MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2lgsoddprmlem3 Structured version   Visualization version   Unicode version

Theorem 2lgsoddprmlem3 25139
Description: Lemma 3 for 2lgsoddprm 25141. (Contributed by AV, 20-Jul-2021.)
Assertion
Ref Expression
2lgsoddprmlem3  |-  ( ( N  e.  ZZ  /\  -.  2  ||  N  /\  R  =  ( N  mod  8 ) )  -> 
( 2  ||  (
( ( R ^
2 )  -  1 )  /  8 )  <-> 
R  e.  { 1 ,  7 } ) )

Proof of Theorem 2lgsoddprmlem3
StepHypRef Expression
1 lgsdir2lem3 25052 . . 3  |-  ( ( N  e.  ZZ  /\  -.  2  ||  N )  ->  ( N  mod  8 )  e.  ( { 1 ,  7 }  u.  { 3 ,  5 } ) )
2 eleq1 2689 . . . . 5  |-  ( ( N  mod  8 )  =  R  ->  (
( N  mod  8
)  e.  ( { 1 ,  7 }  u.  { 3 ,  5 } )  <->  R  e.  ( { 1 ,  7 }  u.  { 3 ,  5 } ) ) )
32eqcoms 2630 . . . 4  |-  ( R  =  ( N  mod  8 )  ->  (
( N  mod  8
)  e.  ( { 1 ,  7 }  u.  { 3 ,  5 } )  <->  R  e.  ( { 1 ,  7 }  u.  { 3 ,  5 } ) ) )
4 elun 3753 . . . . . 6  |-  ( R  e.  ( { 1 ,  7 }  u.  { 3 ,  5 } )  <->  ( R  e. 
{ 1 ,  7 }  \/  R  e. 
{ 3 ,  5 } ) )
5 elpri 4197 . . . . . . . 8  |-  ( R  e.  { 3 ,  5 }  ->  ( R  =  3  \/  R  =  5 ) )
6 oveq1 6657 . . . . . . . . . . . . . 14  |-  ( R  =  3  ->  ( R ^ 2 )  =  ( 3 ^ 2 ) )
76oveq1d 6665 . . . . . . . . . . . . 13  |-  ( R  =  3  ->  (
( R ^ 2 )  -  1 )  =  ( ( 3 ^ 2 )  - 
1 ) )
87oveq1d 6665 . . . . . . . . . . . 12  |-  ( R  =  3  ->  (
( ( R ^
2 )  -  1 )  /  8 )  =  ( ( ( 3 ^ 2 )  -  1 )  / 
8 ) )
9 2lgsoddprmlem3b 25136 . . . . . . . . . . . 12  |-  ( ( ( 3 ^ 2 )  -  1 )  /  8 )  =  1
108, 9syl6eq 2672 . . . . . . . . . . 11  |-  ( R  =  3  ->  (
( ( R ^
2 )  -  1 )  /  8 )  =  1 )
1110breq2d 4665 . . . . . . . . . 10  |-  ( R  =  3  ->  (
2  ||  ( (
( R ^ 2 )  -  1 )  /  8 )  <->  2  ||  1 ) )
12 n2dvds1 15104 . . . . . . . . . . 11  |-  -.  2  ||  1
1312pm2.21i 116 . . . . . . . . . 10  |-  ( 2 
||  1  ->  R  e.  { 1 ,  7 } )
1411, 13syl6bi 243 . . . . . . . . 9  |-  ( R  =  3  ->  (
2  ||  ( (
( R ^ 2 )  -  1 )  /  8 )  ->  R  e.  { 1 ,  7 } ) )
15 oveq1 6657 . . . . . . . . . . . . . 14  |-  ( R  =  5  ->  ( R ^ 2 )  =  ( 5 ^ 2 ) )
1615oveq1d 6665 . . . . . . . . . . . . 13  |-  ( R  =  5  ->  (
( R ^ 2 )  -  1 )  =  ( ( 5 ^ 2 )  - 
1 ) )
1716oveq1d 6665 . . . . . . . . . . . 12  |-  ( R  =  5  ->  (
( ( R ^
2 )  -  1 )  /  8 )  =  ( ( ( 5 ^ 2 )  -  1 )  / 
8 ) )
1817breq2d 4665 . . . . . . . . . . 11  |-  ( R  =  5  ->  (
2  ||  ( (
( R ^ 2 )  -  1 )  /  8 )  <->  2  ||  ( ( ( 5 ^ 2 )  - 
1 )  /  8
) ) )
19 2lgsoddprmlem3c 25137 . . . . . . . . . . . 12  |-  ( ( ( 5 ^ 2 )  -  1 )  /  8 )  =  3
2019breq2i 4661 . . . . . . . . . . 11  |-  ( 2 
||  ( ( ( 5 ^ 2 )  -  1 )  / 
8 )  <->  2  ||  3 )
2118, 20syl6bb 276 . . . . . . . . . 10  |-  ( R  =  5  ->  (
2  ||  ( (
( R ^ 2 )  -  1 )  /  8 )  <->  2  ||  3 ) )
22 n2dvds3 15107 . . . . . . . . . . 11  |-  -.  2  ||  3
2322pm2.21i 116 . . . . . . . . . 10  |-  ( 2 
||  3  ->  R  e.  { 1 ,  7 } )
2421, 23syl6bi 243 . . . . . . . . 9  |-  ( R  =  5  ->  (
2  ||  ( (
( R ^ 2 )  -  1 )  /  8 )  ->  R  e.  { 1 ,  7 } ) )
2514, 24jaoi 394 . . . . . . . 8  |-  ( ( R  =  3  \/  R  =  5 )  ->  ( 2  ||  ( ( ( R ^ 2 )  - 
1 )  /  8
)  ->  R  e.  { 1 ,  7 } ) )
265, 25syl 17 . . . . . . 7  |-  ( R  e.  { 3 ,  5 }  ->  (
2  ||  ( (
( R ^ 2 )  -  1 )  /  8 )  ->  R  e.  { 1 ,  7 } ) )
2726jao1i 825 . . . . . 6  |-  ( ( R  e.  { 1 ,  7 }  \/  R  e.  { 3 ,  5 } )  ->  ( 2  ||  ( ( ( R ^ 2 )  - 
1 )  /  8
)  ->  R  e.  { 1 ,  7 } ) )
284, 27sylbi 207 . . . . 5  |-  ( R  e.  ( { 1 ,  7 }  u.  { 3 ,  5 } )  ->  ( 2 
||  ( ( ( R ^ 2 )  -  1 )  / 
8 )  ->  R  e.  { 1 ,  7 } ) )
29 elpri 4197 . . . . . 6  |-  ( R  e.  { 1 ,  7 }  ->  ( R  =  1  \/  R  =  7 ) )
30 z0even 15103 . . . . . . . 8  |-  2  ||  0
31 oveq1 6657 . . . . . . . . . . 11  |-  ( R  =  1  ->  ( R ^ 2 )  =  ( 1 ^ 2 ) )
3231oveq1d 6665 . . . . . . . . . 10  |-  ( R  =  1  ->  (
( R ^ 2 )  -  1 )  =  ( ( 1 ^ 2 )  - 
1 ) )
3332oveq1d 6665 . . . . . . . . 9  |-  ( R  =  1  ->  (
( ( R ^
2 )  -  1 )  /  8 )  =  ( ( ( 1 ^ 2 )  -  1 )  / 
8 ) )
34 2lgsoddprmlem3a 25135 . . . . . . . . 9  |-  ( ( ( 1 ^ 2 )  -  1 )  /  8 )  =  0
3533, 34syl6eq 2672 . . . . . . . 8  |-  ( R  =  1  ->  (
( ( R ^
2 )  -  1 )  /  8 )  =  0 )
3630, 35syl5breqr 4691 . . . . . . 7  |-  ( R  =  1  ->  2  ||  ( ( ( R ^ 2 )  - 
1 )  /  8
) )
37 2z 11409 . . . . . . . . 9  |-  2  e.  ZZ
38 3z 11410 . . . . . . . . 9  |-  3  e.  ZZ
39 dvdsmul1 15003 . . . . . . . . 9  |-  ( ( 2  e.  ZZ  /\  3  e.  ZZ )  ->  2  ||  ( 2  x.  3 ) )
4037, 38, 39mp2an 708 . . . . . . . 8  |-  2  ||  ( 2  x.  3 )
41 oveq1 6657 . . . . . . . . . . 11  |-  ( R  =  7  ->  ( R ^ 2 )  =  ( 7 ^ 2 ) )
4241oveq1d 6665 . . . . . . . . . 10  |-  ( R  =  7  ->  (
( R ^ 2 )  -  1 )  =  ( ( 7 ^ 2 )  - 
1 ) )
4342oveq1d 6665 . . . . . . . . 9  |-  ( R  =  7  ->  (
( ( R ^
2 )  -  1 )  /  8 )  =  ( ( ( 7 ^ 2 )  -  1 )  / 
8 ) )
44 2lgsoddprmlem3d 25138 . . . . . . . . 9  |-  ( ( ( 7 ^ 2 )  -  1 )  /  8 )  =  ( 2  x.  3 )
4543, 44syl6eq 2672 . . . . . . . 8  |-  ( R  =  7  ->  (
( ( R ^
2 )  -  1 )  /  8 )  =  ( 2  x.  3 ) )
4640, 45syl5breqr 4691 . . . . . . 7  |-  ( R  =  7  ->  2  ||  ( ( ( R ^ 2 )  - 
1 )  /  8
) )
4736, 46jaoi 394 . . . . . 6  |-  ( ( R  =  1  \/  R  =  7 )  ->  2  ||  (
( ( R ^
2 )  -  1 )  /  8 ) )
4829, 47syl 17 . . . . 5  |-  ( R  e.  { 1 ,  7 }  ->  2  ||  ( ( ( R ^ 2 )  - 
1 )  /  8
) )
4928, 48impbid1 215 . . . 4  |-  ( R  e.  ( { 1 ,  7 }  u.  { 3 ,  5 } )  ->  ( 2 
||  ( ( ( R ^ 2 )  -  1 )  / 
8 )  <->  R  e.  { 1 ,  7 } ) )
503, 49syl6bi 243 . . 3  |-  ( R  =  ( N  mod  8 )  ->  (
( N  mod  8
)  e.  ( { 1 ,  7 }  u.  { 3 ,  5 } )  -> 
( 2  ||  (
( ( R ^
2 )  -  1 )  /  8 )  <-> 
R  e.  { 1 ,  7 } ) ) )
511, 50syl5com 31 . 2  |-  ( ( N  e.  ZZ  /\  -.  2  ||  N )  ->  ( R  =  ( N  mod  8
)  ->  ( 2 
||  ( ( ( R ^ 2 )  -  1 )  / 
8 )  <->  R  e.  { 1 ,  7 } ) ) )
52513impia 1261 1  |-  ( ( N  e.  ZZ  /\  -.  2  ||  N  /\  R  =  ( N  mod  8 ) )  -> 
( 2  ||  (
( ( R ^
2 )  -  1 )  /  8 )  <-> 
R  e.  { 1 ,  7 } ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    u. cun 3572   {cpr 4179   class class class wbr 4653  (class class class)co 6650   0cc0 9936   1c1 9937    x. cmul 9941    - cmin 10266    / cdiv 10684   2c2 11070   3c3 11071   5c5 11073   7c7 11075   8c8 11076   ZZcz 11377    mod cmo 12668   ^cexp 12860    || cdvds 14983
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-fz 12327  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-dvds 14984
This theorem is referenced by:  2lgsoddprmlem4  25140
  Copyright terms: Public domain W3C validator