) )  ->  (
( x  e. Word  T  /\  ( G  gsumg  x )  =  (  _I  |`  D )
)  ->  ( -u 1 ^ ( # `  x
) )  =  1 ) )  ->  (
( w  e. Word  T  /\  ( G  gsumg  w )  =  (  _I  |`  D )
)  ->  ( -u 1 ^ ( # `  w
) )  =  1 ) ) ) )
9493impd 447 . . . . 5  |-  ( w  =/=  (/)  ->  ( ( ph  /\  A. x ( ( # `  x
)  e.  ( 0..^ ( # `  w
) )  ->  (
( x  e. Word  T  /\  ( G  gsumg  x )  =  (  _I  |`  D )
)  ->  ( -u 1 ^ ( # `  x
) )  =  1 ) ) )  -> 
( ( w  e. Word  T  /\  ( G  gsumg  w )  =  (  _I  |`  D ) )  ->  ( -u 1 ^ ( # `  w
) )  =  1 ) ) )
9516, 94pm2.61ine 2877 . . . 4  |-  ( (
ph  /\  A. x
( ( # `  x
)  e.  ( 0..^ ( # `  w
) )  ->  (
( x  e. Word  T  /\  ( G  gsumg  x )  =  (  _I  |`  D )
)  ->  ( -u 1 ^ ( # `  x
) )  =  1 ) ) )  -> 
( ( w  e. Word  T  /\  ( G  gsumg  w )  =  (  _I  |`  D ) )  ->  ( -u 1 ^ ( # `  w
) )  =  1 ) )
96953adant2 1080 . . 3  |-  ( (
ph  /\  ( # `  w
)  e.  ( 0 ... ( # `  W
) )  /\  A. x ( ( # `  x )  e.  ( 0..^ ( # `  w
) )  ->  (
( x  e. Word  T  /\  ( G  gsumg  x )  =  (  _I  |`  D )
)  ->  ( -u 1 ^ ( # `  x
) )  =  1 ) ) )  -> 
( ( w  e. Word  T  /\  ( G  gsumg  w )  =  (  _I  |`  D ) )  ->  ( -u 1 ^ ( # `  w
) )  =  1 ) )
97 eleq1 2689 . . . . 5  |-  ( w  =  x  ->  (
w  e. Word  T  <->  x  e. Word  T ) )
98 oveq2 6658 . . . . . 6  |-  ( w  =  x  ->  ( G  gsumg  w )  =  ( G  gsumg  x ) )
9998eqeq1d 2624 . . . . 5  |-  ( w  =  x  ->  (
( G  gsumg  w )  =  (  _I  |`  D )  <->  ( G  gsumg  x )  =  (  _I  |`  D )
) )
10097, 99anbi12d 747 . . . 4  |-  ( w  =  x  ->  (
( w  e. Word  T  /\  ( G  gsumg  w )  =  (  _I  |`  D )
)  <->  ( x  e. Word  T  /\  ( G  gsumg  x )  =  (  _I  |`  D ) ) ) )
101 fveq2 6191 . . . . . 6  |-  ( w  =  x  ->  ( # `
 w )  =  ( # `  x
) )
102101oveq2d 6666 . . . . 5  |-  ( w  =  x  ->  ( -u 1 ^ ( # `  w ) )  =  ( -u 1 ^ ( # `  x
) ) )
103102eqeq1d 2624 . . . 4  |-  ( w  =  x  ->  (
( -u 1 ^ ( # `
 w ) )  =  1  <->  ( -u 1 ^ ( # `  x
) )  =  1 ) )
104100, 103imbi12d 334 . . 3  |-  ( w  =  x  ->  (
( ( w  e. Word  T  /\  ( G  gsumg  w )  =  (  _I  |`  D ) )  ->  ( -u 1 ^ ( # `  w
) )  =  1 )  <->  ( ( x  e. Word  T  /\  ( G  gsumg  x )  =  (  _I  |`  D )
)  ->  ( -u 1 ^ ( # `  x
) )  =  1 ) ) )
105 eleq1 2689 . . . . 5  |-  ( w  =  W  ->  (
w  e. Word  T  <->  W  e. Word  T ) )
106 oveq2 6658 . . . . . 6  |-  ( w  =  W  ->  ( G  gsumg  w )  =  ( G  gsumg  W ) )
107106eqeq1d 2624 . . . . 5  |-  ( w  =  W  ->  (
( G  gsumg  w )  =  (  _I  |`  D )  <->  ( G  gsumg  W )  =  (  _I  |`  D )
) )
108105, 107anbi12d 747 . . . 4  |-  ( w  =  W  ->  (
( w  e. Word  T  /\  ( G  gsumg  w )  =  (  _I  |`  D )
)  <->  ( W  e. Word  T  /\  ( G  gsumg  W )  =  (  _I  |`  D ) ) ) )
109 fveq2 6191 . . . . . 6  |-  ( w  =  W  ->  ( # `
 w )  =  ( # `  W
) )
110109oveq2d 6666 . . . . 5  |-  ( w  =  W  ->  ( -u 1 ^ ( # `  w ) )  =  ( -u 1 ^ ( # `  W
) ) )
111110eqeq1d 2624 . . . 4  |-  ( w  =  W  ->  (
( -u 1 ^ ( # `
 w ) )  =  1  <->  ( -u 1 ^ ( # `  W
) )  =  1 ) )
112108, 111imbi12d 334 . . 3  |-  ( w  =  W  ->  (
( ( w  e. Word  T  /\  ( G  gsumg  w )  =  (  _I  |`  D ) )  ->  ( -u 1 ^ ( # `  w
) )  =  1 )  <->  ( ( W  e. Word  T  /\  ( G  gsumg  W )  =  (  _I  |`  D )
)  ->  ( -u 1 ^ ( # `  W
) )  =  1 ) ) )
1131, 7, 96, 104, 112, 101, 109uzindi 12781 . 2  |-  ( ph  ->  ( ( W  e. Word  T  /\  ( G  gsumg  W )  =  (  _I  |`  D ) )  ->  ( -u 1 ^ ( # `  W
) )  =  1 ) )
1141, 2, 113mp2and 715 1  |-  ( ph  ->  ( -u 1 ^ ( # `  W
) )  =  1 )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 384    /\ w3a 1037   A.wal 1481    = wceq 1483   E.wex 1704    e. wcel 1990    =/= wne 2794   E.wrex 2913   (/)c0 3915   class class class wbr 4653    _I cid 5023   ran crn 5115    |` cres 5116   ` cfv 5888  (class class class)co 6650   Fincfn 7955   CCcc 9934   RRcr 9935   0cc0 9936   1c1 9937    < clt 10074    - cmin 10266   -ucneg 10267    / cdiv 10684   NNcn 11020   2c2 11070   NN0cn0 11292   ZZcz 11377   ZZ>=cuz 11687   RR+crp 11832   ...cfz 12326  ..^cfzo 12465   ^cexp 12860   #chash 13117  Word cword 13291    gsumg cgsu 16101   SymGrpcsymg 17797  pmTrspcpmtr 17861
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-xor 1465  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-ot 4186  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-fz 12327  df-fzo 12466  df-seq 12802  df-exp 12861  df-hash 13118  df-word 13299  df-lsw 13300  df-concat 13301  df-s1 13302  df-substr 13303  df-splice 13304  df-s2 13593  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-tset 15960  df-0g 16102  df-gsum 16103  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-grp 17425  df-minusg 17426  df-subg 17591  df-symg 17798  df-pmtr 17862
This theorem is referenced by:  psgnuni  17919
  Copyright terms: Public domain W3C validator