Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ballotlemimin Structured version   Visualization version   Unicode version

Theorem ballotlemimin 30567
Description:  ( I `  C ) is the first tie. (Contributed by Thierry Arnoux, 1-Dec-2016.) (Revised by AV, 6-Oct-2020.)
Hypotheses
Ref Expression
ballotth.m  |-  M  e.  NN
ballotth.n  |-  N  e.  NN
ballotth.o  |-  O  =  { c  e.  ~P ( 1 ... ( M  +  N )
)  |  ( # `  c )  =  M }
ballotth.p  |-  P  =  ( x  e.  ~P O  |->  ( ( # `  x )  /  ( # `
 O ) ) )
ballotth.f  |-  F  =  ( c  e.  O  |->  ( i  e.  ZZ  |->  ( ( # `  (
( 1 ... i
)  i^i  c )
)  -  ( # `  ( ( 1 ... i )  \  c
) ) ) ) )
ballotth.e  |-  E  =  { c  e.  O  |  A. i  e.  ( 1 ... ( M  +  N ) ) 0  <  ( ( F `  c ) `
 i ) }
ballotth.mgtn  |-  N  < 
M
ballotth.i  |-  I  =  ( c  e.  ( O  \  E ) 
|-> inf ( { k  e.  ( 1 ... ( M  +  N )
)  |  ( ( F `  c ) `
 k )  =  0 } ,  RR ,  <  ) )
Assertion
Ref Expression
ballotlemimin  |-  ( C  e.  ( O  \  E )  ->  -.  E. k  e.  ( 1 ... ( ( I `
 C )  - 
1 ) ) ( ( F `  C
) `  k )  =  0 )
Distinct variable groups:    M, c    N, c    O, c    i, M   
i, N    i, O    k, M    k, N    k, O    i, c, F, k    C, i, k    i, E, k    C, k    k, I   
k, c, E    i, I
Allowed substitution hints:    C( x, c)    P( x, i, k, c)    E( x)    F( x)    I( x, c)    M( x)    N( x)    O( x)

Proof of Theorem ballotlemimin
Dummy variables  y 
z  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elfzle2 12345 . . . . . 6  |-  ( k  e.  ( 1 ... ( ( I `  C )  -  1 ) )  ->  k  <_  ( ( I `  C )  -  1 ) )
21adantl 482 . . . . 5  |-  ( ( C  e.  ( O 
\  E )  /\  k  e.  ( 1 ... ( ( I `
 C )  - 
1 ) ) )  ->  k  <_  (
( I `  C
)  -  1 ) )
3 elfzelz 12342 . . . . . 6  |-  ( k  e.  ( 1 ... ( ( I `  C )  -  1 ) )  ->  k  e.  ZZ )
4 ballotth.m . . . . . . . . . 10  |-  M  e.  NN
5 ballotth.n . . . . . . . . . 10  |-  N  e.  NN
6 ballotth.o . . . . . . . . . 10  |-  O  =  { c  e.  ~P ( 1 ... ( M  +  N )
)  |  ( # `  c )  =  M }
7 ballotth.p . . . . . . . . . 10  |-  P  =  ( x  e.  ~P O  |->  ( ( # `  x )  /  ( # `
 O ) ) )
8 ballotth.f . . . . . . . . . 10  |-  F  =  ( c  e.  O  |->  ( i  e.  ZZ  |->  ( ( # `  (
( 1 ... i
)  i^i  c )
)  -  ( # `  ( ( 1 ... i )  \  c
) ) ) ) )
9 ballotth.e . . . . . . . . . 10  |-  E  =  { c  e.  O  |  A. i  e.  ( 1 ... ( M  +  N ) ) 0  <  ( ( F `  c ) `
 i ) }
10 ballotth.mgtn . . . . . . . . . 10  |-  N  < 
M
11 ballotth.i . . . . . . . . . 10  |-  I  =  ( c  e.  ( O  \  E ) 
|-> inf ( { k  e.  ( 1 ... ( M  +  N )
)  |  ( ( F `  c ) `
 k )  =  0 } ,  RR ,  <  ) )
124, 5, 6, 7, 8, 9, 10, 11ballotlemiex 30563 . . . . . . . . 9  |-  ( C  e.  ( O  \  E )  ->  (
( I `  C
)  e.  ( 1 ... ( M  +  N ) )  /\  ( ( F `  C ) `  (
I `  C )
)  =  0 ) )
1312simpld 475 . . . . . . . 8  |-  ( C  e.  ( O  \  E )  ->  (
I `  C )  e.  ( 1 ... ( M  +  N )
) )
14 elfznn 12370 . . . . . . . 8  |-  ( ( I `  C )  e.  ( 1 ... ( M  +  N
) )  ->  (
I `  C )  e.  NN )
1513, 14syl 17 . . . . . . 7  |-  ( C  e.  ( O  \  E )  ->  (
I `  C )  e.  NN )
1615nnzd 11481 . . . . . 6  |-  ( C  e.  ( O  \  E )  ->  (
I `  C )  e.  ZZ )
17 zltlem1 11430 . . . . . 6  |-  ( ( k  e.  ZZ  /\  ( I `  C
)  e.  ZZ )  ->  ( k  < 
( I `  C
)  <->  k  <_  (
( I `  C
)  -  1 ) ) )
183, 16, 17syl2anr 495 . . . . 5  |-  ( ( C  e.  ( O 
\  E )  /\  k  e.  ( 1 ... ( ( I `
 C )  - 
1 ) ) )  ->  ( k  < 
( I `  C
)  <->  k  <_  (
( I `  C
)  -  1 ) ) )
192, 18mpbird 247 . . . 4  |-  ( ( C  e.  ( O 
\  E )  /\  k  e.  ( 1 ... ( ( I `
 C )  - 
1 ) ) )  ->  k  <  (
I `  C )
)
2019adantr 481 . . 3  |-  ( ( ( C  e.  ( O  \  E )  /\  k  e.  ( 1 ... ( ( I `  C )  -  1 ) ) )  /\  ( ( F `  C ) `
 k )  =  0 )  ->  k  <  ( I `  C
) )
21 1zzd 11408 . . . . . . . . . . . . 13  |-  ( C  e.  ( O  \  E )  ->  1  e.  ZZ )
2216, 21zsubcld 11487 . . . . . . . . . . . 12  |-  ( C  e.  ( O  \  E )  ->  (
( I `  C
)  -  1 )  e.  ZZ )
2322zred 11482 . . . . . . . . . . 11  |-  ( C  e.  ( O  \  E )  ->  (
( I `  C
)  -  1 )  e.  RR )
24 nnaddcl 11042 . . . . . . . . . . . . . 14  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( M  +  N
)  e.  NN )
254, 5, 24mp2an 708 . . . . . . . . . . . . 13  |-  ( M  +  N )  e.  NN
2625a1i 11 . . . . . . . . . . . 12  |-  ( C  e.  ( O  \  E )  ->  ( M  +  N )  e.  NN )
2726nnred 11035 . . . . . . . . . . 11  |-  ( C  e.  ( O  \  E )  ->  ( M  +  N )  e.  RR )
28 elfzle2 12345 . . . . . . . . . . . . 13  |-  ( ( I `  C )  e.  ( 1 ... ( M  +  N
) )  ->  (
I `  C )  <_  ( M  +  N
) )
2913, 28syl 17 . . . . . . . . . . . 12  |-  ( C  e.  ( O  \  E )  ->  (
I `  C )  <_  ( M  +  N
) )
3026nnzd 11481 . . . . . . . . . . . . 13  |-  ( C  e.  ( O  \  E )  ->  ( M  +  N )  e.  ZZ )
31 zlem1lt 11429 . . . . . . . . . . . . 13  |-  ( ( ( I `  C
)  e.  ZZ  /\  ( M  +  N
)  e.  ZZ )  ->  ( ( I `
 C )  <_ 
( M  +  N
)  <->  ( ( I `
 C )  - 
1 )  <  ( M  +  N )
) )
3216, 30, 31syl2anc 693 . . . . . . . . . . . 12  |-  ( C  e.  ( O  \  E )  ->  (
( I `  C
)  <_  ( M  +  N )  <->  ( (
I `  C )  -  1 )  < 
( M  +  N
) ) )
3329, 32mpbid 222 . . . . . . . . . . 11  |-  ( C  e.  ( O  \  E )  ->  (
( I `  C
)  -  1 )  <  ( M  +  N ) )
3423, 27, 33ltled 10185 . . . . . . . . . 10  |-  ( C  e.  ( O  \  E )  ->  (
( I `  C
)  -  1 )  <_  ( M  +  N ) )
35 eluz 11701 . . . . . . . . . . 11  |-  ( ( ( ( I `  C )  -  1 )  e.  ZZ  /\  ( M  +  N
)  e.  ZZ )  ->  ( ( M  +  N )  e.  ( ZZ>= `  ( (
I `  C )  -  1 ) )  <-> 
( ( I `  C )  -  1 )  <_  ( M  +  N ) ) )
3622, 30, 35syl2anc 693 . . . . . . . . . 10  |-  ( C  e.  ( O  \  E )  ->  (
( M  +  N
)  e.  ( ZZ>= `  ( ( I `  C )  -  1 ) )  <->  ( (
I `  C )  -  1 )  <_ 
( M  +  N
) ) )
3734, 36mpbird 247 . . . . . . . . 9  |-  ( C  e.  ( O  \  E )  ->  ( M  +  N )  e.  ( ZZ>= `  ( (
I `  C )  -  1 ) ) )
38 fzss2 12381 . . . . . . . . 9  |-  ( ( M  +  N )  e.  ( ZZ>= `  (
( I `  C
)  -  1 ) )  ->  ( 1 ... ( ( I `
 C )  - 
1 ) )  C_  ( 1 ... ( M  +  N )
) )
3937, 38syl 17 . . . . . . . 8  |-  ( C  e.  ( O  \  E )  ->  (
1 ... ( ( I `
 C )  - 
1 ) )  C_  ( 1 ... ( M  +  N )
) )
4039sseld 3602 . . . . . . 7  |-  ( C  e.  ( O  \  E )  ->  (
k  e.  ( 1 ... ( ( I `
 C )  - 
1 ) )  -> 
k  e.  ( 1 ... ( M  +  N ) ) ) )
41 rabid 3116 . . . . . . . 8  |-  ( k  e.  { k  e.  ( 1 ... ( M  +  N )
)  |  ( ( F `  C ) `
 k )  =  0 }  <->  ( k  e.  ( 1 ... ( M  +  N )
)  /\  ( ( F `  C ) `  k )  =  0 ) )
424, 5, 6, 7, 8, 9, 10, 11ballotlemsup 30566 . . . . . . . . . 10  |-  ( C  e.  ( O  \  E )  ->  E. z  e.  RR  ( A. w  e.  { k  e.  ( 1 ... ( M  +  N ) )  |  ( ( F `
 C ) `  k )  =  0 }  -.  w  < 
z  /\  A. w  e.  RR  ( z  < 
w  ->  E. y  e.  { k  e.  ( 1 ... ( M  +  N ) )  |  ( ( F `
 C ) `  k )  =  0 } y  <  w
) ) )
43 ltso 10118 . . . . . . . . . . . 12  |-  <  Or  RR
4443a1i 11 . . . . . . . . . . 11  |-  ( E. z  e.  RR  ( A. w  e.  { k  e.  ( 1 ... ( M  +  N
) )  |  ( ( F `  C
) `  k )  =  0 }  -.  w  <  z  /\  A. w  e.  RR  (
z  <  w  ->  E. y  e.  { k  e.  ( 1 ... ( M  +  N
) )  |  ( ( F `  C
) `  k )  =  0 } y  <  w ) )  ->  <  Or  RR )
45 id 22 . . . . . . . . . . 11  |-  ( E. z  e.  RR  ( A. w  e.  { k  e.  ( 1 ... ( M  +  N
) )  |  ( ( F `  C
) `  k )  =  0 }  -.  w  <  z  /\  A. w  e.  RR  (
z  <  w  ->  E. y  e.  { k  e.  ( 1 ... ( M  +  N
) )  |  ( ( F `  C
) `  k )  =  0 } y  <  w ) )  ->  E. z  e.  RR  ( A. w  e.  {
k  e.  ( 1 ... ( M  +  N ) )  |  ( ( F `  C ) `  k
)  =  0 }  -.  w  <  z  /\  A. w  e.  RR  ( z  <  w  ->  E. y  e.  {
k  e.  ( 1 ... ( M  +  N ) )  |  ( ( F `  C ) `  k
)  =  0 } y  <  w ) ) )
4644, 45inflb 8395 . . . . . . . . . 10  |-  ( E. z  e.  RR  ( A. w  e.  { k  e.  ( 1 ... ( M  +  N
) )  |  ( ( F `  C
) `  k )  =  0 }  -.  w  <  z  /\  A. w  e.  RR  (
z  <  w  ->  E. y  e.  { k  e.  ( 1 ... ( M  +  N
) )  |  ( ( F `  C
) `  k )  =  0 } y  <  w ) )  ->  ( k  e. 
{ k  e.  ( 1 ... ( M  +  N ) )  |  ( ( F `
 C ) `  k )  =  0 }  ->  -.  k  < inf ( { k  e.  ( 1 ... ( M  +  N )
)  |  ( ( F `  C ) `
 k )  =  0 } ,  RR ,  <  ) ) )
4742, 46syl 17 . . . . . . . . 9  |-  ( C  e.  ( O  \  E )  ->  (
k  e.  { k  e.  ( 1 ... ( M  +  N
) )  |  ( ( F `  C
) `  k )  =  0 }  ->  -.  k  < inf ( {
k  e.  ( 1 ... ( M  +  N ) )  |  ( ( F `  C ) `  k
)  =  0 } ,  RR ,  <  ) ) )
484, 5, 6, 7, 8, 9, 10, 11ballotlemi 30562 . . . . . . . . . . 11  |-  ( C  e.  ( O  \  E )  ->  (
I `  C )  = inf ( { k  e.  ( 1 ... ( M  +  N )
)  |  ( ( F `  C ) `
 k )  =  0 } ,  RR ,  <  ) )
4948breq2d 4665 . . . . . . . . . 10  |-  ( C  e.  ( O  \  E )  ->  (
k  <  ( I `  C )  <->  k  < inf ( { k  e.  ( 1 ... ( M  +  N ) )  |  ( ( F `
 C ) `  k )  =  0 } ,  RR ,  <  ) ) )
5049notbid 308 . . . . . . . . 9  |-  ( C  e.  ( O  \  E )  ->  ( -.  k  <  ( I `
 C )  <->  -.  k  < inf ( { k  e.  ( 1 ... ( M  +  N )
)  |  ( ( F `  C ) `
 k )  =  0 } ,  RR ,  <  ) ) )
5147, 50sylibrd 249 . . . . . . . 8  |-  ( C  e.  ( O  \  E )  ->  (
k  e.  { k  e.  ( 1 ... ( M  +  N
) )  |  ( ( F `  C
) `  k )  =  0 }  ->  -.  k  <  ( I `
 C ) ) )
5241, 51syl5bir 233 . . . . . . 7  |-  ( C  e.  ( O  \  E )  ->  (
( k  e.  ( 1 ... ( M  +  N ) )  /\  ( ( F `
 C ) `  k )  =  0 )  ->  -.  k  <  ( I `  C
) ) )
5340, 52syland 498 . . . . . 6  |-  ( C  e.  ( O  \  E )  ->  (
( k  e.  ( 1 ... ( ( I `  C )  -  1 ) )  /\  ( ( F `
 C ) `  k )  =  0 )  ->  -.  k  <  ( I `  C
) ) )
5453imp 445 . . . . 5  |-  ( ( C  e.  ( O 
\  E )  /\  ( k  e.  ( 1 ... ( ( I `  C )  -  1 ) )  /\  ( ( F `
 C ) `  k )  =  0 ) )  ->  -.  k  <  ( I `  C ) )
55 biid 251 . . . . 5  |-  ( k  <  ( I `  C )  <->  k  <  ( I `  C ) )
5654, 55sylnib 318 . . . 4  |-  ( ( C  e.  ( O 
\  E )  /\  ( k  e.  ( 1 ... ( ( I `  C )  -  1 ) )  /\  ( ( F `
 C ) `  k )  =  0 ) )  ->  -.  k  <  ( I `  C ) )
5756anassrs 680 . . 3  |-  ( ( ( C  e.  ( O  \  E )  /\  k  e.  ( 1 ... ( ( I `  C )  -  1 ) ) )  /\  ( ( F `  C ) `
 k )  =  0 )  ->  -.  k  <  ( I `  C ) )
5820, 57pm2.65da 600 . 2  |-  ( ( C  e.  ( O 
\  E )  /\  k  e.  ( 1 ... ( ( I `
 C )  - 
1 ) ) )  ->  -.  ( ( F `  C ) `  k )  =  0 )
5958nrexdv 3001 1  |-  ( C  e.  ( O  \  E )  ->  -.  E. k  e.  ( 1 ... ( ( I `
 C )  - 
1 ) ) ( ( F `  C
) `  k )  =  0 )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   E.wrex 2913   {crab 2916    \ cdif 3571    i^i cin 3573    C_ wss 3574   ~Pcpw 4158   class class class wbr 4653    |-> cmpt 4729    Or wor 5034   ` cfv 5888  (class class class)co 6650  infcinf 8347   RRcr 9935   0cc0 9936   1c1 9937    + caddc 9939    < clt 10074    <_ cle 10075    - cmin 10266    / cdiv 10684   NNcn 11020   ZZcz 11377   ZZ>=cuz 11687   ...cfz 12326   #chash 13117
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-hash 13118
This theorem is referenced by:  ballotlemic  30568  ballotlem1c  30569
  Copyright terms: Public domain W3C validator