MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bezoutr1 Structured version   Visualization version   Unicode version

Theorem bezoutr1 15282
Description: Converse of bezout 15260 for when the greater common divisor is one (sufficient condition for relative primality). (Contributed by Stefan O'Rear, 23-Sep-2014.)
Assertion
Ref Expression
bezoutr1  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( X  e.  ZZ  /\  Y  e.  ZZ ) )  -> 
( ( ( A  x.  X )  +  ( B  x.  Y
) )  =  1  ->  ( A  gcd  B )  =  1 ) )

Proof of Theorem bezoutr1
StepHypRef Expression
1 bezoutr 15281 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( X  e.  ZZ  /\  Y  e.  ZZ ) )  -> 
( A  gcd  B
)  ||  ( ( A  x.  X )  +  ( B  x.  Y ) ) )
21adantr 481 . . . . 5  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( X  e.  ZZ  /\  Y  e.  ZZ ) )  /\  ( ( A  x.  X )  +  ( B  x.  Y ) )  =  1 )  ->  ( A  gcd  B )  ||  ( ( A  x.  X )  +  ( B  x.  Y ) ) )
3 simpr 477 . . . . 5  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( X  e.  ZZ  /\  Y  e.  ZZ ) )  /\  ( ( A  x.  X )  +  ( B  x.  Y ) )  =  1 )  ->  ( ( A  x.  X )  +  ( B  x.  Y
) )  =  1 )
42, 3breqtrd 4679 . . . 4  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( X  e.  ZZ  /\  Y  e.  ZZ ) )  /\  ( ( A  x.  X )  +  ( B  x.  Y ) )  =  1 )  ->  ( A  gcd  B )  ||  1 )
5 gcdcl 15228 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( A  gcd  B
)  e.  NN0 )
65nn0zd 11480 . . . . . 6  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( A  gcd  B
)  e.  ZZ )
76ad2antrr 762 . . . . 5  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( X  e.  ZZ  /\  Y  e.  ZZ ) )  /\  ( ( A  x.  X )  +  ( B  x.  Y ) )  =  1 )  ->  ( A  gcd  B )  e.  ZZ )
8 1nn 11031 . . . . . 6  |-  1  e.  NN
98a1i 11 . . . . 5  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( X  e.  ZZ  /\  Y  e.  ZZ ) )  /\  ( ( A  x.  X )  +  ( B  x.  Y ) )  =  1 )  ->  1  e.  NN )
10 dvdsle 15032 . . . . 5  |-  ( ( ( A  gcd  B
)  e.  ZZ  /\  1  e.  NN )  ->  ( ( A  gcd  B )  ||  1  -> 
( A  gcd  B
)  <_  1 ) )
117, 9, 10syl2anc 693 . . . 4  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( X  e.  ZZ  /\  Y  e.  ZZ ) )  /\  ( ( A  x.  X )  +  ( B  x.  Y ) )  =  1 )  ->  ( ( A  gcd  B )  ||  1  ->  ( A  gcd  B )  <_  1 ) )
124, 11mpd 15 . . 3  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( X  e.  ZZ  /\  Y  e.  ZZ ) )  /\  ( ( A  x.  X )  +  ( B  x.  Y ) )  =  1 )  ->  ( A  gcd  B )  <_  1 )
13 simpll 790 . . . . 5  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( X  e.  ZZ  /\  Y  e.  ZZ ) )  /\  ( ( A  x.  X )  +  ( B  x.  Y ) )  =  1 )  ->  ( A  e.  ZZ  /\  B  e.  ZZ ) )
14 oveq1 6657 . . . . . . . . . . . . 13  |-  ( A  =  0  ->  ( A  x.  X )  =  ( 0  x.  X ) )
15 oveq1 6657 . . . . . . . . . . . . 13  |-  ( B  =  0  ->  ( B  x.  Y )  =  ( 0  x.  Y ) )
1614, 15oveqan12d 6669 . . . . . . . . . . . 12  |-  ( ( A  =  0  /\  B  =  0 )  ->  ( ( A  x.  X )  +  ( B  x.  Y
) )  =  ( ( 0  x.  X
)  +  ( 0  x.  Y ) ) )
17 zcn 11382 . . . . . . . . . . . . . 14  |-  ( X  e.  ZZ  ->  X  e.  CC )
1817mul02d 10234 . . . . . . . . . . . . 13  |-  ( X  e.  ZZ  ->  (
0  x.  X )  =  0 )
19 zcn 11382 . . . . . . . . . . . . . 14  |-  ( Y  e.  ZZ  ->  Y  e.  CC )
2019mul02d 10234 . . . . . . . . . . . . 13  |-  ( Y  e.  ZZ  ->  (
0  x.  Y )  =  0 )
2118, 20oveqan12d 6669 . . . . . . . . . . . 12  |-  ( ( X  e.  ZZ  /\  Y  e.  ZZ )  ->  ( ( 0  x.  X )  +  ( 0  x.  Y ) )  =  ( 0  +  0 ) )
2216, 21sylan9eqr 2678 . . . . . . . . . . 11  |-  ( ( ( X  e.  ZZ  /\  Y  e.  ZZ )  /\  ( A  =  0  /\  B  =  0 ) )  -> 
( ( A  x.  X )  +  ( B  x.  Y ) )  =  ( 0  +  0 ) )
23 00id 10211 . . . . . . . . . . 11  |-  ( 0  +  0 )  =  0
2422, 23syl6eq 2672 . . . . . . . . . 10  |-  ( ( ( X  e.  ZZ  /\  Y  e.  ZZ )  /\  ( A  =  0  /\  B  =  0 ) )  -> 
( ( A  x.  X )  +  ( B  x.  Y ) )  =  0 )
2524adantll 750 . . . . . . . . 9  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( X  e.  ZZ  /\  Y  e.  ZZ ) )  /\  ( A  =  0  /\  B  =  0
) )  ->  (
( A  x.  X
)  +  ( B  x.  Y ) )  =  0 )
26 0ne1 11088 . . . . . . . . . 10  |-  0  =/=  1
2726a1i 11 . . . . . . . . 9  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( X  e.  ZZ  /\  Y  e.  ZZ ) )  /\  ( A  =  0  /\  B  =  0
) )  ->  0  =/=  1 )
2825, 27eqnetrd 2861 . . . . . . . 8  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( X  e.  ZZ  /\  Y  e.  ZZ ) )  /\  ( A  =  0  /\  B  =  0
) )  ->  (
( A  x.  X
)  +  ( B  x.  Y ) )  =/=  1 )
2928ex 450 . . . . . . 7  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( X  e.  ZZ  /\  Y  e.  ZZ ) )  -> 
( ( A  =  0  /\  B  =  0 )  ->  (
( A  x.  X
)  +  ( B  x.  Y ) )  =/=  1 ) )
3029necon2bd 2810 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( X  e.  ZZ  /\  Y  e.  ZZ ) )  -> 
( ( ( A  x.  X )  +  ( B  x.  Y
) )  =  1  ->  -.  ( A  =  0  /\  B  =  0 ) ) )
3130imp 445 . . . . 5  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( X  e.  ZZ  /\  Y  e.  ZZ ) )  /\  ( ( A  x.  X )  +  ( B  x.  Y ) )  =  1 )  ->  -.  ( A  =  0  /\  B  =  0 ) )
32 gcdn0cl 15224 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  -.  ( A  =  0  /\  B  =  0 ) )  ->  ( A  gcd  B )  e.  NN )
3313, 31, 32syl2anc 693 . . . 4  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( X  e.  ZZ  /\  Y  e.  ZZ ) )  /\  ( ( A  x.  X )  +  ( B  x.  Y ) )  =  1 )  ->  ( A  gcd  B )  e.  NN )
34 nnle1eq1 11048 . . . 4  |-  ( ( A  gcd  B )  e.  NN  ->  (
( A  gcd  B
)  <_  1  <->  ( A  gcd  B )  =  1 ) )
3533, 34syl 17 . . 3  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( X  e.  ZZ  /\  Y  e.  ZZ ) )  /\  ( ( A  x.  X )  +  ( B  x.  Y ) )  =  1 )  ->  ( ( A  gcd  B )  <_ 
1  <->  ( A  gcd  B )  =  1 ) )
3612, 35mpbid 222 . 2  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( X  e.  ZZ  /\  Y  e.  ZZ ) )  /\  ( ( A  x.  X )  +  ( B  x.  Y ) )  =  1 )  ->  ( A  gcd  B )  =  1 )
3736ex 450 1  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( X  e.  ZZ  /\  Y  e.  ZZ ) )  -> 
( ( ( A  x.  X )  +  ( B  x.  Y
) )  =  1  ->  ( A  gcd  B )  =  1 ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   class class class wbr 4653  (class class class)co 6650   0cc0 9936   1c1 9937    + caddc 9939    x. cmul 9941    <_ cle 10075   NNcn 11020   ZZcz 11377    || cdvds 14983    gcd cgcd 15216
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-dvds 14984  df-gcd 15217
This theorem is referenced by:  divgcdcoprm0  15379  jm2.19lem1  37556
  Copyright terms: Public domain W3C validator