MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2sqlem7 Structured version   Visualization version   Unicode version

Theorem 2sqlem7 25149
Description: Lemma for 2sq 25155. (Contributed by Mario Carneiro, 19-Jun-2015.)
Hypotheses
Ref Expression
2sq.1  |-  S  =  ran  ( w  e.  ZZ[_i]  |->  ( ( abs `  w
) ^ 2 ) )
2sqlem7.2  |-  Y  =  { z  |  E. x  e.  ZZ  E. y  e.  ZZ  ( ( x  gcd  y )  =  1  /\  z  =  ( ( x ^
2 )  +  ( y ^ 2 ) ) ) }
Assertion
Ref Expression
2sqlem7  |-  Y  C_  ( S  i^i  NN )
Distinct variable groups:    x, w, y, z    x, S, y, z    x, Y, y
Allowed substitution hints:    S( w)    Y( z, w)

Proof of Theorem 2sqlem7
StepHypRef Expression
1 2sqlem7.2 . 2  |-  Y  =  { z  |  E. x  e.  ZZ  E. y  e.  ZZ  ( ( x  gcd  y )  =  1  /\  z  =  ( ( x ^
2 )  +  ( y ^ 2 ) ) ) }
2 simpr 477 . . . . . . 7  |-  ( ( ( x  gcd  y
)  =  1  /\  z  =  ( ( x ^ 2 )  +  ( y ^
2 ) ) )  ->  z  =  ( ( x ^ 2 )  +  ( y ^ 2 ) ) )
32reximi 3011 . . . . . 6  |-  ( E. y  e.  ZZ  (
( x  gcd  y
)  =  1  /\  z  =  ( ( x ^ 2 )  +  ( y ^
2 ) ) )  ->  E. y  e.  ZZ  z  =  ( (
x ^ 2 )  +  ( y ^
2 ) ) )
43reximi 3011 . . . . 5  |-  ( E. x  e.  ZZ  E. y  e.  ZZ  (
( x  gcd  y
)  =  1  /\  z  =  ( ( x ^ 2 )  +  ( y ^
2 ) ) )  ->  E. x  e.  ZZ  E. y  e.  ZZ  z  =  ( ( x ^ 2 )  +  ( y ^ 2 ) ) )
5 2sq.1 . . . . . 6  |-  S  =  ran  ( w  e.  ZZ[_i]  |->  ( ( abs `  w
) ^ 2 ) )
652sqlem2 25143 . . . . 5  |-  ( z  e.  S  <->  E. x  e.  ZZ  E. y  e.  ZZ  z  =  ( ( x ^ 2 )  +  ( y ^ 2 ) ) )
74, 6sylibr 224 . . . 4  |-  ( E. x  e.  ZZ  E. y  e.  ZZ  (
( x  gcd  y
)  =  1  /\  z  =  ( ( x ^ 2 )  +  ( y ^
2 ) ) )  ->  z  e.  S
)
8 ax-1ne0 10005 . . . . . . . . . 10  |-  1  =/=  0
9 gcdeq0 15238 . . . . . . . . . . . . 13  |-  ( ( x  e.  ZZ  /\  y  e.  ZZ )  ->  ( ( x  gcd  y )  =  0  <-> 
( x  =  0  /\  y  =  0 ) ) )
109adantr 481 . . . . . . . . . . . 12  |-  ( ( ( x  e.  ZZ  /\  y  e.  ZZ )  /\  ( x  gcd  y )  =  1 )  ->  ( (
x  gcd  y )  =  0  <->  ( x  =  0  /\  y  =  0 ) ) )
11 simpr 477 . . . . . . . . . . . . 13  |-  ( ( ( x  e.  ZZ  /\  y  e.  ZZ )  /\  ( x  gcd  y )  =  1 )  ->  ( x  gcd  y )  =  1 )
1211eqeq1d 2624 . . . . . . . . . . . 12  |-  ( ( ( x  e.  ZZ  /\  y  e.  ZZ )  /\  ( x  gcd  y )  =  1 )  ->  ( (
x  gcd  y )  =  0  <->  1  = 
0 ) )
1310, 12bitr3d 270 . . . . . . . . . . 11  |-  ( ( ( x  e.  ZZ  /\  y  e.  ZZ )  /\  ( x  gcd  y )  =  1 )  ->  ( (
x  =  0  /\  y  =  0 )  <->  1  =  0 ) )
1413necon3bbid 2831 . . . . . . . . . 10  |-  ( ( ( x  e.  ZZ  /\  y  e.  ZZ )  /\  ( x  gcd  y )  =  1 )  ->  ( -.  ( x  =  0  /\  y  =  0
)  <->  1  =/=  0
) )
158, 14mpbiri 248 . . . . . . . . 9  |-  ( ( ( x  e.  ZZ  /\  y  e.  ZZ )  /\  ( x  gcd  y )  =  1 )  ->  -.  (
x  =  0  /\  y  =  0 ) )
16 zsqcl2 12941 . . . . . . . . . . . . 13  |-  ( x  e.  ZZ  ->  (
x ^ 2 )  e.  NN0 )
1716ad2antrr 762 . . . . . . . . . . . 12  |-  ( ( ( x  e.  ZZ  /\  y  e.  ZZ )  /\  ( x  gcd  y )  =  1 )  ->  ( x ^ 2 )  e. 
NN0 )
1817nn0red 11352 . . . . . . . . . . 11  |-  ( ( ( x  e.  ZZ  /\  y  e.  ZZ )  /\  ( x  gcd  y )  =  1 )  ->  ( x ^ 2 )  e.  RR )
1917nn0ge0d 11354 . . . . . . . . . . 11  |-  ( ( ( x  e.  ZZ  /\  y  e.  ZZ )  /\  ( x  gcd  y )  =  1 )  ->  0  <_  ( x ^ 2 ) )
20 zsqcl2 12941 . . . . . . . . . . . . 13  |-  ( y  e.  ZZ  ->  (
y ^ 2 )  e.  NN0 )
2120ad2antlr 763 . . . . . . . . . . . 12  |-  ( ( ( x  e.  ZZ  /\  y  e.  ZZ )  /\  ( x  gcd  y )  =  1 )  ->  ( y ^ 2 )  e. 
NN0 )
2221nn0red 11352 . . . . . . . . . . 11  |-  ( ( ( x  e.  ZZ  /\  y  e.  ZZ )  /\  ( x  gcd  y )  =  1 )  ->  ( y ^ 2 )  e.  RR )
2321nn0ge0d 11354 . . . . . . . . . . 11  |-  ( ( ( x  e.  ZZ  /\  y  e.  ZZ )  /\  ( x  gcd  y )  =  1 )  ->  0  <_  ( y ^ 2 ) )
24 add20 10540 . . . . . . . . . . 11  |-  ( ( ( ( x ^
2 )  e.  RR  /\  0  <_  ( x ^ 2 ) )  /\  ( ( y ^ 2 )  e.  RR  /\  0  <_ 
( y ^ 2 ) ) )  -> 
( ( ( x ^ 2 )  +  ( y ^ 2 ) )  =  0  <-> 
( ( x ^
2 )  =  0  /\  ( y ^
2 )  =  0 ) ) )
2518, 19, 22, 23, 24syl22anc 1327 . . . . . . . . . 10  |-  ( ( ( x  e.  ZZ  /\  y  e.  ZZ )  /\  ( x  gcd  y )  =  1 )  ->  ( (
( x ^ 2 )  +  ( y ^ 2 ) )  =  0  <->  ( (
x ^ 2 )  =  0  /\  (
y ^ 2 )  =  0 ) ) )
26 zcn 11382 . . . . . . . . . . . 12  |-  ( x  e.  ZZ  ->  x  e.  CC )
2726ad2antrr 762 . . . . . . . . . . 11  |-  ( ( ( x  e.  ZZ  /\  y  e.  ZZ )  /\  ( x  gcd  y )  =  1 )  ->  x  e.  CC )
28 zcn 11382 . . . . . . . . . . . 12  |-  ( y  e.  ZZ  ->  y  e.  CC )
2928ad2antlr 763 . . . . . . . . . . 11  |-  ( ( ( x  e.  ZZ  /\  y  e.  ZZ )  /\  ( x  gcd  y )  =  1 )  ->  y  e.  CC )
30 sqeq0 12927 . . . . . . . . . . . 12  |-  ( x  e.  CC  ->  (
( x ^ 2 )  =  0  <->  x  =  0 ) )
31 sqeq0 12927 . . . . . . . . . . . 12  |-  ( y  e.  CC  ->  (
( y ^ 2 )  =  0  <->  y  =  0 ) )
3230, 31bi2anan9 917 . . . . . . . . . . 11  |-  ( ( x  e.  CC  /\  y  e.  CC )  ->  ( ( ( x ^ 2 )  =  0  /\  ( y ^ 2 )  =  0 )  <->  ( x  =  0  /\  y  =  0 ) ) )
3327, 29, 32syl2anc 693 . . . . . . . . . 10  |-  ( ( ( x  e.  ZZ  /\  y  e.  ZZ )  /\  ( x  gcd  y )  =  1 )  ->  ( (
( x ^ 2 )  =  0  /\  ( y ^ 2 )  =  0 )  <-> 
( x  =  0  /\  y  =  0 ) ) )
3425, 33bitrd 268 . . . . . . . . 9  |-  ( ( ( x  e.  ZZ  /\  y  e.  ZZ )  /\  ( x  gcd  y )  =  1 )  ->  ( (
( x ^ 2 )  +  ( y ^ 2 ) )  =  0  <->  ( x  =  0  /\  y  =  0 ) ) )
3515, 34mtbird 315 . . . . . . . 8  |-  ( ( ( x  e.  ZZ  /\  y  e.  ZZ )  /\  ( x  gcd  y )  =  1 )  ->  -.  (
( x ^ 2 )  +  ( y ^ 2 ) )  =  0 )
36 nn0addcl 11328 . . . . . . . . . . . 12  |-  ( ( ( x ^ 2 )  e.  NN0  /\  ( y ^ 2 )  e.  NN0 )  ->  ( ( x ^
2 )  +  ( y ^ 2 ) )  e.  NN0 )
3716, 20, 36syl2an 494 . . . . . . . . . . 11  |-  ( ( x  e.  ZZ  /\  y  e.  ZZ )  ->  ( ( x ^
2 )  +  ( y ^ 2 ) )  e.  NN0 )
3837adantr 481 . . . . . . . . . 10  |-  ( ( ( x  e.  ZZ  /\  y  e.  ZZ )  /\  ( x  gcd  y )  =  1 )  ->  ( (
x ^ 2 )  +  ( y ^
2 ) )  e. 
NN0 )
39 elnn0 11294 . . . . . . . . . 10  |-  ( ( ( x ^ 2 )  +  ( y ^ 2 ) )  e.  NN0  <->  ( ( ( x ^ 2 )  +  ( y ^
2 ) )  e.  NN  \/  ( ( x ^ 2 )  +  ( y ^
2 ) )  =  0 ) )
4038, 39sylib 208 . . . . . . . . 9  |-  ( ( ( x  e.  ZZ  /\  y  e.  ZZ )  /\  ( x  gcd  y )  =  1 )  ->  ( (
( x ^ 2 )  +  ( y ^ 2 ) )  e.  NN  \/  (
( x ^ 2 )  +  ( y ^ 2 ) )  =  0 ) )
4140ord 392 . . . . . . . 8  |-  ( ( ( x  e.  ZZ  /\  y  e.  ZZ )  /\  ( x  gcd  y )  =  1 )  ->  ( -.  ( ( x ^
2 )  +  ( y ^ 2 ) )  e.  NN  ->  ( ( x ^ 2 )  +  ( y ^ 2 ) )  =  0 ) )
4235, 41mt3d 140 . . . . . . 7  |-  ( ( ( x  e.  ZZ  /\  y  e.  ZZ )  /\  ( x  gcd  y )  =  1 )  ->  ( (
x ^ 2 )  +  ( y ^
2 ) )  e.  NN )
43 eleq1 2689 . . . . . . 7  |-  ( z  =  ( ( x ^ 2 )  +  ( y ^ 2 ) )  ->  (
z  e.  NN  <->  ( (
x ^ 2 )  +  ( y ^
2 ) )  e.  NN ) )
4442, 43syl5ibrcom 237 . . . . . 6  |-  ( ( ( x  e.  ZZ  /\  y  e.  ZZ )  /\  ( x  gcd  y )  =  1 )  ->  ( z  =  ( ( x ^ 2 )  +  ( y ^ 2 ) )  ->  z  e.  NN ) )
4544expimpd 629 . . . . 5  |-  ( ( x  e.  ZZ  /\  y  e.  ZZ )  ->  ( ( ( x  gcd  y )  =  1  /\  z  =  ( ( x ^
2 )  +  ( y ^ 2 ) ) )  ->  z  e.  NN ) )
4645rexlimivv 3036 . . . 4  |-  ( E. x  e.  ZZ  E. y  e.  ZZ  (
( x  gcd  y
)  =  1  /\  z  =  ( ( x ^ 2 )  +  ( y ^
2 ) ) )  ->  z  e.  NN )
477, 46elind 3798 . . 3  |-  ( E. x  e.  ZZ  E. y  e.  ZZ  (
( x  gcd  y
)  =  1  /\  z  =  ( ( x ^ 2 )  +  ( y ^
2 ) ) )  ->  z  e.  ( S  i^i  NN ) )
4847abssi 3677 . 2  |-  { z  |  E. x  e.  ZZ  E. y  e.  ZZ  ( ( x  gcd  y )  =  1  /\  z  =  ( ( x ^
2 )  +  ( y ^ 2 ) ) ) }  C_  ( S  i^i  NN )
491, 48eqsstri 3635 1  |-  Y  C_  ( S  i^i  NN )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    <-> wb 196    \/ wo 383    /\ wa 384    = wceq 1483    e. wcel 1990   {cab 2608    =/= wne 2794   E.wrex 2913    i^i cin 3573    C_ wss 3574   class class class wbr 4653    |-> cmpt 4729   ran crn 5115   ` cfv 5888  (class class class)co 6650   CCcc 9934   RRcr 9935   0cc0 9936   1c1 9937    + caddc 9939    <_ cle 10075   NNcn 11020   2c2 11070   NN0cn0 11292   ZZcz 11377   ^cexp 12860   abscabs 13974    gcd cgcd 15216   ZZ[_i]cgz 15633
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-dvds 14984  df-gcd 15217  df-gz 15634
This theorem is referenced by:  2sqlem8  25151  2sqlem9  25152
  Copyright terms: Public domain W3C validator