MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iccpnfhmeo Structured version   Visualization version   Unicode version

Theorem iccpnfhmeo 22744
Description: The defined bijection from  [ 0 ,  1 ] to  [ 0 , +oo ] is an order isomorphism and a homeomorphism. (Contributed by Mario Carneiro, 8-Sep-2015.)
Hypotheses
Ref Expression
iccpnfhmeo.f  |-  F  =  ( x  e.  ( 0 [,] 1 ) 
|->  if ( x  =  1 , +oo , 
( x  /  (
1  -  x ) ) ) )
iccpnfhmeo.k  |-  K  =  ( (ordTop `  <_  )t  ( 0 [,] +oo )
)
Assertion
Ref Expression
iccpnfhmeo  |-  ( F 
Isom  <  ,  <  (
( 0 [,] 1
) ,  ( 0 [,] +oo ) )  /\  F  e.  ( II Homeo K ) )

Proof of Theorem iccpnfhmeo
Dummy variables  y  w  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iccssxr 12256 . . . 4  |-  ( 0 [,] 1 )  C_  RR*
2 xrltso 11974 . . . 4  |-  <  Or  RR*
3 soss 5053 . . . 4  |-  ( ( 0 [,] 1 ) 
C_  RR*  ->  (  <  Or 
RR*  ->  <  Or  (
0 [,] 1 ) ) )
41, 2, 3mp2 9 . . 3  |-  <  Or  ( 0 [,] 1
)
5 iccssxr 12256 . . . . 5  |-  ( 0 [,] +oo )  C_  RR*
6 soss 5053 . . . . 5  |-  ( ( 0 [,] +oo )  C_ 
RR*  ->  (  <  Or  RR* 
->  <  Or  ( 0 [,] +oo ) ) )
75, 2, 6mp2 9 . . . 4  |-  <  Or  ( 0 [,] +oo )
8 sopo 5052 . . . 4  |-  (  < 
Or  ( 0 [,] +oo )  ->  <  Po  ( 0 [,] +oo ) )
97, 8ax-mp 5 . . 3  |-  <  Po  ( 0 [,] +oo )
10 iccpnfhmeo.f . . . . . 6  |-  F  =  ( x  e.  ( 0 [,] 1 ) 
|->  if ( x  =  1 , +oo , 
( x  /  (
1  -  x ) ) ) )
1110iccpnfcnv 22743 . . . . 5  |-  ( F : ( 0 [,] 1 ) -1-1-onto-> ( 0 [,] +oo )  /\  `' F  =  ( y  e.  ( 0 [,] +oo )  |->  if ( y  = +oo ,  1 ,  ( y  /  (
1  +  y ) ) ) ) )
1211simpli 474 . . . 4  |-  F :
( 0 [,] 1
)
-1-1-onto-> ( 0 [,] +oo )
13 f1ofo 6144 . . . 4  |-  ( F : ( 0 [,] 1 ) -1-1-onto-> ( 0 [,] +oo )  ->  F : ( 0 [,] 1 )
-onto-> ( 0 [,] +oo ) )
1412, 13ax-mp 5 . . 3  |-  F :
( 0 [,] 1
) -onto-> ( 0 [,] +oo )
15 0re 10040 . . . . . . . . . . . . 13  |-  0  e.  RR
16 1re 10039 . . . . . . . . . . . . 13  |-  1  e.  RR
1715, 16elicc2i 12239 . . . . . . . . . . . 12  |-  ( z  e.  ( 0 [,] 1 )  <->  ( z  e.  RR  /\  0  <_ 
z  /\  z  <_  1 ) )
1817simp1bi 1076 . . . . . . . . . . 11  |-  ( z  e.  ( 0 [,] 1 )  ->  z  e.  RR )
19183ad2ant1 1082 . . . . . . . . . 10  |-  ( ( z  e.  ( 0 [,] 1 )  /\  w  e.  ( 0 [,] 1 )  /\  z  <  w )  -> 
z  e.  RR )
2015, 16elicc2i 12239 . . . . . . . . . . . . 13  |-  ( w  e.  ( 0 [,] 1 )  <->  ( w  e.  RR  /\  0  <_  w  /\  w  <_  1
) )
2120simp1bi 1076 . . . . . . . . . . . 12  |-  ( w  e.  ( 0 [,] 1 )  ->  w  e.  RR )
22213ad2ant2 1083 . . . . . . . . . . 11  |-  ( ( z  e.  ( 0 [,] 1 )  /\  w  e.  ( 0 [,] 1 )  /\  z  <  w )  ->  w  e.  RR )
23 1red 10055 . . . . . . . . . . 11  |-  ( ( z  e.  ( 0 [,] 1 )  /\  w  e.  ( 0 [,] 1 )  /\  z  <  w )  -> 
1  e.  RR )
24 simp3 1063 . . . . . . . . . . 11  |-  ( ( z  e.  ( 0 [,] 1 )  /\  w  e.  ( 0 [,] 1 )  /\  z  <  w )  -> 
z  <  w )
2520simp3bi 1078 . . . . . . . . . . . 12  |-  ( w  e.  ( 0 [,] 1 )  ->  w  <_  1 )
26253ad2ant2 1083 . . . . . . . . . . 11  |-  ( ( z  e.  ( 0 [,] 1 )  /\  w  e.  ( 0 [,] 1 )  /\  z  <  w )  ->  w  <_  1 )
2719, 22, 23, 24, 26ltletrd 10197 . . . . . . . . . 10  |-  ( ( z  e.  ( 0 [,] 1 )  /\  w  e.  ( 0 [,] 1 )  /\  z  <  w )  -> 
z  <  1 )
2819, 27gtned 10172 . . . . . . . . 9  |-  ( ( z  e.  ( 0 [,] 1 )  /\  w  e.  ( 0 [,] 1 )  /\  z  <  w )  -> 
1  =/=  z )
2928necomd 2849 . . . . . . . 8  |-  ( ( z  e.  ( 0 [,] 1 )  /\  w  e.  ( 0 [,] 1 )  /\  z  <  w )  -> 
z  =/=  1 )
30 ifnefalse 4098 . . . . . . . 8  |-  ( z  =/=  1  ->  if ( z  =  1 , +oo ,  ( z  /  ( 1  -  z ) ) )  =  ( z  /  ( 1  -  z ) ) )
3129, 30syl 17 . . . . . . 7  |-  ( ( z  e.  ( 0 [,] 1 )  /\  w  e.  ( 0 [,] 1 )  /\  z  <  w )  ->  if ( z  =  1 , +oo ,  ( z  /  ( 1  -  z ) ) )  =  ( z  /  ( 1  -  z ) ) )
32 breq2 4657 . . . . . . . 8  |-  ( +oo  =  if ( w  =  1 , +oo , 
( w  /  (
1  -  w ) ) )  ->  (
( z  /  (
1  -  z ) )  < +oo  <->  ( z  /  ( 1  -  z ) )  < 
if ( w  =  1 , +oo , 
( w  /  (
1  -  w ) ) ) ) )
33 breq2 4657 . . . . . . . 8  |-  ( ( w  /  ( 1  -  w ) )  =  if ( w  =  1 , +oo ,  ( w  / 
( 1  -  w
) ) )  -> 
( ( z  / 
( 1  -  z
) )  <  (
w  /  ( 1  -  w ) )  <-> 
( z  /  (
1  -  z ) )  <  if ( w  =  1 , +oo ,  ( w  /  ( 1  -  w ) ) ) ) )
34 resubcl 10345 . . . . . . . . . . . 12  |-  ( ( 1  e.  RR  /\  z  e.  RR )  ->  ( 1  -  z
)  e.  RR )
3516, 19, 34sylancr 695 . . . . . . . . . . 11  |-  ( ( z  e.  ( 0 [,] 1 )  /\  w  e.  ( 0 [,] 1 )  /\  z  <  w )  -> 
( 1  -  z
)  e.  RR )
36 ax-1cn 9994 . . . . . . . . . . . . 13  |-  1  e.  CC
3719recnd 10068 . . . . . . . . . . . . 13  |-  ( ( z  e.  ( 0 [,] 1 )  /\  w  e.  ( 0 [,] 1 )  /\  z  <  w )  -> 
z  e.  CC )
38 subeq0 10307 . . . . . . . . . . . . . 14  |-  ( ( 1  e.  CC  /\  z  e.  CC )  ->  ( ( 1  -  z )  =  0  <->  1  =  z ) )
3938necon3bid 2838 . . . . . . . . . . . . 13  |-  ( ( 1  e.  CC  /\  z  e.  CC )  ->  ( ( 1  -  z )  =/=  0  <->  1  =/=  z ) )
4036, 37, 39sylancr 695 . . . . . . . . . . . 12  |-  ( ( z  e.  ( 0 [,] 1 )  /\  w  e.  ( 0 [,] 1 )  /\  z  <  w )  -> 
( ( 1  -  z )  =/=  0  <->  1  =/=  z ) )
4128, 40mpbird 247 . . . . . . . . . . 11  |-  ( ( z  e.  ( 0 [,] 1 )  /\  w  e.  ( 0 [,] 1 )  /\  z  <  w )  -> 
( 1  -  z
)  =/=  0 )
4219, 35, 41redivcld 10853 . . . . . . . . . 10  |-  ( ( z  e.  ( 0 [,] 1 )  /\  w  e.  ( 0 [,] 1 )  /\  z  <  w )  -> 
( z  /  (
1  -  z ) )  e.  RR )
43 ltpnf 11954 . . . . . . . . . 10  |-  ( ( z  /  ( 1  -  z ) )  e.  RR  ->  (
z  /  ( 1  -  z ) )  < +oo )
4442, 43syl 17 . . . . . . . . 9  |-  ( ( z  e.  ( 0 [,] 1 )  /\  w  e.  ( 0 [,] 1 )  /\  z  <  w )  -> 
( z  /  (
1  -  z ) )  < +oo )
4544adantr 481 . . . . . . . 8  |-  ( ( ( z  e.  ( 0 [,] 1 )  /\  w  e.  ( 0 [,] 1 )  /\  z  <  w
)  /\  w  = 
1 )  ->  (
z  /  ( 1  -  z ) )  < +oo )
46 simpl3 1066 . . . . . . . . . 10  |-  ( ( ( z  e.  ( 0 [,] 1 )  /\  w  e.  ( 0 [,] 1 )  /\  z  <  w
)  /\  -.  w  =  1 )  -> 
z  <  w )
47 eqid 2622 . . . . . . . . . . . . . 14  |-  ( x  e.  ( 0 [,) 1 )  |->  ( x  /  ( 1  -  x ) ) )  =  ( x  e.  ( 0 [,) 1
)  |->  ( x  / 
( 1  -  x
) ) )
48 eqid 2622 . . . . . . . . . . . . . 14  |-  ( TopOpen ` fld )  =  ( TopOpen ` fld )
4947, 48icopnfhmeo 22742 . . . . . . . . . . . . 13  |-  ( ( x  e.  ( 0 [,) 1 )  |->  ( x  /  ( 1  -  x ) ) )  Isom  <  ,  <  ( ( 0 [,) 1
) ,  ( 0 [,) +oo ) )  /\  ( x  e.  ( 0 [,) 1
)  |->  ( x  / 
( 1  -  x
) ) )  e.  ( ( ( TopOpen ` fld )t  (
0 [,) 1 ) ) Homeo ( ( TopOpen ` fld )t  (
0 [,) +oo )
) ) )
5049simpli 474 . . . . . . . . . . . 12  |-  ( x  e.  ( 0 [,) 1 )  |->  ( x  /  ( 1  -  x ) ) ) 
Isom  <  ,  <  (
( 0 [,) 1
) ,  ( 0 [,) +oo ) )
5150a1i 11 . . . . . . . . . . 11  |-  ( ( ( z  e.  ( 0 [,] 1 )  /\  w  e.  ( 0 [,] 1 )  /\  z  <  w
)  /\  -.  w  =  1 )  -> 
( x  e.  ( 0 [,) 1 ) 
|->  ( x  /  (
1  -  x ) ) )  Isom  <  ,  <  ( ( 0 [,) 1 ) ,  ( 0 [,) +oo ) ) )
52 simp1 1061 . . . . . . . . . . . . . . . . . 18  |-  ( ( z  e.  ( 0 [,] 1 )  /\  w  e.  ( 0 [,] 1 )  /\  z  <  w )  -> 
z  e.  ( 0 [,] 1 ) )
53 0xr 10086 . . . . . . . . . . . . . . . . . . 19  |-  0  e.  RR*
5416rexri 10097 . . . . . . . . . . . . . . . . . . 19  |-  1  e.  RR*
55 0le1 10551 . . . . . . . . . . . . . . . . . . 19  |-  0  <_  1
56 snunico 12299 . . . . . . . . . . . . . . . . . . 19  |-  ( ( 0  e.  RR*  /\  1  e.  RR*  /\  0  <_ 
1 )  ->  (
( 0 [,) 1
)  u.  { 1 } )  =  ( 0 [,] 1 ) )
5753, 54, 55, 56mp3an 1424 . . . . . . . . . . . . . . . . . 18  |-  ( ( 0 [,) 1 )  u.  { 1 } )  =  ( 0 [,] 1 )
5852, 57syl6eleqr 2712 . . . . . . . . . . . . . . . . 17  |-  ( ( z  e.  ( 0 [,] 1 )  /\  w  e.  ( 0 [,] 1 )  /\  z  <  w )  -> 
z  e.  ( ( 0 [,) 1 )  u.  { 1 } ) )
59 elun 3753 . . . . . . . . . . . . . . . . 17  |-  ( z  e.  ( ( 0 [,) 1 )  u. 
{ 1 } )  <-> 
( z  e.  ( 0 [,) 1 )  \/  z  e.  {
1 } ) )
6058, 59sylib 208 . . . . . . . . . . . . . . . 16  |-  ( ( z  e.  ( 0 [,] 1 )  /\  w  e.  ( 0 [,] 1 )  /\  z  <  w )  -> 
( z  e.  ( 0 [,) 1 )  \/  z  e.  {
1 } ) )
6160ord 392 . . . . . . . . . . . . . . 15  |-  ( ( z  e.  ( 0 [,] 1 )  /\  w  e.  ( 0 [,] 1 )  /\  z  <  w )  -> 
( -.  z  e.  ( 0 [,) 1
)  ->  z  e.  { 1 } ) )
62 elsni 4194 . . . . . . . . . . . . . . 15  |-  ( z  e.  { 1 }  ->  z  =  1 )
6361, 62syl6 35 . . . . . . . . . . . . . 14  |-  ( ( z  e.  ( 0 [,] 1 )  /\  w  e.  ( 0 [,] 1 )  /\  z  <  w )  -> 
( -.  z  e.  ( 0 [,) 1
)  ->  z  = 
1 ) )
6463necon1ad 2811 . . . . . . . . . . . . 13  |-  ( ( z  e.  ( 0 [,] 1 )  /\  w  e.  ( 0 [,] 1 )  /\  z  <  w )  -> 
( z  =/=  1  ->  z  e.  ( 0 [,) 1 ) ) )
6529, 64mpd 15 . . . . . . . . . . . 12  |-  ( ( z  e.  ( 0 [,] 1 )  /\  w  e.  ( 0 [,] 1 )  /\  z  <  w )  -> 
z  e.  ( 0 [,) 1 ) )
6665adantr 481 . . . . . . . . . . 11  |-  ( ( ( z  e.  ( 0 [,] 1 )  /\  w  e.  ( 0 [,] 1 )  /\  z  <  w
)  /\  -.  w  =  1 )  -> 
z  e.  ( 0 [,) 1 ) )
67 simp2 1062 . . . . . . . . . . . . . . . . 17  |-  ( ( z  e.  ( 0 [,] 1 )  /\  w  e.  ( 0 [,] 1 )  /\  z  <  w )  ->  w  e.  ( 0 [,] 1 ) )
6867, 57syl6eleqr 2712 . . . . . . . . . . . . . . . 16  |-  ( ( z  e.  ( 0 [,] 1 )  /\  w  e.  ( 0 [,] 1 )  /\  z  <  w )  ->  w  e.  ( (
0 [,) 1 )  u.  { 1 } ) )
69 elun 3753 . . . . . . . . . . . . . . . 16  |-  ( w  e.  ( ( 0 [,) 1 )  u. 
{ 1 } )  <-> 
( w  e.  ( 0 [,) 1 )  \/  w  e.  {
1 } ) )
7068, 69sylib 208 . . . . . . . . . . . . . . 15  |-  ( ( z  e.  ( 0 [,] 1 )  /\  w  e.  ( 0 [,] 1 )  /\  z  <  w )  -> 
( w  e.  ( 0 [,) 1 )  \/  w  e.  {
1 } ) )
7170ord 392 . . . . . . . . . . . . . 14  |-  ( ( z  e.  ( 0 [,] 1 )  /\  w  e.  ( 0 [,] 1 )  /\  z  <  w )  -> 
( -.  w  e.  ( 0 [,) 1
)  ->  w  e.  { 1 } ) )
72 elsni 4194 . . . . . . . . . . . . . 14  |-  ( w  e.  { 1 }  ->  w  =  1 )
7371, 72syl6 35 . . . . . . . . . . . . 13  |-  ( ( z  e.  ( 0 [,] 1 )  /\  w  e.  ( 0 [,] 1 )  /\  z  <  w )  -> 
( -.  w  e.  ( 0 [,) 1
)  ->  w  = 
1 ) )
7473con1d 139 . . . . . . . . . . . 12  |-  ( ( z  e.  ( 0 [,] 1 )  /\  w  e.  ( 0 [,] 1 )  /\  z  <  w )  -> 
( -.  w  =  1  ->  w  e.  ( 0 [,) 1
) ) )
7574imp 445 . . . . . . . . . . 11  |-  ( ( ( z  e.  ( 0 [,] 1 )  /\  w  e.  ( 0 [,] 1 )  /\  z  <  w
)  /\  -.  w  =  1 )  ->  w  e.  ( 0 [,) 1 ) )
76 isorel 6576 . . . . . . . . . . 11  |-  ( ( ( x  e.  ( 0 [,) 1 ) 
|->  ( x  /  (
1  -  x ) ) )  Isom  <  ,  <  ( ( 0 [,) 1 ) ,  ( 0 [,) +oo ) )  /\  (
z  e.  ( 0 [,) 1 )  /\  w  e.  ( 0 [,) 1 ) ) )  ->  ( z  <  w  <->  ( ( x  e.  ( 0 [,) 1 )  |->  ( x  /  ( 1  -  x ) ) ) `
 z )  < 
( ( x  e.  ( 0 [,) 1
)  |->  ( x  / 
( 1  -  x
) ) ) `  w ) ) )
7751, 66, 75, 76syl12anc 1324 . . . . . . . . . 10  |-  ( ( ( z  e.  ( 0 [,] 1 )  /\  w  e.  ( 0 [,] 1 )  /\  z  <  w
)  /\  -.  w  =  1 )  -> 
( z  <  w  <->  ( ( x  e.  ( 0 [,) 1 ) 
|->  ( x  /  (
1  -  x ) ) ) `  z
)  <  ( (
x  e.  ( 0 [,) 1 )  |->  ( x  /  ( 1  -  x ) ) ) `  w ) ) )
7846, 77mpbid 222 . . . . . . . . 9  |-  ( ( ( z  e.  ( 0 [,] 1 )  /\  w  e.  ( 0 [,] 1 )  /\  z  <  w
)  /\  -.  w  =  1 )  -> 
( ( x  e.  ( 0 [,) 1
)  |->  ( x  / 
( 1  -  x
) ) ) `  z )  <  (
( x  e.  ( 0 [,) 1 ) 
|->  ( x  /  (
1  -  x ) ) ) `  w
) )
79 id 22 . . . . . . . . . . . 12  |-  ( x  =  z  ->  x  =  z )
80 oveq2 6658 . . . . . . . . . . . 12  |-  ( x  =  z  ->  (
1  -  x )  =  ( 1  -  z ) )
8179, 80oveq12d 6668 . . . . . . . . . . 11  |-  ( x  =  z  ->  (
x  /  ( 1  -  x ) )  =  ( z  / 
( 1  -  z
) ) )
82 ovex 6678 . . . . . . . . . . 11  |-  ( z  /  ( 1  -  z ) )  e. 
_V
8381, 47, 82fvmpt 6282 . . . . . . . . . 10  |-  ( z  e.  ( 0 [,) 1 )  ->  (
( x  e.  ( 0 [,) 1 ) 
|->  ( x  /  (
1  -  x ) ) ) `  z
)  =  ( z  /  ( 1  -  z ) ) )
8466, 83syl 17 . . . . . . . . 9  |-  ( ( ( z  e.  ( 0 [,] 1 )  /\  w  e.  ( 0 [,] 1 )  /\  z  <  w
)  /\  -.  w  =  1 )  -> 
( ( x  e.  ( 0 [,) 1
)  |->  ( x  / 
( 1  -  x
) ) ) `  z )  =  ( z  /  ( 1  -  z ) ) )
85 id 22 . . . . . . . . . . . 12  |-  ( x  =  w  ->  x  =  w )
86 oveq2 6658 . . . . . . . . . . . 12  |-  ( x  =  w  ->  (
1  -  x )  =  ( 1  -  w ) )
8785, 86oveq12d 6668 . . . . . . . . . . 11  |-  ( x  =  w  ->  (
x  /  ( 1  -  x ) )  =  ( w  / 
( 1  -  w
) ) )
88 ovex 6678 . . . . . . . . . . 11  |-  ( w  /  ( 1  -  w ) )  e. 
_V
8987, 47, 88fvmpt 6282 . . . . . . . . . 10  |-  ( w  e.  ( 0 [,) 1 )  ->  (
( x  e.  ( 0 [,) 1 ) 
|->  ( x  /  (
1  -  x ) ) ) `  w
)  =  ( w  /  ( 1  -  w ) ) )
9075, 89syl 17 . . . . . . . . 9  |-  ( ( ( z  e.  ( 0 [,] 1 )  /\  w  e.  ( 0 [,] 1 )  /\  z  <  w
)  /\  -.  w  =  1 )  -> 
( ( x  e.  ( 0 [,) 1
)  |->  ( x  / 
( 1  -  x
) ) ) `  w )  =  ( w  /  ( 1  -  w ) ) )
9178, 84, 903brtr3d 4684 . . . . . . . 8  |-  ( ( ( z  e.  ( 0 [,] 1 )  /\  w  e.  ( 0 [,] 1 )  /\  z  <  w
)  /\  -.  w  =  1 )  -> 
( z  /  (
1  -  z ) )  <  ( w  /  ( 1  -  w ) ) )
9232, 33, 45, 91ifbothda 4123 . . . . . . 7  |-  ( ( z  e.  ( 0 [,] 1 )  /\  w  e.  ( 0 [,] 1 )  /\  z  <  w )  -> 
( z  /  (
1  -  z ) )  <  if ( w  =  1 , +oo ,  ( w  /  ( 1  -  w ) ) ) )
9331, 92eqbrtrd 4675 . . . . . 6  |-  ( ( z  e.  ( 0 [,] 1 )  /\  w  e.  ( 0 [,] 1 )  /\  z  <  w )  ->  if ( z  =  1 , +oo ,  ( z  /  ( 1  -  z ) ) )  <  if ( w  =  1 , +oo ,  ( w  /  ( 1  -  w ) ) ) )
94933expia 1267 . . . . 5  |-  ( ( z  e.  ( 0 [,] 1 )  /\  w  e.  ( 0 [,] 1 ) )  ->  ( z  < 
w  ->  if (
z  =  1 , +oo ,  ( z  /  ( 1  -  z ) ) )  <  if ( w  =  1 , +oo ,  ( w  / 
( 1  -  w
) ) ) ) )
95 eqeq1 2626 . . . . . . . 8  |-  ( x  =  z  ->  (
x  =  1  <->  z  =  1 ) )
9695, 81ifbieq2d 4111 . . . . . . 7  |-  ( x  =  z  ->  if ( x  =  1 , +oo ,  ( x  /  ( 1  -  x ) ) )  =  if ( z  =  1 , +oo ,  ( z  / 
( 1  -  z
) ) ) )
97 pnfex 10093 . . . . . . . 8  |- +oo  e.  _V
9897, 82ifex 4156 . . . . . . 7  |-  if ( z  =  1 , +oo ,  ( z  /  ( 1  -  z ) ) )  e.  _V
9996, 10, 98fvmpt 6282 . . . . . 6  |-  ( z  e.  ( 0 [,] 1 )  ->  ( F `  z )  =  if ( z  =  1 , +oo , 
( z  /  (
1  -  z ) ) ) )
100 eqeq1 2626 . . . . . . . 8  |-  ( x  =  w  ->  (
x  =  1  <->  w  =  1 ) )
101100, 87ifbieq2d 4111 . . . . . . 7  |-  ( x  =  w  ->  if ( x  =  1 , +oo ,  ( x  /  ( 1  -  x ) ) )  =  if ( w  =  1 , +oo ,  ( w  / 
( 1  -  w
) ) ) )
10297, 88ifex 4156 . . . . . . 7  |-  if ( w  =  1 , +oo ,  ( w  /  ( 1  -  w ) ) )  e.  _V
103101, 10, 102fvmpt 6282 . . . . . 6  |-  ( w  e.  ( 0 [,] 1 )  ->  ( F `  w )  =  if ( w  =  1 , +oo , 
( w  /  (
1  -  w ) ) ) )
10499, 103breqan12d 4669 . . . . 5  |-  ( ( z  e.  ( 0 [,] 1 )  /\  w  e.  ( 0 [,] 1 ) )  ->  ( ( F `
 z )  < 
( F `  w
)  <->  if ( z  =  1 , +oo , 
( z  /  (
1  -  z ) ) )  <  if ( w  =  1 , +oo ,  ( w  /  ( 1  -  w ) ) ) ) )
10594, 104sylibrd 249 . . . 4  |-  ( ( z  e.  ( 0 [,] 1 )  /\  w  e.  ( 0 [,] 1 ) )  ->  ( z  < 
w  ->  ( F `  z )  <  ( F `  w )
) )
106105rgen2a 2977 . . 3  |-  A. z  e.  ( 0 [,] 1
) A. w  e.  ( 0 [,] 1
) ( z  < 
w  ->  ( F `  z )  <  ( F `  w )
)
107 soisoi 6578 . . 3  |-  ( ( (  <  Or  (
0 [,] 1 )  /\  <  Po  (
0 [,] +oo )
)  /\  ( F : ( 0 [,] 1 ) -onto-> ( 0 [,] +oo )  /\  A. z  e.  ( 0 [,] 1 ) A. w  e.  ( 0 [,] 1 ) ( z  <  w  -> 
( F `  z
)  <  ( F `  w ) ) ) )  ->  F  Isom  <  ,  <  ( ( 0 [,] 1 ) ,  ( 0 [,] +oo ) ) )
1084, 9, 14, 106, 107mp4an 709 . 2  |-  F  Isom  <  ,  <  ( ( 0 [,] 1 ) ,  ( 0 [,] +oo ) )
109 letsr 17227 . . . . . 6  |-  <_  e.  TosetRel
110109elexi 3213 . . . . 5  |-  <_  e.  _V
111110inex1 4799 . . . 4  |-  (  <_  i^i  ( ( 0 [,] 1 )  X.  (
0 [,] 1 ) ) )  e.  _V
112110inex1 4799 . . . 4  |-  (  <_  i^i  ( ( 0 [,] +oo )  X.  (
0 [,] +oo )
) )  e.  _V
113 leiso 13243 . . . . . . . 8  |-  ( ( ( 0 [,] 1
)  C_  RR*  /\  (
0 [,] +oo )  C_ 
RR* )  ->  ( F  Isom  <  ,  <  ( ( 0 [,] 1
) ,  ( 0 [,] +oo ) )  <-> 
F  Isom  <_  ,  <_  ( ( 0 [,] 1
) ,  ( 0 [,] +oo ) ) ) )
1141, 5, 113mp2an 708 . . . . . . 7  |-  ( F 
Isom  <  ,  <  (
( 0 [,] 1
) ,  ( 0 [,] +oo ) )  <-> 
F  Isom  <_  ,  <_  ( ( 0 [,] 1
) ,  ( 0 [,] +oo ) ) )
115108, 114mpbi 220 . . . . . 6  |-  F  Isom  <_  ,  <_  ( ( 0 [,] 1 ) ,  ( 0 [,] +oo ) )
116 isores1 6584 . . . . . 6  |-  ( F 
Isom  <_  ,  <_  (
( 0 [,] 1
) ,  ( 0 [,] +oo ) )  <-> 
F  Isom  (  <_  i^i  ( ( 0 [,] 1 )  X.  (
0 [,] 1 ) ) ) ,  <_  ( ( 0 [,] 1
) ,  ( 0 [,] +oo ) ) )
117115, 116mpbi 220 . . . . 5  |-  F  Isom  (  <_  i^i  ( (
0 [,] 1 )  X.  ( 0 [,] 1 ) ) ) ,  <_  ( (
0 [,] 1 ) ,  ( 0 [,] +oo ) )
118 isores2 6583 . . . . 5  |-  ( F 
Isom  (  <_  i^i  (
( 0 [,] 1
)  X.  ( 0 [,] 1 ) ) ) ,  <_  (
( 0 [,] 1
) ,  ( 0 [,] +oo ) )  <-> 
F  Isom  (  <_  i^i  ( ( 0 [,] 1 )  X.  (
0 [,] 1 ) ) ) ,  (  <_  i^i  ( (
0 [,] +oo )  X.  ( 0 [,] +oo ) ) ) ( ( 0 [,] 1
) ,  ( 0 [,] +oo ) ) )
119117, 118mpbi 220 . . . 4  |-  F  Isom  (  <_  i^i  ( (
0 [,] 1 )  X.  ( 0 [,] 1 ) ) ) ,  (  <_  i^i  ( ( 0 [,] +oo )  X.  (
0 [,] +oo )
) ) ( ( 0 [,] 1 ) ,  ( 0 [,] +oo ) )
120 tsrps 17221 . . . . . . . 8  |-  (  <_  e. 
TosetRel  ->  <_  e.  PosetRel )
121109, 120ax-mp 5 . . . . . . 7  |-  <_  e.  PosetRel
122 ledm 17224 . . . . . . . 8  |-  RR*  =  dom  <_
123122psssdm 17216 . . . . . . 7  |-  ( (  <_  e.  PosetRel  /\  (
0 [,] 1 ) 
C_  RR* )  ->  dom  (  <_  i^i  ( (
0 [,] 1 )  X.  ( 0 [,] 1 ) ) )  =  ( 0 [,] 1 ) )
124121, 1, 123mp2an 708 . . . . . 6  |-  dom  (  <_  i^i  ( ( 0 [,] 1 )  X.  ( 0 [,] 1
) ) )  =  ( 0 [,] 1
)
125124eqcomi 2631 . . . . 5  |-  ( 0 [,] 1 )  =  dom  (  <_  i^i  ( ( 0 [,] 1 )  X.  (
0 [,] 1 ) ) )
126122psssdm 17216 . . . . . . 7  |-  ( (  <_  e.  PosetRel  /\  (
0 [,] +oo )  C_ 
RR* )  ->  dom  (  <_  i^i  ( (
0 [,] +oo )  X.  ( 0 [,] +oo ) ) )  =  ( 0 [,] +oo ) )
127121, 5, 126mp2an 708 . . . . . 6  |-  dom  (  <_  i^i  ( ( 0 [,] +oo )  X.  ( 0 [,] +oo ) ) )  =  ( 0 [,] +oo )
128127eqcomi 2631 . . . . 5  |-  ( 0 [,] +oo )  =  dom  (  <_  i^i  ( ( 0 [,] +oo )  X.  (
0 [,] +oo )
) )
129125, 128ordthmeo 21605 . . . 4  |-  ( ( (  <_  i^i  (
( 0 [,] 1
)  X.  ( 0 [,] 1 ) ) )  e.  _V  /\  (  <_  i^i  ( (
0 [,] +oo )  X.  ( 0 [,] +oo ) ) )  e. 
_V  /\  F  Isom  (  <_  i^i  ( (
0 [,] 1 )  X.  ( 0 [,] 1 ) ) ) ,  (  <_  i^i  ( ( 0 [,] +oo )  X.  (
0 [,] +oo )
) ) ( ( 0 [,] 1 ) ,  ( 0 [,] +oo ) ) )  ->  F  e.  ( (ordTop `  (  <_  i^i  (
( 0 [,] 1
)  X.  ( 0 [,] 1 ) ) ) ) Homeo (ordTop `  (  <_  i^i  ( (
0 [,] +oo )  X.  ( 0 [,] +oo ) ) ) ) ) )
130111, 112, 119, 129mp3an 1424 . . 3  |-  F  e.  ( (ordTop `  (  <_  i^i  ( ( 0 [,] 1 )  X.  ( 0 [,] 1
) ) ) )
Homeo (ordTop `  (  <_  i^i  ( ( 0 [,] +oo )  X.  (
0 [,] +oo )
) ) ) )
131 dfii5 22688 . . . 4  |-  II  =  (ordTop `  (  <_  i^i  ( ( 0 [,] 1 )  X.  (
0 [,] 1 ) ) ) )
132 iccpnfhmeo.k . . . . 5  |-  K  =  ( (ordTop `  <_  )t  ( 0 [,] +oo )
)
133 ordtresticc 21027 . . . . 5  |-  ( (ordTop `  <_  )t  ( 0 [,] +oo ) )  =  (ordTop `  (  <_  i^i  (
( 0 [,] +oo )  X.  ( 0 [,] +oo ) ) ) )
134132, 133eqtri 2644 . . . 4  |-  K  =  (ordTop `  (  <_  i^i  ( ( 0 [,] +oo )  X.  (
0 [,] +oo )
) ) )
135131, 134oveq12i 6662 . . 3  |-  ( II
Homeo K )  =  ( (ordTop `  (  <_  i^i  ( ( 0 [,] 1 )  X.  (
0 [,] 1 ) ) ) ) Homeo (ordTop `  (  <_  i^i  (
( 0 [,] +oo )  X.  ( 0 [,] +oo ) ) ) ) )
136130, 135eleqtrri 2700 . 2  |-  F  e.  ( II Homeo K )
137108, 136pm3.2i 471 1  |-  ( F 
Isom  <  ,  <  (
( 0 [,] 1
) ,  ( 0 [,] +oo ) )  /\  F  e.  ( II Homeo K ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912   _Vcvv 3200    u. cun 3572    i^i cin 3573    C_ wss 3574   ifcif 4086   {csn 4177   class class class wbr 4653    |-> cmpt 4729    Po wpo 5033    Or wor 5034    X. cxp 5112   `'ccnv 5113   dom cdm 5114   -onto->wfo 5886   -1-1-onto->wf1o 5887   ` cfv 5888    Isom wiso 5889  (class class class)co 6650   CCcc 9934   RRcr 9935   0cc0 9936   1c1 9937    + caddc 9939   +oocpnf 10071   RR*cxr 10073    < clt 10074    <_ cle 10075    - cmin 10266    / cdiv 10684   [,)cico 12177   [,]cicc 12178   ↾t crest 16081   TopOpenctopn 16082  ordTopcordt 16159   PosetRelcps 17198    TosetRel ctsr 17199  ℂfldccnfld 19746   Homeochmeo 21556   IIcii 22678
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fi 8317  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ioc 12180  df-ico 12181  df-icc 12182  df-fz 12327  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-plusg 15954  df-mulr 15955  df-starv 15956  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-rest 16083  df-topn 16084  df-topgen 16104  df-ordt 16161  df-ps 17200  df-tsr 17201  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cn 21031  df-hmeo 21558  df-xms 22125  df-ms 22126  df-ii 22680
This theorem is referenced by:  xrhmeo  22745  xrge0hmph  29978
  Copyright terms: Public domain W3C validator