HomeHome Metamath Proof Explorer
Theorem List (p. 252 of 426)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-27775)
  Hilbert Space Explorer  Hilbert Space Explorer
(27776-29300)
  Users' Mathboxes  Users' Mathboxes
(29301-42551)
 

Theorem List for Metamath Proof Explorer - 25101-25200   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremlgseisenlem2 25101* Lemma for lgseisen 25104. The function  M is an injection (and hence a bijection by the pigeonhole principle). (Contributed by Mario Carneiro, 17-Jun-2015.)
 |-  ( ph  ->  P  e.  ( Prime  \  { 2 } ) )   &    |-  ( ph  ->  Q  e.  ( Prime  \  { 2 } ) )   &    |-  ( ph  ->  P  =/=  Q )   &    |-  R  =  ( ( Q  x.  ( 2  x.  x ) )  mod  P )   &    |-  M  =  ( x  e.  ( 1 ... (
 ( P  -  1
 )  /  2 )
 )  |->  ( ( ( ( -u 1 ^ R )  x.  R )  mod  P )  /  2 ) )   &    |-  S  =  ( ( Q  x.  (
 2  x.  y ) )  mod  P )   =>    |-  ( ph  ->  M :
 ( 1 ... (
 ( P  -  1
 )  /  2 )
 )
 -1-1-onto-> ( 1 ... (
 ( P  -  1
 )  /  2 )
 ) )
 
Theoremlgseisenlem3 25102* Lemma for lgseisen 25104. (Contributed by Mario Carneiro, 17-Jun-2015.) (Proof shortened by AV, 28-Jul-2019.)
 |-  ( ph  ->  P  e.  ( Prime  \  { 2 } ) )   &    |-  ( ph  ->  Q  e.  ( Prime  \  { 2 } ) )   &    |-  ( ph  ->  P  =/=  Q )   &    |-  R  =  ( ( Q  x.  ( 2  x.  x ) )  mod  P )   &    |-  M  =  ( x  e.  ( 1 ... (
 ( P  -  1
 )  /  2 )
 )  |->  ( ( ( ( -u 1 ^ R )  x.  R )  mod  P )  /  2 ) )   &    |-  S  =  ( ( Q  x.  (
 2  x.  y ) )  mod  P )   &    |-  Y  =  (ℤ/n `  P )   &    |-  G  =  (mulGrp `  Y )   &    |-  L  =  ( ZRHom `  Y )   =>    |-  ( ph  ->  ( G  gsumg  ( x  e.  ( 1 ... ( ( P  -  1 )  /  2
 ) )  |->  ( L `
  ( ( -u 1 ^ R )  x.  Q ) ) ) )  =  ( 1r
 `  Y ) )
 
Theoremlgseisenlem4 25103* Lemma for lgseisen 25104. The function  M is an injection (and hence a bijection by the pigeonhole principle). (Contributed by Mario Carneiro, 18-Jun-2015.) (Proof shortened by AV, 15-Jun-2019.)
 |-  ( ph  ->  P  e.  ( Prime  \  { 2 } ) )   &    |-  ( ph  ->  Q  e.  ( Prime  \  { 2 } ) )   &    |-  ( ph  ->  P  =/=  Q )   &    |-  R  =  ( ( Q  x.  ( 2  x.  x ) )  mod  P )   &    |-  M  =  ( x  e.  ( 1 ... (
 ( P  -  1
 )  /  2 )
 )  |->  ( ( ( ( -u 1 ^ R )  x.  R )  mod  P )  /  2 ) )   &    |-  S  =  ( ( Q  x.  (
 2  x.  y ) )  mod  P )   &    |-  Y  =  (ℤ/n `  P )   &    |-  G  =  (mulGrp `  Y )   &    |-  L  =  ( ZRHom `  Y )   =>    |-  ( ph  ->  ( ( Q ^ ( ( P  -  1 )  / 
 2 ) )  mod  P )  =  ( (
 -u 1 ^ sum_ x  e.  ( 1 ... ( ( P  -  1 )  /  2
 ) ) ( |_ `  ( ( Q  /  P )  x.  (
 2  x.  x ) ) ) )  mod  P ) )
 
Theoremlgseisen 25104* Eisenstein's lemma, an expression for 
( P  /L
Q ) when  P ,  Q are distinct odd primes. (Contributed by Mario Carneiro, 18-Jun-2015.)
 |-  ( ph  ->  P  e.  ( Prime  \  { 2 } ) )   &    |-  ( ph  ->  Q  e.  ( Prime  \  { 2 } ) )   &    |-  ( ph  ->  P  =/=  Q )   =>    |-  ( ph  ->  ( Q  /L P )  =  ( -u 1 ^ sum_ x  e.  (
 1 ... ( ( P  -  1 )  / 
 2 ) ) ( |_ `  ( ( Q  /  P )  x.  ( 2  x.  x ) ) ) ) )
 
Theoremlgsquadlem1 25105* Lemma for lgsquad 25108. Count the members of  S with odd coordinates. (Contributed by Mario Carneiro, 19-Jun-2015.)
 |-  ( ph  ->  P  e.  ( Prime  \  { 2 } ) )   &    |-  ( ph  ->  Q  e.  ( Prime  \  { 2 } ) )   &    |-  ( ph  ->  P  =/=  Q )   &    |-  M  =  ( ( P  -  1 )  /  2
 )   &    |-  N  =  ( ( Q  -  1 ) 
 /  2 )   &    |-  S  =  { <. x ,  y >.  |  ( ( x  e.  ( 1 ...
 M )  /\  y  e.  ( 1 ... N ) )  /\  ( y  x.  P )  < 
 ( x  x.  Q ) ) }   =>    |-  ( ph  ->  (
 -u 1 ^ sum_ u  e.  ( ( ( |_ `  ( M 
 /  2 ) )  +  1 ) ... M ) ( |_ `  (
 ( Q  /  P )  x.  ( 2  x.  u ) ) ) )  =  ( -u 1 ^ ( # `  { z  e.  S  |  -.  2  ||  ( 1st `  z
 ) } ) ) )
 
Theoremlgsquadlem2 25106* Lemma for lgsquad 25108. Count the members of  S with even coordinates, and combine with lgsquadlem1 25105 to get the total count of lattice points in  S (up to parity). (Contributed by Mario Carneiro, 18-Jun-2015.)
 |-  ( ph  ->  P  e.  ( Prime  \  { 2 } ) )   &    |-  ( ph  ->  Q  e.  ( Prime  \  { 2 } ) )   &    |-  ( ph  ->  P  =/=  Q )   &    |-  M  =  ( ( P  -  1 )  /  2
 )   &    |-  N  =  ( ( Q  -  1 ) 
 /  2 )   &    |-  S  =  { <. x ,  y >.  |  ( ( x  e.  ( 1 ...
 M )  /\  y  e.  ( 1 ... N ) )  /\  ( y  x.  P )  < 
 ( x  x.  Q ) ) }   =>    |-  ( ph  ->  ( Q  /L P )  =  ( -u 1 ^ ( # `  S ) ) )
 
Theoremlgsquadlem3 25107* Lemma for lgsquad 25108. (Contributed by Mario Carneiro, 18-Jun-2015.)
 |-  ( ph  ->  P  e.  ( Prime  \  { 2 } ) )   &    |-  ( ph  ->  Q  e.  ( Prime  \  { 2 } ) )   &    |-  ( ph  ->  P  =/=  Q )   &    |-  M  =  ( ( P  -  1 )  /  2
 )   &    |-  N  =  ( ( Q  -  1 ) 
 /  2 )   &    |-  S  =  { <. x ,  y >.  |  ( ( x  e.  ( 1 ...
 M )  /\  y  e.  ( 1 ... N ) )  /\  ( y  x.  P )  < 
 ( x  x.  Q ) ) }   =>    |-  ( ph  ->  ( ( P  /L Q )  x.  ( Q  /L P ) )  =  ( -u 1 ^ ( M  x.  N ) ) )
 
Theoremlgsquad 25108 The Law of Quadratic Reciprocity, see also theorem 9.8 in [ApostolNT] p. 185. If  P and  Q are distinct odd primes, then the product of the Legendre symbols  ( P  /L
Q ) and  ( Q  /L P ) is the parity of  ( ( P  -  1 )  /  2 )  x.  ( ( Q  - 
1 )  /  2
). This uses Eisenstein's proof, which also has a nice geometric interpretation - see https://en.wikipedia.org/wiki/Proofs_of_quadratic_reciprocity. This is Metamath 100 proof #7. (Contributed by Mario Carneiro, 19-Jun-2015.)
 |-  ( ( P  e.  ( Prime  \  { 2 } )  /\  Q  e.  ( Prime  \  { 2 } )  /\  P  =/=  Q )  ->  ( ( P  /L Q )  x.  ( Q  /L P ) )  =  ( -u 1 ^ (
 ( ( P  -  1 )  /  2
 )  x.  ( ( Q  -  1 ) 
 /  2 ) ) ) )
 
Theoremlgsquad2lem1 25109 Lemma for lgsquad2 25111. (Contributed by Mario Carneiro, 19-Jun-2015.)
 |-  ( ph  ->  M  e.  NN )   &    |-  ( ph  ->  -.  2  ||  M )   &    |-  ( ph  ->  N  e.  NN )   &    |-  ( ph  ->  -.  2  ||  N )   &    |-  ( ph  ->  ( M  gcd  N )  =  1 )   &    |-  ( ph  ->  A  e.  NN )   &    |-  ( ph  ->  B  e.  NN )   &    |-  ( ph  ->  ( A  x.  B )  =  M )   &    |-  ( ph  ->  ( ( A 
 /L N )  x.  ( N  /L A ) )  =  ( -u 1 ^ (
 ( ( A  -  1 )  /  2
 )  x.  ( ( N  -  1 ) 
 /  2 ) ) ) )   &    |-  ( ph  ->  ( ( B  /L N )  x.  ( N  /L B ) )  =  ( -u 1 ^ ( ( ( B  -  1 ) 
 /  2 )  x.  ( ( N  -  1 )  /  2
 ) ) ) )   =>    |-  ( ph  ->  ( ( M  /L N )  x.  ( N  /L M ) )  =  ( -u 1 ^ (
 ( ( M  -  1 )  /  2
 )  x.  ( ( N  -  1 ) 
 /  2 ) ) ) )
 
Theoremlgsquad2lem2 25110* Lemma for lgsquad2 25111. (Contributed by Mario Carneiro, 19-Jun-2015.)
 |-  ( ph  ->  M  e.  NN )   &    |-  ( ph  ->  -.  2  ||  M )   &    |-  ( ph  ->  N  e.  NN )   &    |-  ( ph  ->  -.  2  ||  N )   &    |-  ( ph  ->  ( M  gcd  N )  =  1 )   &    |-  (
 ( ph  /\  ( m  e.  ( Prime  \  {
 2 } )  /\  ( m  gcd  N )  =  1 ) ) 
 ->  ( ( m  /L N )  x.  ( N  /L m ) )  =  ( -u 1 ^ ( ( ( m  -  1 ) 
 /  2 )  x.  ( ( N  -  1 )  /  2
 ) ) ) )   &    |-  ( ps  <->  A. x  e.  (
 1 ... k ) ( ( x  gcd  (
 2  x.  N ) )  =  1  ->  ( ( x  /L N )  x.  ( N  /L x ) )  =  ( -u 1 ^ ( ( ( x  -  1 ) 
 /  2 )  x.  ( ( N  -  1 )  /  2
 ) ) ) ) )   =>    |-  ( ph  ->  (
 ( M  /L N )  x.  ( N  /L M ) )  =  ( -u 1 ^ ( ( ( M  -  1 ) 
 /  2 )  x.  ( ( N  -  1 )  /  2
 ) ) ) )
 
Theoremlgsquad2 25111 Extend lgsquad 25108 to coprime odd integers (the domain of the Jacobi symbol). (Contributed by Mario Carneiro, 19-Jun-2015.)
 |-  ( ph  ->  M  e.  NN )   &    |-  ( ph  ->  -.  2  ||  M )   &    |-  ( ph  ->  N  e.  NN )   &    |-  ( ph  ->  -.  2  ||  N )   &    |-  ( ph  ->  ( M  gcd  N )  =  1 )   =>    |-  ( ph  ->  ( ( M  /L N )  x.  ( N  /L M ) )  =  ( -u 1 ^ ( ( ( M  -  1 ) 
 /  2 )  x.  ( ( N  -  1 )  /  2
 ) ) ) )
 
Theoremlgsquad3 25112 Extend lgsquad2 25111 to integers which share a factor. (Contributed by Mario Carneiro, 19-Jun-2015.)
 |-  ( ( ( M  e.  NN  /\  -.  2  ||  M )  /\  ( N  e.  NN  /\ 
 -.  2  ||  N ) )  ->  ( M 
 /L N )  =  ( ( -u 1 ^ ( ( ( M  -  1 ) 
 /  2 )  x.  ( ( N  -  1 )  /  2
 ) ) )  x.  ( N  /L M ) ) )
 
Theoremm1lgs 25113 The first supplement to the law of quadratic reciprocity. Negative one is a square mod an odd prime  P iff  P  ==  1 (mod  4). See first case of theorem 9.4 in [ApostolNT] p. 181. (Contributed by Mario Carneiro, 19-Jun-2015.)
 |-  ( P  e.  ( Prime  \  { 2 } )  ->  ( ( -u 1  /L P )  =  1  <->  ( P  mod  4 )  =  1
 ) )
 
Theorem2lgslem1a1 25114* Lemma 1 for 2lgslem1a 25116. (Contributed by AV, 16-Jun-2021.)
 |-  ( ( P  e.  NN  /\  -.  2  ||  P )  ->  A. i  e.  ( 1 ... (
 ( P  -  1
 )  /  2 )
 ) ( i  x.  2 )  =  ( ( i  x.  2
 )  mod  P )
 )
 
Theorem2lgslem1a2 25115 Lemma 2 for 2lgslem1a 25116. (Contributed by AV, 18-Jun-2021.)
 |-  ( ( N  e.  ZZ  /\  I  e.  ZZ )  ->  ( ( |_ `  ( N  /  4
 ) )  <  I  <->  ( N  /  2 )  <  ( I  x.  2 ) ) )
 
Theorem2lgslem1a 25116* Lemma 1 for 2lgslem1 25119. (Contributed by AV, 18-Jun-2021.)
 |-  ( ( P  e.  Prime  /\  -.  2  ||  P )  ->  { x  e.  ZZ  |  E. i  e.  ( 1 ... (
 ( P  -  1
 )  /  2 )
 ) ( x  =  ( i  x.  2
 )  /\  ( P  /  2 )  <  ( x  mod  P ) ) }  =  { x  e.  ZZ  |  E. i  e.  ( ( ( |_ `  ( P  /  4
 ) )  +  1 ) ... ( ( P  -  1 ) 
 /  2 ) ) x  =  ( i  x.  2 ) }
 )
 
Theorem2lgslem1b 25117* Lemma 2 for 2lgslem1 25119. (Contributed by AV, 18-Jun-2021.)
 |-  I  =  ( A
 ... B )   &    |-  F  =  ( j  e.  I  |->  ( j  x.  2
 ) )   =>    |-  F : I -1-1-onto-> { x  e.  ZZ  |  E. i  e.  I  x  =  ( i  x.  2
 ) }
 
Theorem2lgslem1c 25118 Lemma 3 for 2lgslem1 25119. (Contributed by AV, 19-Jun-2021.)
 |-  ( ( P  e.  Prime  /\  -.  2  ||  P )  ->  ( |_ `  ( P  /  4
 ) )  <_  (
 ( P  -  1
 )  /  2 )
 )
 
Theorem2lgslem1 25119* Lemma 1 for 2lgs 25132. (Contributed by AV, 19-Jun-2021.)
 |-  ( ( P  e.  Prime  /\  -.  2  ||  P )  ->  ( # ` 
 { x  e.  ZZ  |  E. i  e.  (
 1 ... ( ( P  -  1 )  / 
 2 ) ) ( x  =  ( i  x.  2 )  /\  ( P  /  2
 )  <  ( x  mod  P ) ) }
 )  =  ( ( ( P  -  1
 )  /  2 )  -  ( |_ `  ( P  /  4 ) ) ) )
 
Theorem2lgslem2 25120 Lemma 2 for 2lgs 25132. (Contributed by AV, 20-Jun-2021.)
 |-  N  =  ( ( ( P  -  1
 )  /  2 )  -  ( |_ `  ( P  /  4 ) ) )   =>    |-  ( ( P  e.  Prime  /\  -.  2  ||  P )  ->  N  e.  ZZ )
 
Theorem2lgslem3a 25121 Lemma for 2lgslem3a1 25125. (Contributed by AV, 14-Jul-2021.)
 |-  N  =  ( ( ( P  -  1
 )  /  2 )  -  ( |_ `  ( P  /  4 ) ) )   =>    |-  ( ( K  e.  NN0  /\  P  =  ( ( 8  x.  K )  +  1 ) ) 
 ->  N  =  ( 2  x.  K ) )
 
Theorem2lgslem3b 25122 Lemma for 2lgslem3b1 25126. (Contributed by AV, 16-Jul-2021.)
 |-  N  =  ( ( ( P  -  1
 )  /  2 )  -  ( |_ `  ( P  /  4 ) ) )   =>    |-  ( ( K  e.  NN0  /\  P  =  ( ( 8  x.  K )  +  3 ) ) 
 ->  N  =  ( ( 2  x.  K )  +  1 ) )
 
Theorem2lgslem3c 25123 Lemma for 2lgslem3c1 25127. (Contributed by AV, 16-Jul-2021.)
 |-  N  =  ( ( ( P  -  1
 )  /  2 )  -  ( |_ `  ( P  /  4 ) ) )   =>    |-  ( ( K  e.  NN0  /\  P  =  ( ( 8  x.  K )  +  5 ) ) 
 ->  N  =  ( ( 2  x.  K )  +  1 ) )
 
Theorem2lgslem3d 25124 Lemma for 2lgslem3d1 25128. (Contributed by AV, 16-Jul-2021.)
 |-  N  =  ( ( ( P  -  1
 )  /  2 )  -  ( |_ `  ( P  /  4 ) ) )   =>    |-  ( ( K  e.  NN0  /\  P  =  ( ( 8  x.  K )  +  7 ) ) 
 ->  N  =  ( ( 2  x.  K )  +  2 ) )
 
Theorem2lgslem3a1 25125 Lemma 1 for 2lgslem3 25129. (Contributed by AV, 15-Jul-2021.)
 |-  N  =  ( ( ( P  -  1
 )  /  2 )  -  ( |_ `  ( P  /  4 ) ) )   =>    |-  ( ( P  e.  NN  /\  ( P  mod  8 )  =  1
 )  ->  ( N  mod  2 )  =  0 )
 
Theorem2lgslem3b1 25126 Lemma 2 for 2lgslem3 25129. (Contributed by AV, 16-Jul-2021.)
 |-  N  =  ( ( ( P  -  1
 )  /  2 )  -  ( |_ `  ( P  /  4 ) ) )   =>    |-  ( ( P  e.  NN  /\  ( P  mod  8 )  =  3
 )  ->  ( N  mod  2 )  =  1 )
 
Theorem2lgslem3c1 25127 Lemma 3 for 2lgslem3 25129. (Contributed by AV, 16-Jul-2021.)
 |-  N  =  ( ( ( P  -  1
 )  /  2 )  -  ( |_ `  ( P  /  4 ) ) )   =>    |-  ( ( P  e.  NN  /\  ( P  mod  8 )  =  5
 )  ->  ( N  mod  2 )  =  1 )
 
Theorem2lgslem3d1 25128 Lemma 4 for 2lgslem3 25129. (Contributed by AV, 15-Jul-2021.)
 |-  N  =  ( ( ( P  -  1
 )  /  2 )  -  ( |_ `  ( P  /  4 ) ) )   =>    |-  ( ( P  e.  NN  /\  ( P  mod  8 )  =  7
 )  ->  ( N  mod  2 )  =  0 )
 
Theorem2lgslem3 25129 Lemma 3 for 2lgs 25132. (Contributed by AV, 16-Jul-2021.)
 |-  N  =  ( ( ( P  -  1
 )  /  2 )  -  ( |_ `  ( P  /  4 ) ) )   =>    |-  ( ( P  e.  NN  /\  -.  2  ||  P )  ->  ( N 
 mod  2 )  =  if ( ( P 
 mod  8 )  e. 
 { 1 ,  7 } ,  0 ,  1 ) )
 
Theorem2lgs2 25130 The Legendre symbol for  2 at  2 is  0. (Contributed by AV, 20-Jun-2021.)
 |-  ( 2  /L
 2 )  =  0
 
Theorem2lgslem4 25131 Lemma 4 for 2lgs 25132: special case of 2lgs 25132 for  P  = 
2. (Contributed by AV, 20-Jun-2021.)
 |-  ( ( 2  /L 2 )  =  1  <->  ( 2  mod  8 )  e.  {
 1 ,  7 } )
 
Theorem2lgs 25132 The second supplement to the law of quadratic reciprocity (for the Legendre symbol extended to arbitrary primes as second argument). Two is a square modulo a prime 
P iff  P  ==  pm 1 (mod  8), see first case of theorem 9.5 in [ApostolNT] p. 181. This theorem justifies our definition of  ( N  /L 2 ) (lgs2 25039) to some degree, by demanding that reciprocity extend to the case  Q  =  2. (Proposed by Mario Carneiro, 19-Jun-2015.) (Contributed by AV, 16-Jul-2021.)
 |-  ( P  e.  Prime  ->  ( ( 2  /L P )  =  1  <-> 
 ( P  mod  8
 )  e.  { 1 ,  7 } )
 )
 
Theorem2lgsoddprmlem1 25133 Lemma 1 for 2lgsoddprm 25141. (Contributed by AV, 19-Jul-2021.)
 |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  =  ( ( 8  x.  A )  +  B ) ) 
 ->  ( ( ( N ^ 2 )  -  1 )  /  8
 )  =  ( ( ( 8  x.  ( A ^ 2 ) )  +  ( 2  x.  ( A  x.  B ) ) )  +  ( ( ( B ^ 2 )  -  1 )  /  8
 ) ) )
 
Theorem2lgsoddprmlem2 25134 Lemma 2 for 2lgsoddprm 25141. (Contributed by AV, 19-Jul-2021.)
 |-  ( ( N  e.  ZZ  /\  -.  2  ||  N  /\  R  =  ( N  mod  8 ) )  ->  ( 2  ||  ( ( ( N ^ 2 )  -  1 )  /  8
 ) 
 <->  2  ||  ( (
 ( R ^ 2
 )  -  1 ) 
 /  8 ) ) )
 
Theorem2lgsoddprmlem3a 25135 Lemma 1 for 2lgsoddprmlem3 25139. (Contributed by AV, 20-Jul-2021.)
 |-  ( ( ( 1 ^ 2 )  -  1 )  /  8
 )  =  0
 
Theorem2lgsoddprmlem3b 25136 Lemma 2 for 2lgsoddprmlem3 25139. (Contributed by AV, 20-Jul-2021.)
 |-  ( ( ( 3 ^ 2 )  -  1 )  /  8
 )  =  1
 
Theorem2lgsoddprmlem3c 25137 Lemma 3 for 2lgsoddprmlem3 25139. (Contributed by AV, 20-Jul-2021.)
 |-  ( ( ( 5 ^ 2 )  -  1 )  /  8
 )  =  3
 
Theorem2lgsoddprmlem3d 25138 Lemma 4 for 2lgsoddprmlem3 25139. (Contributed by AV, 20-Jul-2021.)
 |-  ( ( ( 7 ^ 2 )  -  1 )  /  8
 )  =  ( 2  x.  3 )
 
Theorem2lgsoddprmlem3 25139 Lemma 3 for 2lgsoddprm 25141. (Contributed by AV, 20-Jul-2021.)
 |-  ( ( N  e.  ZZ  /\  -.  2  ||  N  /\  R  =  ( N  mod  8 ) )  ->  ( 2  ||  ( ( ( R ^ 2 )  -  1 )  /  8
 ) 
 <->  R  e.  { 1 ,  7 } )
 )
 
Theorem2lgsoddprmlem4 25140 Lemma 4 for 2lgsoddprm 25141. (Contributed by AV, 20-Jul-2021.)
 |-  ( ( N  e.  ZZ  /\  -.  2  ||  N )  ->  ( 2 
 ||  ( ( ( N ^ 2 )  -  1 )  / 
 8 )  <->  ( N  mod  8 )  e.  { 1 ,  7 } )
 )
 
Theorem2lgsoddprm 25141 The second supplement to the law of quadratic reciprocity for odd primes (common representation, see theorem 9.5 in [ApostolNT] p. 181): The Legendre symbol for  2 at an odd prime is minus one to the power of the square of the odd prime minus one divided by eight ( (
2  /L P ) = -1^(((P^2)-1)/8) ). (Contributed by AV, 20-Jul-2021.)
 |-  ( P  e.  ( Prime  \  { 2 } )  ->  ( 2  /L P )  =  ( -u 1 ^ (
 ( ( P ^
 2 )  -  1
 )  /  8 )
 ) )
 
14.4.11  All primes 4n+1 are the sum of two squares
 
Theorem2sqlem1 25142* Lemma for 2sq 25155. (Contributed by Mario Carneiro, 19-Jun-2015.)
 |-  S  =  ran  ( w  e.  ZZ[_i]  |->  ( ( abs `  w ) ^ 2
 ) )   =>    |-  ( A  e.  S  <->  E. x  e.  ZZ[_i]  A  =  ( ( abs `  x ) ^ 2 ) )
 
Theorem2sqlem2 25143* Lemma for 2sq 25155. (Contributed by Mario Carneiro, 19-Jun-2015.)
 |-  S  =  ran  ( w  e.  ZZ[_i]  |->  ( ( abs `  w ) ^ 2
 ) )   =>    |-  ( A  e.  S  <->  E. x  e.  ZZ  E. y  e.  ZZ  A  =  ( ( x ^
 2 )  +  (
 y ^ 2 ) ) )
 
Theoremmul2sq 25144 Fibonacci's identity (actually due to Diophantus). The product of two sums of two squares is also a sum of two squares. We can take advantage of Gaussian integers here to trivialize the proof. (Contributed by Mario Carneiro, 19-Jun-2015.)
 |-  S  =  ran  ( w  e.  ZZ[_i]  |->  ( ( abs `  w ) ^ 2
 ) )   =>    |-  ( ( A  e.  S  /\  B  e.  S )  ->  ( A  x.  B )  e.  S )
 
Theorem2sqlem3 25145 Lemma for 2sqlem5 25147. (Contributed by Mario Carneiro, 20-Jun-2015.)
 |-  S  =  ran  ( w  e.  ZZ[_i]  |->  ( ( abs `  w ) ^ 2
 ) )   &    |-  ( ph  ->  N  e.  NN )   &    |-  ( ph  ->  P  e.  Prime )   &    |-  ( ph  ->  A  e.  ZZ )   &    |-  ( ph  ->  B  e.  ZZ )   &    |-  ( ph  ->  C  e.  ZZ )   &    |-  ( ph  ->  D  e.  ZZ )   &    |-  ( ph  ->  ( N  x.  P )  =  ( ( A ^ 2 )  +  ( B ^ 2 ) ) )   &    |-  ( ph  ->  P  =  ( ( C ^ 2 )  +  ( D ^ 2 ) ) )   &    |-  ( ph  ->  P 
 ||  ( ( C  x.  B )  +  ( A  x.  D ) ) )   =>    |-  ( ph  ->  N  e.  S )
 
Theorem2sqlem4 25146 Lemma for 2sqlem5 25147. (Contributed by Mario Carneiro, 20-Jun-2015.)
 |-  S  =  ran  ( w  e.  ZZ[_i]  |->  ( ( abs `  w ) ^ 2
 ) )   &    |-  ( ph  ->  N  e.  NN )   &    |-  ( ph  ->  P  e.  Prime )   &    |-  ( ph  ->  A  e.  ZZ )   &    |-  ( ph  ->  B  e.  ZZ )   &    |-  ( ph  ->  C  e.  ZZ )   &    |-  ( ph  ->  D  e.  ZZ )   &    |-  ( ph  ->  ( N  x.  P )  =  ( ( A ^ 2 )  +  ( B ^ 2 ) ) )   &    |-  ( ph  ->  P  =  ( ( C ^ 2 )  +  ( D ^ 2 ) ) )   =>    |-  ( ph  ->  N  e.  S )
 
Theorem2sqlem5 25147 Lemma for 2sq 25155. If a number that is a sum of two squares is divisible by a prime that is a sum of two squares, then the quotient is a sum of two squares. (Contributed by Mario Carneiro, 20-Jun-2015.)
 |-  S  =  ran  ( w  e.  ZZ[_i]  |->  ( ( abs `  w ) ^ 2
 ) )   &    |-  ( ph  ->  N  e.  NN )   &    |-  ( ph  ->  P  e.  Prime )   &    |-  ( ph  ->  ( N  x.  P )  e.  S )   &    |-  ( ph  ->  P  e.  S )   =>    |-  ( ph  ->  N  e.  S )
 
Theorem2sqlem6 25148* Lemma for 2sq 25155. If a number that is a sum of two squares is divisible by a number whose prime divisors are all sums of two squares, then the quotient is a sum of two squares. (Contributed by Mario Carneiro, 20-Jun-2015.)
 |-  S  =  ran  ( w  e.  ZZ[_i]  |->  ( ( abs `  w ) ^ 2
 ) )   &    |-  ( ph  ->  A  e.  NN )   &    |-  ( ph  ->  B  e.  NN )   &    |-  ( ph  ->  A. p  e.  Prime  ( p  ||  B  ->  p  e.  S ) )   &    |-  ( ph  ->  ( A  x.  B )  e.  S )   =>    |-  ( ph  ->  A  e.  S )
 
Theorem2sqlem7 25149* Lemma for 2sq 25155. (Contributed by Mario Carneiro, 19-Jun-2015.)
 |-  S  =  ran  ( w  e.  ZZ[_i]  |->  ( ( abs `  w ) ^ 2
 ) )   &    |-  Y  =  {
 z  |  E. x  e.  ZZ  E. y  e. 
 ZZ  ( ( x 
 gcd  y )  =  1  /\  z  =  ( ( x ^
 2 )  +  (
 y ^ 2 ) ) ) }   =>    |-  Y  C_  ( S  i^i  NN )
 
Theorem2sqlem8a 25150* Lemma for 2sqlem8 25151. (Contributed by Mario Carneiro, 4-Jun-2016.)
 |-  S  =  ran  ( w  e.  ZZ[_i]  |->  ( ( abs `  w ) ^ 2
 ) )   &    |-  Y  =  {
 z  |  E. x  e.  ZZ  E. y  e. 
 ZZ  ( ( x 
 gcd  y )  =  1  /\  z  =  ( ( x ^
 2 )  +  (
 y ^ 2 ) ) ) }   &    |-  ( ph  ->  A. b  e.  (
 1 ... ( M  -  1 ) ) A. a  e.  Y  (
 b  ||  a  ->  b  e.  S ) )   &    |-  ( ph  ->  M  ||  N )   &    |-  ( ph  ->  N  e.  NN )   &    |-  ( ph  ->  M  e.  ( ZZ>= `  2
 ) )   &    |-  ( ph  ->  A  e.  ZZ )   &    |-  ( ph  ->  B  e.  ZZ )   &    |-  ( ph  ->  ( A  gcd  B )  =  1 )   &    |-  ( ph  ->  N  =  ( ( A ^ 2 )  +  ( B ^ 2 ) ) )   &    |-  C  =  ( ( ( A  +  ( M  /  2
 ) )  mod  M )  -  ( M  / 
 2 ) )   &    |-  D  =  ( ( ( B  +  ( M  / 
 2 ) )  mod  M )  -  ( M 
 /  2 ) )   =>    |-  ( ph  ->  ( C  gcd  D )  e.  NN )
 
Theorem2sqlem8 25151* Lemma for 2sq 25155. (Contributed by Mario Carneiro, 20-Jun-2015.)
 |-  S  =  ran  ( w  e.  ZZ[_i]  |->  ( ( abs `  w ) ^ 2
 ) )   &    |-  Y  =  {
 z  |  E. x  e.  ZZ  E. y  e. 
 ZZ  ( ( x 
 gcd  y )  =  1  /\  z  =  ( ( x ^
 2 )  +  (
 y ^ 2 ) ) ) }   &    |-  ( ph  ->  A. b  e.  (
 1 ... ( M  -  1 ) ) A. a  e.  Y  (
 b  ||  a  ->  b  e.  S ) )   &    |-  ( ph  ->  M  ||  N )   &    |-  ( ph  ->  N  e.  NN )   &    |-  ( ph  ->  M  e.  ( ZZ>= `  2
 ) )   &    |-  ( ph  ->  A  e.  ZZ )   &    |-  ( ph  ->  B  e.  ZZ )   &    |-  ( ph  ->  ( A  gcd  B )  =  1 )   &    |-  ( ph  ->  N  =  ( ( A ^ 2 )  +  ( B ^ 2 ) ) )   &    |-  C  =  ( ( ( A  +  ( M  /  2
 ) )  mod  M )  -  ( M  / 
 2 ) )   &    |-  D  =  ( ( ( B  +  ( M  / 
 2 ) )  mod  M )  -  ( M 
 /  2 ) )   &    |-  E  =  ( C  /  ( C  gcd  D ) )   &    |-  F  =  ( D  /  ( C 
 gcd  D ) )   =>    |-  ( ph  ->  M  e.  S )
 
Theorem2sqlem9 25152* Lemma for 2sq 25155. (Contributed by Mario Carneiro, 19-Jun-2015.)
 |-  S  =  ran  ( w  e.  ZZ[_i]  |->  ( ( abs `  w ) ^ 2
 ) )   &    |-  Y  =  {
 z  |  E. x  e.  ZZ  E. y  e. 
 ZZ  ( ( x 
 gcd  y )  =  1  /\  z  =  ( ( x ^
 2 )  +  (
 y ^ 2 ) ) ) }   &    |-  ( ph  ->  A. b  e.  (
 1 ... ( M  -  1 ) ) A. a  e.  Y  (
 b  ||  a  ->  b  e.  S ) )   &    |-  ( ph  ->  M  ||  N )   &    |-  ( ph  ->  M  e.  NN )   &    |-  ( ph  ->  N  e.  Y )   =>    |-  ( ph  ->  M  e.  S )
 
Theorem2sqlem10 25153* Lemma for 2sq 25155. Every factor of a "proper" sum of two squares (where the summands are coprime) is a sum of two squares. (Contributed by Mario Carneiro, 19-Jun-2015.)
 |-  S  =  ran  ( w  e.  ZZ[_i]  |->  ( ( abs `  w ) ^ 2
 ) )   &    |-  Y  =  {
 z  |  E. x  e.  ZZ  E. y  e. 
 ZZ  ( ( x 
 gcd  y )  =  1  /\  z  =  ( ( x ^
 2 )  +  (
 y ^ 2 ) ) ) }   =>    |-  ( ( A  e.  Y  /\  B  e.  NN  /\  B  ||  A )  ->  B  e.  S )
 
Theorem2sqlem11 25154* Lemma for 2sq 25155. (Contributed by Mario Carneiro, 19-Jun-2015.)
 |-  S  =  ran  ( w  e.  ZZ[_i]  |->  ( ( abs `  w ) ^ 2
 ) )   &    |-  Y  =  {
 z  |  E. x  e.  ZZ  E. y  e. 
 ZZ  ( ( x 
 gcd  y )  =  1  /\  z  =  ( ( x ^
 2 )  +  (
 y ^ 2 ) ) ) }   =>    |-  ( ( P  e.  Prime  /\  ( P 
 mod  4 )  =  1 )  ->  P  e.  S )
 
Theorem2sq 25155* All primes of the form  4 k  +  1 are sums of two squares. This is Metamath 100 proof #20. (Contributed by Mario Carneiro, 20-Jun-2015.)
 |-  ( ( P  e.  Prime  /\  ( P  mod  4 )  =  1
 )  ->  E. x  e.  ZZ  E. y  e. 
 ZZ  P  =  ( ( x ^ 2
 )  +  ( y ^ 2 ) ) )
 
Theorem2sqblem 25156 The converse to 2sq 25155. (Contributed by Mario Carneiro, 20-Jun-2015.)
 |-  ( ph  ->  ( P  e.  Prime  /\  P  =/=  2 ) )   &    |-  ( ph  ->  ( X  e.  ZZ  /\  Y  e.  ZZ ) )   &    |-  ( ph  ->  P  =  ( ( X ^ 2 )  +  ( Y ^ 2 ) ) )   &    |-  ( ph  ->  A  e.  ZZ )   &    |-  ( ph  ->  B  e.  ZZ )   &    |-  ( ph  ->  ( P  gcd  Y )  =  ( ( P  x.  A )  +  ( Y  x.  B ) ) )   =>    |-  ( ph  ->  ( P  mod  4 )  =  1 )
 
Theorem2sqb 25157* The converse to 2sq 25155. (Contributed by Mario Carneiro, 20-Jun-2015.)
 |-  ( P  e.  Prime  ->  ( E. x  e.  ZZ  E. y  e.  ZZ  P  =  ( ( x ^
 2 )  +  (
 y ^ 2 ) )  <->  ( P  =  2  \/  ( P  mod  4 )  =  1
 ) ) )
 
14.4.12  Chebyshev's Weak Prime Number Theorem, Dirichlet's Theorem
 
Theoremchebbnd1lem1 25158 Lemma for chebbnd1 25161: show a lower bound on π ( x ) at even integers using similar techniques to those used to prove bpos 25018. (Note that the expression  K is actually equal to  2  x.  N, but proving that is not necessary for the proof, and it's too much work.) The key to the proof is bposlem1 25009, which shows that each term in the expansion  ( (
2  x.  N )  _C  N )  = 
prod_ p  e.  Prime  ( p ^ ( p  pCnt  ( ( 2  x.  N
)  _C  N ) ) ) is at most  2  x.  N, so that the sum really only has nonzero elements up to  2  x.  N, and since each term is at most  2  x.  N, after taking logs we get the inequality π ( 2  x.  N
)  x.  log (
2  x.  N )  <_  log ( ( 2  x.  N )  _C  N ), and bclbnd 25005 finishes the proof. (Contributed by Mario Carneiro, 22-Sep-2014.) (Revised by Mario Carneiro, 15-Apr-2016.)
 |-  K  =  if (
 ( 2  x.  N )  <_  ( ( 2  x.  N )  _C  N ) ,  (
 2  x.  N ) ,  ( ( 2  x.  N )  _C  N ) )   =>    |-  ( N  e.  ( ZZ>= `  4 )  ->  ( log `  (
 ( 4 ^ N )  /  N ) )  <  ( (π `  (
 2  x.  N ) )  x.  ( log `  ( 2  x.  N ) ) ) )
 
Theoremchebbnd1lem2 25159 Lemma for chebbnd1 25161: Show that  log ( N )  /  N does not change too much between  N and  M  =  |_ ( N  /  2
). (Contributed by Mario Carneiro, 22-Sep-2014.)
 |-  M  =  ( |_ `  ( N  /  2
 ) )   =>    |-  ( ( N  e.  RR  /\  8  <_  N )  ->  ( ( log `  ( 2  x.  M ) )  /  (
 2  x.  M ) )  <  ( 2  x.  ( ( log `  N )  /  N ) ) )
 
Theoremchebbnd1lem3 25160 Lemma for chebbnd1 25161: get a lower bound on π ( N )  /  ( N  /  log ( N ) ) that is independent of  N. (Contributed by Mario Carneiro, 21-Sep-2014.)
 |-  M  =  ( |_ `  ( N  /  2
 ) )   =>    |-  ( ( N  e.  RR  /\  8  <_  N )  ->  ( ( ( log `  2 )  -  ( 1  /  (
 2  x.  _e ) ) )  /  2
 )  <  ( (π `  N )  x.  (
 ( log `  N )  /  N ) ) )
 
Theoremchebbnd1 25161 The Chebyshev bound: The function π ( x ) is eventually lower bounded by a positive constant times  x  /  log ( x ). Alternatively stated, the function  ( x  /  log ( x ) )  / π ( x ) is eventually bounded. (Contributed by Mario Carneiro, 22-Sep-2014.)
 |-  ( x  e.  (
 2 [,) +oo )  |->  ( ( x  /  ( log `  x ) ) 
 /  (π `  x ) ) )  e.  O(1)
 
Theoremchtppilimlem1 25162 Lemma for chtppilim 25164. (Contributed by Mario Carneiro, 22-Sep-2014.)
 |-  ( ph  ->  A  e.  RR+ )   &    |-  ( ph  ->  A  <  1 )   &    |-  ( ph  ->  N  e.  (
 2 [,) +oo ) )   &    |-  ( ph  ->  ( ( N  ^c  A ) 
 /  (π `  N ) )  <  ( 1  -  A ) )   =>    |-  ( ph  ->  ( ( A ^ 2
 )  x.  ( (π `  N )  x.  ( log `  N ) ) )  <  ( theta `  N ) )
 
Theoremchtppilimlem2 25163* Lemma for chtppilim 25164. (Contributed by Mario Carneiro, 22-Sep-2014.)
 |-  ( ph  ->  A  e.  RR+ )   &    |-  ( ph  ->  A  <  1 )   =>    |-  ( ph  ->  E. z  e.  RR  A. x  e.  ( 2 [,) +oo ) ( z 
 <_  x  ->  ( ( A ^ 2 )  x.  ( (π `  x )  x.  ( log `  x ) ) )  < 
 ( theta `  x )
 ) )
 
Theoremchtppilim 25164 The  theta function is asymptotic to π ( x ) log ( x ), so it is sufficient to prove 
theta ( x )  /  x 
~~> r  1 to establish the PNT. (Contributed by Mario Carneiro, 22-Sep-2014.)
 |-  ( x  e.  (
 2 [,) +oo )  |->  ( ( theta `  x )  /  ( (π `  x )  x.  ( log `  x ) ) ) )  ~~> r  1
 
Theoremchto1ub 25165 The  theta function is upper bounded by a linear term. Corollary of chtub 24937. (Contributed by Mario Carneiro, 22-Sep-2014.)
 |-  ( x  e.  RR+  |->  ( ( theta `  x )  /  x ) )  e.  O(1)
 
Theoremchebbnd2 25166 The Chebyshev bound, part 2: The function π ( x ) is eventually upper bounded by a positive constant times  x  /  log ( x ). Alternatively stated, the function π ( x )  /  (
x  /  log (
x ) ) is eventually bounded. (Contributed by Mario Carneiro, 22-Sep-2014.)
 |-  ( x  e.  (
 2 [,) +oo )  |->  ( (π `  x )  /  ( x  /  ( log `  x ) ) ) )  e.  O(1)
 
Theoremchto1lb 25167 The  theta function is lower bounded by a linear term. Corollary of chebbnd1 25161. (Contributed by Mario Carneiro, 8-Apr-2016.)
 |-  ( x  e.  (
 2 [,) +oo )  |->  ( x  /  ( theta `  x ) ) )  e.  O(1)
 
Theoremchpchtlim 25168 The ψ and  theta functions are asymptotic to each other, so is sufficient to prove either 
theta ( x )  /  x 
~~> r  1 or ψ ( x )  /  x  ~~> r  1 to establish the PNT. (Contributed by Mario Carneiro, 8-Apr-2016.)
 |-  ( x  e.  (
 2 [,) +oo )  |->  ( (ψ `  x )  /  ( theta `  x )
 ) )  ~~> r  1
 
Theoremchpo1ub 25169 The ψ function is upper bounded by a linear term. (Contributed by Mario Carneiro, 16-Apr-2016.)
 |-  ( x  e.  RR+  |->  ( (ψ `  x )  /  x ) )  e.  O(1)
 
Theoremchpo1ubb 25170* The ψ function is upper bounded by a linear term. (Contributed by Mario Carneiro, 31-May-2016.)
 |- 
 E. c  e.  RR+  A. x  e.  RR+  (ψ `  x )  <_  ( c  x.  x )
 
Theoremvmadivsum 25171* The sum of the von Mangoldt function over  n is asymptotic to  log x  +  O(1). Equation 9.2.13 of [Shapiro], p. 331. (Contributed by Mario Carneiro, 16-Apr-2016.)
 |-  ( x  e.  RR+  |->  ( sum_ n  e.  (
 1 ... ( |_ `  x ) ) ( (Λ `  n )  /  n )  -  ( log `  x ) ) )  e.  O(1)
 
Theoremvmadivsumb 25172* Give a total bound on the von Mangoldt sum. (Contributed by Mario Carneiro, 30-May-2016.)
 |- 
 E. c  e.  RR+  A. x  e.  ( 1 [,) +oo ) ( abs `  ( sum_ n  e.  (
 1 ... ( |_ `  x ) ) ( (Λ `  n )  /  n )  -  ( log `  x ) ) )  <_  c
 
Theoremrplogsumlem1 25173* Lemma for rplogsum 25216. (Contributed by Mario Carneiro, 2-May-2016.)
 |-  ( A  e.  NN  -> 
 sum_ n  e.  (
 2 ... A ) ( ( log `  n )  /  ( n  x.  ( n  -  1
 ) ) )  <_ 
 2 )
 
Theoremrplogsumlem2 25174* Lemma for rplogsum 25216. Equation 9.2.14 of [Shapiro], p. 331. (Contributed by Mario Carneiro, 2-May-2016.)
 |-  ( A  e.  ZZ  -> 
 sum_ n  e.  (
 1 ... A ) ( ( (Λ `  n )  -  if ( n  e.  Prime ,  ( log `  n ) ,  0 ) )  /  n )  <_  2 )
 
Theoremdchrisum0lem1a 25175 Lemma for dchrisum0lem1 25205. (Contributed by Mario Carneiro, 7-Jun-2016.)
 |-  ( ( ( ph  /\  X  e.  RR+ )  /\  D  e.  ( 1
 ... ( |_ `  X ) ) )  ->  ( X  <_  ( ( X ^ 2 ) 
 /  D )  /\  ( |_ `  ( ( X ^ 2 ) 
 /  D ) )  e.  ( ZZ>= `  ( |_ `  X ) ) ) )
 
Theoremrpvmasumlem 25176* Lemma for rpvmasum 25215. Calculate the "trivial case" estimate  sum_ n  <_  x (  .1.  (
n )Λ ( n )  /  n )  =  log x  +  O(1), where  .1.  ( x ) is the principal Dirichlet character. Equation 9.4.7 of [Shapiro], p. 376. (Contributed by Mario Carneiro, 2-May-2016.)
 |-  Z  =  (ℤ/n `  N )   &    |-  L  =  ( ZRHom `  Z )   &    |-  ( ph  ->  N  e.  NN )   &    |-  G  =  (DChr `  N )   &    |-  D  =  ( Base `  G )   &    |-  .1.  =  ( 0g `  G )   =>    |-  ( ph  ->  ( x  e.  RR+  |->  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (  .1.  `  ( L `  n ) )  x.  ( (Λ `  n )  /  n ) )  -  ( log `  x ) ) )  e.  O(1) )
 
Theoremdchrisumlema 25177* Lemma for dchrisum 25181. Lemma 9.4.1 of [Shapiro], p. 377. (Contributed by Mario Carneiro, 2-May-2016.)
 |-  Z  =  (ℤ/n `  N )   &    |-  L  =  ( ZRHom `  Z )   &    |-  ( ph  ->  N  e.  NN )   &    |-  G  =  (DChr `  N )   &    |-  D  =  ( Base `  G )   &    |-  .1.  =  ( 0g `  G )   &    |-  ( ph  ->  X  e.  D )   &    |-  ( ph  ->  X  =/=  .1.  )   &    |-  ( n  =  x  ->  A  =  B )   &    |-  ( ph  ->  M  e.  NN )   &    |-  ( ( ph  /\  n  e.  RR+ )  ->  A  e.  RR )   &    |-  ( ( ph  /\  ( n  e.  RR+  /\  x  e.  RR+ )  /\  ( M  <_  n  /\  n  <_  x ) )  ->  B  <_  A )   &    |-  ( ph  ->  ( n  e.  RR+  |->  A )  ~~> r  0 )   &    |-  F  =  ( n  e.  NN  |->  ( ( X `  ( L `  n ) )  x.  A ) )   =>    |-  ( ph  ->  (
 ( I  e.  RR+  ->  [_ I  /  n ]_ A  e.  RR )  /\  ( I  e.  ( M [,) +oo )  ->  0  <_ 
 [_ I  /  n ]_ A ) ) )
 
Theoremdchrisumlem1 25178* Lemma for dchrisum 25181. Lemma 9.4.1 of [Shapiro], p. 377. (Contributed by Mario Carneiro, 2-May-2016.)
 |-  Z  =  (ℤ/n `  N )   &    |-  L  =  ( ZRHom `  Z )   &    |-  ( ph  ->  N  e.  NN )   &    |-  G  =  (DChr `  N )   &    |-  D  =  ( Base `  G )   &    |-  .1.  =  ( 0g `  G )   &    |-  ( ph  ->  X  e.  D )   &    |-  ( ph  ->  X  =/=  .1.  )   &    |-  ( n  =  x  ->  A  =  B )   &    |-  ( ph  ->  M  e.  NN )   &    |-  ( ( ph  /\  n  e.  RR+ )  ->  A  e.  RR )   &    |-  ( ( ph  /\  ( n  e.  RR+  /\  x  e.  RR+ )  /\  ( M  <_  n  /\  n  <_  x ) )  ->  B  <_  A )   &    |-  ( ph  ->  ( n  e.  RR+  |->  A )  ~~> r  0 )   &    |-  F  =  ( n  e.  NN  |->  ( ( X `  ( L `  n ) )  x.  A ) )   &    |-  ( ph  ->  R  e.  RR )   &    |-  ( ph  ->  A. u  e.  (
 0..^ N ) ( abs `  sum_ n  e.  ( 0..^ u ) ( X `  ( L `  n ) ) )  <_  R )   =>    |-  (
 ( ph  /\  U  e.  NN0 )  ->  ( abs ` 
 sum_ n  e.  (
 0..^ U ) ( X `  ( L `
  n ) ) )  <_  R )
 
Theoremdchrisumlem2 25179* Lemma for dchrisum 25181. Lemma 9.4.1 of [Shapiro], p. 377. (Contributed by Mario Carneiro, 2-May-2016.)
 |-  Z  =  (ℤ/n `  N )   &    |-  L  =  ( ZRHom `  Z )   &    |-  ( ph  ->  N  e.  NN )   &    |-  G  =  (DChr `  N )   &    |-  D  =  ( Base `  G )   &    |-  .1.  =  ( 0g `  G )   &    |-  ( ph  ->  X  e.  D )   &    |-  ( ph  ->  X  =/=  .1.  )   &    |-  ( n  =  x  ->  A  =  B )   &    |-  ( ph  ->  M  e.  NN )   &    |-  ( ( ph  /\  n  e.  RR+ )  ->  A  e.  RR )   &    |-  ( ( ph  /\  ( n  e.  RR+  /\  x  e.  RR+ )  /\  ( M  <_  n  /\  n  <_  x ) )  ->  B  <_  A )   &    |-  ( ph  ->  ( n  e.  RR+  |->  A )  ~~> r  0 )   &    |-  F  =  ( n  e.  NN  |->  ( ( X `  ( L `  n ) )  x.  A ) )   &    |-  ( ph  ->  R  e.  RR )   &    |-  ( ph  ->  A. u  e.  (
 0..^ N ) ( abs `  sum_ n  e.  ( 0..^ u ) ( X `  ( L `  n ) ) )  <_  R )   &    |-  ( ph  ->  U  e.  RR+ )   &    |-  ( ph  ->  M  <_  U )   &    |-  ( ph  ->  U 
 <_  ( I  +  1 ) )   &    |-  ( ph  ->  I  e.  NN )   &    |-  ( ph  ->  J  e.  ( ZZ>=
 `  I ) )   =>    |-  ( ph  ->  ( abs `  ( (  seq 1
 (  +  ,  F ) `  J )  -  (  seq 1 (  +  ,  F ) `  I
 ) ) )  <_  ( ( 2  x.  R )  x.  [_ U  /  n ]_ A ) )
 
Theoremdchrisumlem3 25180* Lemma for dchrisum 25181. Lemma 9.4.1 of [Shapiro], p. 377. (Contributed by Mario Carneiro, 2-May-2016.)
 |-  Z  =  (ℤ/n `  N )   &    |-  L  =  ( ZRHom `  Z )   &    |-  ( ph  ->  N  e.  NN )   &    |-  G  =  (DChr `  N )   &    |-  D  =  ( Base `  G )   &    |-  .1.  =  ( 0g `  G )   &    |-  ( ph  ->  X  e.  D )   &    |-  ( ph  ->  X  =/=  .1.  )   &    |-  ( n  =  x  ->  A  =  B )   &    |-  ( ph  ->  M  e.  NN )   &    |-  ( ( ph  /\  n  e.  RR+ )  ->  A  e.  RR )   &    |-  ( ( ph  /\  ( n  e.  RR+  /\  x  e.  RR+ )  /\  ( M  <_  n  /\  n  <_  x ) )  ->  B  <_  A )   &    |-  ( ph  ->  ( n  e.  RR+  |->  A )  ~~> r  0 )   &    |-  F  =  ( n  e.  NN  |->  ( ( X `  ( L `  n ) )  x.  A ) )   &    |-  ( ph  ->  R  e.  RR )   &    |-  ( ph  ->  A. u  e.  (
 0..^ N ) ( abs `  sum_ n  e.  ( 0..^ u ) ( X `  ( L `  n ) ) )  <_  R )   =>    |-  ( ph  ->  E. t E. c  e.  ( 0 [,) +oo ) (  seq 1
 (  +  ,  F ) 
 ~~>  t  /\  A. x  e.  ( M [,) +oo ) ( abs `  (
 (  seq 1 (  +  ,  F ) `  ( |_ `  x ) )  -  t ) ) 
 <_  ( c  x.  B ) ) )
 
Theoremdchrisum 25181* If  n  e.  [ M , +oo )  |->  A ( n ) is a positive decreasing function approaching zero, then the infinite sum  sum_ n ,  X
( n ) A ( n ) is convergent, with the partial sum  sum_ n  <_  x ,  X ( n ) A ( n ) within  O ( A ( M ) ) of the limit  T. Lemma 9.4.1 of [Shapiro], p. 377. (Contributed by Mario Carneiro, 2-May-2016.)
 |-  Z  =  (ℤ/n `  N )   &    |-  L  =  ( ZRHom `  Z )   &    |-  ( ph  ->  N  e.  NN )   &    |-  G  =  (DChr `  N )   &    |-  D  =  ( Base `  G )   &    |-  .1.  =  ( 0g `  G )   &    |-  ( ph  ->  X  e.  D )   &    |-  ( ph  ->  X  =/=  .1.  )   &    |-  ( n  =  x  ->  A  =  B )   &    |-  ( ph  ->  M  e.  NN )   &    |-  ( ( ph  /\  n  e.  RR+ )  ->  A  e.  RR )   &    |-  ( ( ph  /\  ( n  e.  RR+  /\  x  e.  RR+ )  /\  ( M  <_  n  /\  n  <_  x ) )  ->  B  <_  A )   &    |-  ( ph  ->  ( n  e.  RR+  |->  A )  ~~> r  0 )   &    |-  F  =  ( n  e.  NN  |->  ( ( X `  ( L `  n ) )  x.  A ) )   =>    |-  ( ph  ->  E. t E. c  e.  (
 0 [,) +oo ) ( 
 seq 1 (  +  ,  F )  ~~>  t  /\  A. x  e.  ( M [,) +oo ) ( abs `  ( (  seq 1
 (  +  ,  F ) `  ( |_ `  x ) )  -  t
 ) )  <_  (
 c  x.  B ) ) )
 
Theoremdchrmusumlema 25182* Lemma for dchrmusum 25213 and dchrisumn0 25210. Apply dchrisum 25181 for the function  1  /  y. (Contributed by Mario Carneiro, 4-May-2016.)
 |-  Z  =  (ℤ/n `  N )   &    |-  L  =  ( ZRHom `  Z )   &    |-  ( ph  ->  N  e.  NN )   &    |-  G  =  (DChr `  N )   &    |-  D  =  ( Base `  G )   &    |-  .1.  =  ( 0g `  G )   &    |-  ( ph  ->  X  e.  D )   &    |-  ( ph  ->  X  =/=  .1.  )   &    |-  F  =  ( a  e.  NN  |->  ( ( X `  ( L `  a ) )  /  a ) )   =>    |-  ( ph  ->  E. t E. c  e.  (
 0 [,) +oo ) ( 
 seq 1 (  +  ,  F )  ~~>  t  /\  A. y  e.  ( 1 [,) +oo ) ( abs `  ( (  seq 1
 (  +  ,  F ) `  ( |_ `  y
 ) )  -  t
 ) )  <_  (
 c  /  y )
 ) )
 
Theoremdchrmusum2 25183* The sum of the Möbius function multiplied by a non-principal Dirichlet character, divided by  n, is bounded, provided that  T  =/=  0. Lemma 9.4.2 of [Shapiro], p. 380. (Contributed by Mario Carneiro, 4-May-2016.)
 |-  Z  =  (ℤ/n `  N )   &    |-  L  =  ( ZRHom `  Z )   &    |-  ( ph  ->  N  e.  NN )   &    |-  G  =  (DChr `  N )   &    |-  D  =  ( Base `  G )   &    |-  .1.  =  ( 0g `  G )   &    |-  ( ph  ->  X  e.  D )   &    |-  ( ph  ->  X  =/=  .1.  )   &    |-  F  =  ( a  e.  NN  |->  ( ( X `  ( L `  a ) )  /  a ) )   &    |-  ( ph  ->  C  e.  ( 0 [,) +oo ) )   &    |-  ( ph  ->  seq 1 (  +  ,  F )  ~~>  T )   &    |-  ( ph  ->  A. y  e.  (
 1 [,) +oo ) ( abs `  ( (  seq 1 (  +  ,  F ) `  ( |_ `  y ) )  -  T ) ) 
 <_  ( C  /  y
 ) )   =>    |-  ( ph  ->  ( x  e.  RR+  |->  ( sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( ( X `  ( L `
  d ) )  x.  ( ( mmu `  d )  /  d
 ) )  x.  T ) )  e.  O(1) )
 
Theoremdchrvmasumlem1 25184* An alternative expression for a Dirichlet-weighted von Mangoldt sum in terms of the Möbius function. Equation 9.4.11 of [Shapiro], p. 377. (Contributed by Mario Carneiro, 3-May-2016.)
 |-  Z  =  (ℤ/n `  N )   &    |-  L  =  ( ZRHom `  Z )   &    |-  ( ph  ->  N  e.  NN )   &    |-  G  =  (DChr `  N )   &    |-  D  =  ( Base `  G )   &    |-  .1.  =  ( 0g `  G )   &    |-  ( ph  ->  X  e.  D )   &    |-  ( ph  ->  X  =/=  .1.  )   &    |-  ( ph  ->  A  e.  RR+ )   =>    |-  ( ph  ->  sum_ n  e.  ( 1 ... ( |_ `  A ) ) ( ( X `  ( L `  n ) )  x.  ( (Λ `  n )  /  n ) )  =  sum_ d  e.  ( 1 ... ( |_ `  A ) ) ( ( ( X `  ( L `  d ) )  x.  ( ( mmu `  d )  /  d
 ) )  x.  sum_ m  e.  ( 1 ... ( |_ `  ( A  /  d ) ) ) ( ( X `
  ( L `  m ) )  x.  ( ( log `  m )  /  m ) ) ) )
 
Theoremdchrvmasum2lem 25185* Give an expression for  log x remarkably similar to  sum_ n  <_  x
( X ( n )Λ ( n )  /  n ) given in dchrvmasumlem1 25184. Part of Lemma 9.4.3 of [Shapiro], p. 380. (Contributed by Mario Carneiro, 4-May-2016.)
 |-  Z  =  (ℤ/n `  N )   &    |-  L  =  ( ZRHom `  Z )   &    |-  ( ph  ->  N  e.  NN )   &    |-  G  =  (DChr `  N )   &    |-  D  =  ( Base `  G )   &    |-  .1.  =  ( 0g `  G )   &    |-  ( ph  ->  X  e.  D )   &    |-  ( ph  ->  X  =/=  .1.  )   &    |-  ( ph  ->  A  e.  RR+ )   &    |-  ( ph  ->  1  <_  A )   =>    |-  ( ph  ->  ( log `  A )  = 
 sum_ d  e.  (
 1 ... ( |_ `  A ) ) ( ( ( X `  ( L `  d ) )  x.  ( ( mmu `  d )  /  d
 ) )  x.  sum_ m  e.  ( 1 ... ( |_ `  ( A  /  d ) ) ) ( ( X `
  ( L `  m ) )  x.  ( ( log `  (
 ( A  /  d
 )  /  m )
 )  /  m )
 ) ) )
 
Theoremdchrvmasum2if 25186* Combine the results of dchrvmasumlem1 25184 and dchrvmasum2lem 25185 inside a conditional. (Contributed by Mario Carneiro, 4-May-2016.)
 |-  Z  =  (ℤ/n `  N )   &    |-  L  =  ( ZRHom `  Z )   &    |-  ( ph  ->  N  e.  NN )   &    |-  G  =  (DChr `  N )   &    |-  D  =  ( Base `  G )   &    |-  .1.  =  ( 0g `  G )   &    |-  ( ph  ->  X  e.  D )   &    |-  ( ph  ->  X  =/=  .1.  )   &    |-  ( ph  ->  A  e.  RR+ )   &    |-  ( ph  ->  1  <_  A )   =>    |-  ( ph  ->  ( sum_ n  e.  ( 1
 ... ( |_ `  A ) ) ( ( X `  ( L `
  n ) )  x.  ( (Λ `  n )  /  n ) )  +  if ( ps ,  ( log `  A ) ,  0 )
 )  =  sum_ d  e.  ( 1 ... ( |_ `  A ) ) ( ( ( X `
  ( L `  d ) )  x.  ( ( mmu `  d )  /  d
 ) )  x.  sum_ m  e.  ( 1 ... ( |_ `  ( A  /  d ) ) ) ( ( X `
  ( L `  m ) )  x.  ( ( log `  if ( ps ,  ( A 
 /  d ) ,  m ) )  /  m ) ) ) )
 
Theoremdchrvmasumlem2 25187* Lemma for dchrvmasum 25214. (Contributed by Mario Carneiro, 4-May-2016.)
 |-  Z  =  (ℤ/n `  N )   &    |-  L  =  ( ZRHom `  Z )   &    |-  ( ph  ->  N  e.  NN )   &    |-  G  =  (DChr `  N )   &    |-  D  =  ( Base `  G )   &    |-  .1.  =  ( 0g `  G )   &    |-  ( ph  ->  X  e.  D )   &    |-  ( ph  ->  X  =/=  .1.  )   &    |-  (
 ( ph  /\  m  e.  RR+ )  ->  F  e.  CC )   &    |-  ( m  =  ( x  /  d
 )  ->  F  =  K )   &    |-  ( ph  ->  C  e.  ( 0 [,) +oo ) )   &    |-  ( ph  ->  T  e.  CC )   &    |-  (
 ( ph  /\  m  e.  ( 3 [,) +oo ) )  ->  ( abs `  ( F  -  T ) )  <_  ( C  x.  ( ( log `  m )  /  m ) ) )   &    |-  ( ph  ->  R  e.  RR )   &    |-  ( ph  ->  A. m  e.  ( 1 [,) 3
 ) ( abs `  ( F  -  T ) ) 
 <_  R )   =>    |-  ( ph  ->  ( x  e.  RR+  |->  sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( ( abs `  ( K  -  T ) ) 
 /  d ) )  e.  O(1) )
 
Theoremdchrvmasumlem3 25188* Lemma for dchrvmasum 25214. (Contributed by Mario Carneiro, 3-May-2016.)
 |-  Z  =  (ℤ/n `  N )   &    |-  L  =  ( ZRHom `  Z )   &    |-  ( ph  ->  N  e.  NN )   &    |-  G  =  (DChr `  N )   &    |-  D  =  ( Base `  G )   &    |-  .1.  =  ( 0g `  G )   &    |-  ( ph  ->  X  e.  D )   &    |-  ( ph  ->  X  =/=  .1.  )   &    |-  (
 ( ph  /\  m  e.  RR+ )  ->  F  e.  CC )   &    |-  ( m  =  ( x  /  d
 )  ->  F  =  K )   &    |-  ( ph  ->  C  e.  ( 0 [,) +oo ) )   &    |-  ( ph  ->  T  e.  CC )   &    |-  (
 ( ph  /\  m  e.  ( 3 [,) +oo ) )  ->  ( abs `  ( F  -  T ) )  <_  ( C  x.  ( ( log `  m )  /  m ) ) )   &    |-  ( ph  ->  R  e.  RR )   &    |-  ( ph  ->  A. m  e.  ( 1 [,) 3
 ) ( abs `  ( F  -  T ) ) 
 <_  R )   =>    |-  ( ph  ->  ( x  e.  RR+  |->  sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( ( ( X `
  ( L `  d ) )  x.  ( ( mmu `  d )  /  d
 ) )  x.  ( K  -  T ) ) )  e.  O(1) )
 
Theoremdchrvmasumlema 25189* Lemma for dchrvmasum 25214 and dchrvmasumif 25192. Apply dchrisum 25181 for the function  log ( y )  /  y, which is decreasing above  _e (or above 3, the nearest integer bound). (Contributed by Mario Carneiro, 5-May-2016.)
 |-  Z  =  (ℤ/n `  N )   &    |-  L  =  ( ZRHom `  Z )   &    |-  ( ph  ->  N  e.  NN )   &    |-  G  =  (DChr `  N )   &    |-  D  =  ( Base `  G )   &    |-  .1.  =  ( 0g `  G )   &    |-  ( ph  ->  X  e.  D )   &    |-  ( ph  ->  X  =/=  .1.  )   &    |-  F  =  ( a  e.  NN  |->  ( ( X `  ( L `  a ) )  x.  ( ( log `  a )  /  a ) ) )   =>    |-  ( ph  ->  E. t E. c  e.  (
 0 [,) +oo ) ( 
 seq 1 (  +  ,  F )  ~~>  t  /\  A. y  e.  ( 3 [,) +oo ) ( abs `  ( (  seq 1
 (  +  ,  F ) `  ( |_ `  y
 ) )  -  t
 ) )  <_  (
 c  x.  ( ( log `  y )  /  y ) ) ) )
 
Theoremdchrvmasumiflem1 25190* Lemma for dchrvmasumif 25192. (Contributed by Mario Carneiro, 5-May-2016.)
 |-  Z  =  (ℤ/n `  N )   &    |-  L  =  ( ZRHom `  Z )   &    |-  ( ph  ->  N  e.  NN )   &    |-  G  =  (DChr `  N )   &    |-  D  =  ( Base `  G )   &    |-  .1.  =  ( 0g `  G )   &    |-  ( ph  ->  X  e.  D )   &    |-  ( ph  ->  X  =/=  .1.  )   &    |-  F  =  ( a  e.  NN  |->  ( ( X `  ( L `  a ) )  /  a ) )   &    |-  ( ph  ->  C  e.  ( 0 [,) +oo ) )   &    |-  ( ph  ->  seq 1 (  +  ,  F )  ~~>  S )   &    |-  ( ph  ->  A. y  e.  (
 1 [,) +oo ) ( abs `  ( (  seq 1 (  +  ,  F ) `  ( |_ `  y ) )  -  S ) ) 
 <_  ( C  /  y
 ) )   &    |-  K  =  ( a  e.  NN  |->  ( ( X `  ( L `  a ) )  x.  ( ( log `  a )  /  a
 ) ) )   &    |-  ( ph  ->  E  e.  (
 0 [,) +oo ) )   &    |-  ( ph  ->  seq 1
 (  +  ,  K ) 
 ~~>  T )   &    |-  ( ph  ->  A. y  e.  ( 3 [,) +oo ) ( abs `  ( (  seq 1
 (  +  ,  K ) `  ( |_ `  y
 ) )  -  T ) )  <_  ( E  x.  ( ( log `  y )  /  y
 ) ) )   =>    |-  ( ph  ->  ( x  e.  RR+  |->  sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( ( ( X `
  ( L `  d ) )  x.  ( ( mmu `  d )  /  d
 ) )  x.  ( sum_ k  e.  ( 1
 ... ( |_ `  ( x  /  d ) ) ) ( ( X `
  ( L `  k ) )  x.  ( ( log `  if ( S  =  0 ,  ( x  /  d
 ) ,  k ) )  /  k ) )  -  if ( S  =  0 , 
 0 ,  T ) ) ) )  e.  O(1) )
 
Theoremdchrvmasumiflem2 25191* Lemma for dchrvmasum 25214. (Contributed by Mario Carneiro, 5-May-2016.)
 |-  Z  =  (ℤ/n `  N )   &    |-  L  =  ( ZRHom `  Z )   &    |-  ( ph  ->  N  e.  NN )   &    |-  G  =  (DChr `  N )   &    |-  D  =  ( Base `  G )   &    |-  .1.  =  ( 0g `  G )   &    |-  ( ph  ->  X  e.  D )   &    |-  ( ph  ->  X  =/=  .1.  )   &    |-  F  =  ( a  e.  NN  |->  ( ( X `  ( L `  a ) )  /  a ) )   &    |-  ( ph  ->  C  e.  ( 0 [,) +oo ) )   &    |-  ( ph  ->  seq 1 (  +  ,  F )  ~~>  S )   &    |-  ( ph  ->  A. y  e.  (
 1 [,) +oo ) ( abs `  ( (  seq 1 (  +  ,  F ) `  ( |_ `  y ) )  -  S ) ) 
 <_  ( C  /  y
 ) )   &    |-  K  =  ( a  e.  NN  |->  ( ( X `  ( L `  a ) )  x.  ( ( log `  a )  /  a
 ) ) )   &    |-  ( ph  ->  E  e.  (
 0 [,) +oo ) )   &    |-  ( ph  ->  seq 1
 (  +  ,  K ) 
 ~~>  T )   &    |-  ( ph  ->  A. y  e.  ( 3 [,) +oo ) ( abs `  ( (  seq 1
 (  +  ,  K ) `  ( |_ `  y
 ) )  -  T ) )  <_  ( E  x.  ( ( log `  y )  /  y
 ) ) )   =>    |-  ( ph  ->  ( x  e.  RR+  |->  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( X `  ( L `
  n ) )  x.  ( (Λ `  n )  /  n ) )  +  if ( S  =  0 ,  ( log `  x ) ,  0 ) ) )  e.  O(1) )
 
Theoremdchrvmasumif 25192* An asymptotic approximation for the sum of  X ( n )Λ (
n )  /  n conditional on the value of the infinite sum  S. (We will later show that the case  S  =  0 is impossible, and hence establish dchrvmasum 25214.) (Contributed by Mario Carneiro, 5-May-2016.)
 |-  Z  =  (ℤ/n `  N )   &    |-  L  =  ( ZRHom `  Z )   &    |-  ( ph  ->  N  e.  NN )   &    |-  G  =  (DChr `  N )   &    |-  D  =  ( Base `  G )   &    |-  .1.  =  ( 0g `  G )   &    |-  ( ph  ->  X  e.  D )   &    |-  ( ph  ->  X  =/=  .1.  )   &    |-  F  =  ( a  e.  NN  |->  ( ( X `  ( L `  a ) )  /  a ) )   &    |-  ( ph  ->  C  e.  ( 0 [,) +oo ) )   &    |-  ( ph  ->  seq 1 (  +  ,  F )  ~~>  S )   &    |-  ( ph  ->  A. y  e.  (
 1 [,) +oo ) ( abs `  ( (  seq 1 (  +  ,  F ) `  ( |_ `  y ) )  -  S ) ) 
 <_  ( C  /  y
 ) )   =>    |-  ( ph  ->  ( x  e.  RR+  |->  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( X `  ( L `
  n ) )  x.  ( (Λ `  n )  /  n ) )  +  if ( S  =  0 ,  ( log `  x ) ,  0 ) ) )  e.  O(1) )
 
Theoremdchrvmaeq0 25193* The set  W is the collection of all non-principal Dirichlet characters such that the sum  sum_ n  e.  NN ,  X ( n )  /  n is equal to zero. (Contributed by Mario Carneiro, 5-May-2016.)
 |-  Z  =  (ℤ/n `  N )   &    |-  L  =  ( ZRHom `  Z )   &    |-  ( ph  ->  N  e.  NN )   &    |-  G  =  (DChr `  N )   &    |-  D  =  ( Base `  G )   &    |-  .1.  =  ( 0g `  G )   &    |-  ( ph  ->  X  e.  D )   &    |-  ( ph  ->  X  =/=  .1.  )   &    |-  F  =  ( a  e.  NN  |->  ( ( X `  ( L `  a ) )  /  a ) )   &    |-  ( ph  ->  C  e.  ( 0 [,) +oo ) )   &    |-  ( ph  ->  seq 1 (  +  ,  F )  ~~>  S )   &    |-  ( ph  ->  A. y  e.  (
 1 [,) +oo ) ( abs `  ( (  seq 1 (  +  ,  F ) `  ( |_ `  y ) )  -  S ) ) 
 <_  ( C  /  y
 ) )   &    |-  W  =  {
 y  e.  ( D 
 \  {  .1.  }
 )  |  sum_ m  e.  NN  ( ( y `
  ( L `  m ) )  /  m )  =  0 }   =>    |-  ( ph  ->  ( X  e.  W  <->  S  =  0
 ) )
 
Theoremdchrisum0fval 25194* Value of the function  F, the divisor sum of a Dirichlet character. (Contributed by Mario Carneiro, 5-May-2016.)
 |-  Z  =  (ℤ/n `  N )   &    |-  L  =  ( ZRHom `  Z )   &    |-  ( ph  ->  N  e.  NN )   &    |-  G  =  (DChr `  N )   &    |-  D  =  ( Base `  G )   &    |-  .1.  =  ( 0g `  G )   &    |-  F  =  ( b  e.  NN  |->  sum_ v  e.  { q  e.  NN  |  q  ||  b }  ( X `  ( L `
  v ) ) )   =>    |-  ( A  e.  NN  ->  ( F `  A )  =  sum_ t  e. 
 { q  e.  NN  |  q  ||  A }  ( X `  ( L `
  t ) ) )
 
Theoremdchrisum0fmul 25195* The function  F, the divisor sum of a Dirichlet character, is a multiplicative function (but not completely multiplicative). Equation 9.4.27 of [Shapiro], p. 382. (Contributed by Mario Carneiro, 5-May-2016.)
 |-  Z  =  (ℤ/n `  N )   &    |-  L  =  ( ZRHom `  Z )   &    |-  ( ph  ->  N  e.  NN )   &    |-  G  =  (DChr `  N )   &    |-  D  =  ( Base `  G )   &    |-  .1.  =  ( 0g `  G )   &    |-  F  =  ( b  e.  NN  |->  sum_ v  e.  { q  e.  NN  |  q  ||  b }  ( X `  ( L `
  v ) ) )   &    |-  ( ph  ->  X  e.  D )   &    |-  ( ph  ->  A  e.  NN )   &    |-  ( ph  ->  B  e.  NN )   &    |-  ( ph  ->  ( A  gcd  B )  =  1 )   =>    |-  ( ph  ->  ( F `  ( A  x.  B ) )  =  ( ( F `
  A )  x.  ( F `  B ) ) )
 
Theoremdchrisum0ff 25196* The function  F is a real function. (Contributed by Mario Carneiro, 5-May-2016.)
 |-  Z  =  (ℤ/n `  N )   &    |-  L  =  ( ZRHom `  Z )   &    |-  ( ph  ->  N  e.  NN )   &    |-  G  =  (DChr `  N )   &    |-  D  =  ( Base `  G )   &    |-  .1.  =  ( 0g `  G )   &    |-  F  =  ( b  e.  NN  |->  sum_ v  e.  { q  e.  NN  |  q  ||  b }  ( X `  ( L `
  v ) ) )   &    |-  ( ph  ->  X  e.  D )   &    |-  ( ph  ->  X : (
 Base `  Z ) --> RR )   =>    |-  ( ph  ->  F : NN --> RR )
 
Theoremdchrisum0flblem1 25197* Lemma for dchrisum0flb 25199. Base case, prime power. (Contributed by Mario Carneiro, 5-May-2016.)
 |-  Z  =  (ℤ/n `  N )   &    |-  L  =  ( ZRHom `  Z )   &    |-  ( ph  ->  N  e.  NN )   &    |-  G  =  (DChr `  N )   &    |-  D  =  ( Base `  G )   &    |-  .1.  =  ( 0g `  G )   &    |-  F  =  ( b  e.  NN  |->  sum_ v  e.  { q  e.  NN  |  q  ||  b }  ( X `  ( L `
  v ) ) )   &    |-  ( ph  ->  X  e.  D )   &    |-  ( ph  ->  X : (
 Base `  Z ) --> RR )   &    |-  ( ph  ->  P  e.  Prime )   &    |-  ( ph  ->  A  e.  NN0 )   =>    |-  ( ph  ->  if ( ( sqr `  ( P ^ A ) )  e.  NN ,  1 ,  0 )  <_  ( F `  ( P ^ A ) ) )
 
Theoremdchrisum0flblem2 25198* Lemma for dchrisum0flb 25199. Induction over relatively prime factors, with the prime power case handled in dchrisum0flblem1 . (Contributed by Mario Carneiro, 5-May-2016.) Replace reference to OLD theorem. (Revised by Wolf Lammen, 8-Sep-2020.)
 |-  Z  =  (ℤ/n `  N )   &    |-  L  =  ( ZRHom `  Z )   &    |-  ( ph  ->  N  e.  NN )   &    |-  G  =  (DChr `  N )   &    |-  D  =  ( Base `  G )   &    |-  .1.  =  ( 0g `  G )   &    |-  F  =  ( b  e.  NN  |->  sum_ v  e.  { q  e.  NN  |  q  ||  b }  ( X `  ( L `
  v ) ) )   &    |-  ( ph  ->  X  e.  D )   &    |-  ( ph  ->  X : (
 Base `  Z ) --> RR )   &    |-  ( ph  ->  A  e.  ( ZZ>=
 `  2 ) )   &    |-  ( ph  ->  P  e.  Prime )   &    |-  ( ph  ->  P 
 ||  A )   &    |-  ( ph  ->  A. y  e.  (
 1..^ A ) if ( ( sqr `  y
 )  e.  NN , 
 1 ,  0 ) 
 <_  ( F `  y
 ) )   =>    |-  ( ph  ->  if ( ( sqr `  A )  e.  NN ,  1 ,  0 )  <_  ( F `  A ) )
 
Theoremdchrisum0flb 25199* The divisor sum of a real Dirichlet character, is lower bounded by zero everywhere and one at the squares. Equation 9.4.29 of [Shapiro], p. 382. (Contributed by Mario Carneiro, 5-May-2016.)
 |-  Z  =  (ℤ/n `  N )   &    |-  L  =  ( ZRHom `  Z )   &    |-  ( ph  ->  N  e.  NN )   &    |-  G  =  (DChr `  N )   &    |-  D  =  ( Base `  G )   &    |-  .1.  =  ( 0g `  G )   &    |-  F  =  ( b  e.  NN  |->  sum_ v  e.  { q  e.  NN  |  q  ||  b }  ( X `  ( L `
  v ) ) )   &    |-  ( ph  ->  X  e.  D )   &    |-  ( ph  ->  X : (
 Base `  Z ) --> RR )   &    |-  ( ph  ->  A  e.  NN )   =>    |-  ( ph  ->  if ( ( sqr `  A )  e.  NN ,  1 ,  0 )  <_  ( F `  A ) )
 
Theoremdchrisum0fno1 25200* The sum  sum_ k  <_  x ,  F (
x )  /  sqr k is divergent (i.e. not eventually bounded). Equation 9.4.30 of [Shapiro], p. 383. (Contributed by Mario Carneiro, 5-May-2016.)
 |-  Z  =  (ℤ/n `  N )   &    |-  L  =  ( ZRHom `  Z )   &    |-  ( ph  ->  N  e.  NN )   &    |-  G  =  (DChr `  N )   &    |-  D  =  ( Base `  G )   &    |-  .1.  =  ( 0g `  G )   &    |-  F  =  ( b  e.  NN  |->  sum_ v  e.  { q  e.  NN  |  q  ||  b }  ( X `  ( L `
  v ) ) )   &    |-  ( ph  ->  X  e.  D )   &    |-  ( ph  ->  X : (
 Base `  Z ) --> RR )   &    |-  ( ph  ->  ( x  e.  RR+  |->  sum_ k  e.  (
 1 ... ( |_ `  x ) ) ( ( F `  k ) 
 /  ( sqr `  k
 ) ) )  e.  O(1) )   =>    |- 
 -.  ph
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42500 426 42501-42551
  Copyright terms: Public domain < Previous  Next >