MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2sqlem8a Structured version   Visualization version   Unicode version

Theorem 2sqlem8a 25150
Description: Lemma for 2sqlem8 25151. (Contributed by Mario Carneiro, 4-Jun-2016.)
Hypotheses
Ref Expression
2sq.1  |-  S  =  ran  ( w  e.  ZZ[_i]  |->  ( ( abs `  w
) ^ 2 ) )
2sqlem7.2  |-  Y  =  { z  |  E. x  e.  ZZ  E. y  e.  ZZ  ( ( x  gcd  y )  =  1  /\  z  =  ( ( x ^
2 )  +  ( y ^ 2 ) ) ) }
2sqlem9.5  |-  ( ph  ->  A. b  e.  ( 1 ... ( M  -  1 ) ) A. a  e.  Y  ( b  ||  a  ->  b  e.  S ) )
2sqlem9.7  |-  ( ph  ->  M  ||  N )
2sqlem8.n  |-  ( ph  ->  N  e.  NN )
2sqlem8.m  |-  ( ph  ->  M  e.  ( ZZ>= ` 
2 ) )
2sqlem8.1  |-  ( ph  ->  A  e.  ZZ )
2sqlem8.2  |-  ( ph  ->  B  e.  ZZ )
2sqlem8.3  |-  ( ph  ->  ( A  gcd  B
)  =  1 )
2sqlem8.4  |-  ( ph  ->  N  =  ( ( A ^ 2 )  +  ( B ^
2 ) ) )
2sqlem8.c  |-  C  =  ( ( ( A  +  ( M  / 
2 ) )  mod 
M )  -  ( M  /  2 ) )
2sqlem8.d  |-  D  =  ( ( ( B  +  ( M  / 
2 ) )  mod 
M )  -  ( M  /  2 ) )
Assertion
Ref Expression
2sqlem8a  |-  ( ph  ->  ( C  gcd  D
)  e.  NN )
Distinct variable groups:    a, b, w, x, y, z    A, a, x, y, z    x, C    ph, x, y    B, a, b, x, y    M, a, b, x, y, z    S, a, b, x, y, z    x, D    x, N, y, z    Y, a, b, x, y
Allowed substitution hints:    ph( z, w, a, b)    A( w, b)    B( z, w)    C( y, z, w, a, b)    D( y, z, w, a, b)    S( w)    M( w)    N( w, a, b)    Y( z, w)

Proof of Theorem 2sqlem8a
StepHypRef Expression
1 2sqlem8.1 . . . 4  |-  ( ph  ->  A  e.  ZZ )
2 2sqlem8.m . . . . . 6  |-  ( ph  ->  M  e.  ( ZZ>= ` 
2 ) )
3 eluz2b3 11762 . . . . . 6  |-  ( M  e.  ( ZZ>= `  2
)  <->  ( M  e.  NN  /\  M  =/=  1 ) )
42, 3sylib 208 . . . . 5  |-  ( ph  ->  ( M  e.  NN  /\  M  =/=  1 ) )
54simpld 475 . . . 4  |-  ( ph  ->  M  e.  NN )
6 2sqlem8.c . . . 4  |-  C  =  ( ( ( A  +  ( M  / 
2 ) )  mod 
M )  -  ( M  /  2 ) )
71, 5, 64sqlem5 15646 . . 3  |-  ( ph  ->  ( C  e.  ZZ  /\  ( ( A  -  C )  /  M
)  e.  ZZ ) )
87simpld 475 . 2  |-  ( ph  ->  C  e.  ZZ )
9 2sqlem8.2 . . . 4  |-  ( ph  ->  B  e.  ZZ )
10 2sqlem8.d . . . 4  |-  D  =  ( ( ( B  +  ( M  / 
2 ) )  mod 
M )  -  ( M  /  2 ) )
119, 5, 104sqlem5 15646 . . 3  |-  ( ph  ->  ( D  e.  ZZ  /\  ( ( B  -  D )  /  M
)  e.  ZZ ) )
1211simpld 475 . 2  |-  ( ph  ->  D  e.  ZZ )
134simprd 479 . . . 4  |-  ( ph  ->  M  =/=  1 )
14 simpr 477 . . . . . . . . . 10  |-  ( (
ph  /\  ( C ^ 2 )  =  0 )  ->  ( C ^ 2 )  =  0 )
151, 5, 6, 144sqlem9 15650 . . . . . . . . 9  |-  ( (
ph  /\  ( C ^ 2 )  =  0 )  ->  ( M ^ 2 )  ||  ( A ^ 2 ) )
1615ex 450 . . . . . . . 8  |-  ( ph  ->  ( ( C ^
2 )  =  0  ->  ( M ^
2 )  ||  ( A ^ 2 ) ) )
17 eluzelz 11697 . . . . . . . . . 10  |-  ( M  e.  ( ZZ>= `  2
)  ->  M  e.  ZZ )
182, 17syl 17 . . . . . . . . 9  |-  ( ph  ->  M  e.  ZZ )
19 dvdssq 15280 . . . . . . . . 9  |-  ( ( M  e.  ZZ  /\  A  e.  ZZ )  ->  ( M  ||  A  <->  ( M ^ 2 ) 
||  ( A ^
2 ) ) )
2018, 1, 19syl2anc 693 . . . . . . . 8  |-  ( ph  ->  ( M  ||  A  <->  ( M ^ 2 ) 
||  ( A ^
2 ) ) )
2116, 20sylibrd 249 . . . . . . 7  |-  ( ph  ->  ( ( C ^
2 )  =  0  ->  M  ||  A
) )
22 simpr 477 . . . . . . . . . 10  |-  ( (
ph  /\  ( D ^ 2 )  =  0 )  ->  ( D ^ 2 )  =  0 )
239, 5, 10, 224sqlem9 15650 . . . . . . . . 9  |-  ( (
ph  /\  ( D ^ 2 )  =  0 )  ->  ( M ^ 2 )  ||  ( B ^ 2 ) )
2423ex 450 . . . . . . . 8  |-  ( ph  ->  ( ( D ^
2 )  =  0  ->  ( M ^
2 )  ||  ( B ^ 2 ) ) )
25 dvdssq 15280 . . . . . . . . 9  |-  ( ( M  e.  ZZ  /\  B  e.  ZZ )  ->  ( M  ||  B  <->  ( M ^ 2 ) 
||  ( B ^
2 ) ) )
2618, 9, 25syl2anc 693 . . . . . . . 8  |-  ( ph  ->  ( M  ||  B  <->  ( M ^ 2 ) 
||  ( B ^
2 ) ) )
2724, 26sylibrd 249 . . . . . . 7  |-  ( ph  ->  ( ( D ^
2 )  =  0  ->  M  ||  B
) )
28 2sqlem8.3 . . . . . . . . . . 11  |-  ( ph  ->  ( A  gcd  B
)  =  1 )
29 ax-1ne0 10005 . . . . . . . . . . . 12  |-  1  =/=  0
3029a1i 11 . . . . . . . . . . 11  |-  ( ph  ->  1  =/=  0 )
3128, 30eqnetrd 2861 . . . . . . . . . 10  |-  ( ph  ->  ( A  gcd  B
)  =/=  0 )
3231neneqd 2799 . . . . . . . . 9  |-  ( ph  ->  -.  ( A  gcd  B )  =  0 )
33 gcdeq0 15238 . . . . . . . . . 10  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( ( A  gcd  B )  =  0  <->  ( A  =  0  /\  B  =  0 ) ) )
341, 9, 33syl2anc 693 . . . . . . . . 9  |-  ( ph  ->  ( ( A  gcd  B )  =  0  <->  ( A  =  0  /\  B  =  0 ) ) )
3532, 34mtbid 314 . . . . . . . 8  |-  ( ph  ->  -.  ( A  =  0  /\  B  =  0 ) )
36 dvdslegcd 15226 . . . . . . . 8  |-  ( ( ( M  e.  ZZ  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  -.  ( A  =  0  /\  B  =  0 ) )  -> 
( ( M  ||  A  /\  M  ||  B
)  ->  M  <_  ( A  gcd  B ) ) )
3718, 1, 9, 35, 36syl31anc 1329 . . . . . . 7  |-  ( ph  ->  ( ( M  ||  A  /\  M  ||  B
)  ->  M  <_  ( A  gcd  B ) ) )
3821, 27, 37syl2and 500 . . . . . 6  |-  ( ph  ->  ( ( ( C ^ 2 )  =  0  /\  ( D ^ 2 )  =  0 )  ->  M  <_  ( A  gcd  B
) ) )
3928breq2d 4665 . . . . . . 7  |-  ( ph  ->  ( M  <_  ( A  gcd  B )  <->  M  <_  1 ) )
40 nnle1eq1 11048 . . . . . . . 8  |-  ( M  e.  NN  ->  ( M  <_  1  <->  M  = 
1 ) )
415, 40syl 17 . . . . . . 7  |-  ( ph  ->  ( M  <_  1  <->  M  =  1 ) )
4239, 41bitrd 268 . . . . . 6  |-  ( ph  ->  ( M  <_  ( A  gcd  B )  <->  M  = 
1 ) )
4338, 42sylibd 229 . . . . 5  |-  ( ph  ->  ( ( ( C ^ 2 )  =  0  /\  ( D ^ 2 )  =  0 )  ->  M  =  1 ) )
4443necon3ad 2807 . . . 4  |-  ( ph  ->  ( M  =/=  1  ->  -.  ( ( C ^ 2 )  =  0  /\  ( D ^ 2 )  =  0 ) ) )
4513, 44mpd 15 . . 3  |-  ( ph  ->  -.  ( ( C ^ 2 )  =  0  /\  ( D ^ 2 )  =  0 ) )
468zcnd 11483 . . . . 5  |-  ( ph  ->  C  e.  CC )
47 sqeq0 12927 . . . . 5  |-  ( C  e.  CC  ->  (
( C ^ 2 )  =  0  <->  C  =  0 ) )
4846, 47syl 17 . . . 4  |-  ( ph  ->  ( ( C ^
2 )  =  0  <-> 
C  =  0 ) )
4912zcnd 11483 . . . . 5  |-  ( ph  ->  D  e.  CC )
50 sqeq0 12927 . . . . 5  |-  ( D  e.  CC  ->  (
( D ^ 2 )  =  0  <->  D  =  0 ) )
5149, 50syl 17 . . . 4  |-  ( ph  ->  ( ( D ^
2 )  =  0  <-> 
D  =  0 ) )
5248, 51anbi12d 747 . . 3  |-  ( ph  ->  ( ( ( C ^ 2 )  =  0  /\  ( D ^ 2 )  =  0 )  <->  ( C  =  0  /\  D  =  0 ) ) )
5345, 52mtbid 314 . 2  |-  ( ph  ->  -.  ( C  =  0  /\  D  =  0 ) )
54 gcdn0cl 15224 . 2  |-  ( ( ( C  e.  ZZ  /\  D  e.  ZZ )  /\  -.  ( C  =  0  /\  D  =  0 ) )  ->  ( C  gcd  D )  e.  NN )
558, 12, 53, 54syl21anc 1325 1  |-  ( ph  ->  ( C  gcd  D
)  e.  NN )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   {cab 2608    =/= wne 2794   A.wral 2912   E.wrex 2913   class class class wbr 4653    |-> cmpt 4729   ran crn 5115   ` cfv 5888  (class class class)co 6650   CCcc 9934   0cc0 9936   1c1 9937    + caddc 9939    <_ cle 10075    - cmin 10266    / cdiv 10684   NNcn 11020   2c2 11070   ZZcz 11377   ZZ>=cuz 11687   ...cfz 12326    mod cmo 12668   ^cexp 12860   abscabs 13974    || cdvds 14983    gcd cgcd 15216   ZZ[_i]cgz 15633
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-dvds 14984  df-gcd 15217
This theorem is referenced by:  2sqlem8  25151
  Copyright terms: Public domain W3C validator