Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  congabseq Structured version   Visualization version   Unicode version

Theorem congabseq 37541
Description: If two integers are congruent, they are either equal or separated by at least the congruence base. (Contributed by Stefan O'Rear, 4-Oct-2014.)
Assertion
Ref Expression
congabseq  |-  ( ( ( A  e.  NN  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  A  ||  ( B  -  C ) )  ->  ( ( abs `  ( B  -  C
) )  <  A  <->  B  =  C ) )

Proof of Theorem congabseq
StepHypRef Expression
1 zcn 11382 . . . . 5  |-  ( B  e.  ZZ  ->  B  e.  CC )
213ad2ant2 1083 . . . 4  |-  ( ( A  e.  NN  /\  B  e.  ZZ  /\  C  e.  ZZ )  ->  B  e.  CC )
32ad2antrr 762 . . 3  |-  ( ( ( ( A  e.  NN  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  A  ||  ( B  -  C
) )  /\  ( abs `  ( B  -  C ) )  < 
A )  ->  B  e.  CC )
4 zcn 11382 . . . . 5  |-  ( C  e.  ZZ  ->  C  e.  CC )
543ad2ant3 1084 . . . 4  |-  ( ( A  e.  NN  /\  B  e.  ZZ  /\  C  e.  ZZ )  ->  C  e.  CC )
65ad2antrr 762 . . 3  |-  ( ( ( ( A  e.  NN  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  A  ||  ( B  -  C
) )  /\  ( abs `  ( B  -  C ) )  < 
A )  ->  C  e.  CC )
7 zsubcl 11419 . . . . . . . . . 10  |-  ( ( B  e.  ZZ  /\  C  e.  ZZ )  ->  ( B  -  C
)  e.  ZZ )
873adant1 1079 . . . . . . . . 9  |-  ( ( A  e.  NN  /\  B  e.  ZZ  /\  C  e.  ZZ )  ->  ( B  -  C )  e.  ZZ )
98zcnd 11483 . . . . . . . 8  |-  ( ( A  e.  NN  /\  B  e.  ZZ  /\  C  e.  ZZ )  ->  ( B  -  C )  e.  CC )
109abscld 14175 . . . . . . 7  |-  ( ( A  e.  NN  /\  B  e.  ZZ  /\  C  e.  ZZ )  ->  ( abs `  ( B  -  C ) )  e.  RR )
1110adantr 481 . . . . . 6  |-  ( ( ( A  e.  NN  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  A  ||  ( B  -  C ) )  ->  ( abs `  ( B  -  C )
)  e.  RR )
12 nnre 11027 . . . . . . . 8  |-  ( A  e.  NN  ->  A  e.  RR )
13123ad2ant1 1082 . . . . . . 7  |-  ( ( A  e.  NN  /\  B  e.  ZZ  /\  C  e.  ZZ )  ->  A  e.  RR )
1413adantr 481 . . . . . 6  |-  ( ( ( A  e.  NN  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  A  ||  ( B  -  C ) )  ->  A  e.  RR )
1511, 14ltnled 10184 . . . . 5  |-  ( ( ( A  e.  NN  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  A  ||  ( B  -  C ) )  ->  ( ( abs `  ( B  -  C
) )  <  A  <->  -.  A  <_  ( abs `  ( B  -  C
) ) ) )
1615biimpa 501 . . . 4  |-  ( ( ( ( A  e.  NN  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  A  ||  ( B  -  C
) )  /\  ( abs `  ( B  -  C ) )  < 
A )  ->  -.  A  <_  ( abs `  ( B  -  C )
) )
17 nnz 11399 . . . . . . . . . 10  |-  ( A  e.  NN  ->  A  e.  ZZ )
18173ad2ant1 1082 . . . . . . . . 9  |-  ( ( A  e.  NN  /\  B  e.  ZZ  /\  C  e.  ZZ )  ->  A  e.  ZZ )
1918ad3antrrr 766 . . . . . . . 8  |-  ( ( ( ( ( A  e.  NN  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  A  ||  ( B  -  C
) )  /\  ( abs `  ( B  -  C ) )  < 
A )  /\  ( B  -  C )  =/=  0 )  ->  A  e.  ZZ )
208ad3antrrr 766 . . . . . . . 8  |-  ( ( ( ( ( A  e.  NN  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  A  ||  ( B  -  C
) )  /\  ( abs `  ( B  -  C ) )  < 
A )  /\  ( B  -  C )  =/=  0 )  ->  ( B  -  C )  e.  ZZ )
21 simpr 477 . . . . . . . 8  |-  ( ( ( ( ( A  e.  NN  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  A  ||  ( B  -  C
) )  /\  ( abs `  ( B  -  C ) )  < 
A )  /\  ( B  -  C )  =/=  0 )  ->  ( B  -  C )  =/=  0 )
2219, 20, 213jca 1242 . . . . . . 7  |-  ( ( ( ( ( A  e.  NN  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  A  ||  ( B  -  C
) )  /\  ( abs `  ( B  -  C ) )  < 
A )  /\  ( B  -  C )  =/=  0 )  ->  ( A  e.  ZZ  /\  ( B  -  C )  e.  ZZ  /\  ( B  -  C )  =/=  0 ) )
23 simpllr 799 . . . . . . 7  |-  ( ( ( ( ( A  e.  NN  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  A  ||  ( B  -  C
) )  /\  ( abs `  ( B  -  C ) )  < 
A )  /\  ( B  -  C )  =/=  0 )  ->  A  ||  ( B  -  C
) )
24 dvdsleabs 15033 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  ( B  -  C
)  e.  ZZ  /\  ( B  -  C
)  =/=  0 )  ->  ( A  ||  ( B  -  C
)  ->  A  <_  ( abs `  ( B  -  C ) ) ) )
2522, 23, 24sylc 65 . . . . . 6  |-  ( ( ( ( ( A  e.  NN  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  A  ||  ( B  -  C
) )  /\  ( abs `  ( B  -  C ) )  < 
A )  /\  ( B  -  C )  =/=  0 )  ->  A  <_  ( abs `  ( B  -  C )
) )
2625ex 450 . . . . 5  |-  ( ( ( ( A  e.  NN  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  A  ||  ( B  -  C
) )  /\  ( abs `  ( B  -  C ) )  < 
A )  ->  (
( B  -  C
)  =/=  0  ->  A  <_  ( abs `  ( B  -  C )
) ) )
2726necon1bd 2812 . . . 4  |-  ( ( ( ( A  e.  NN  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  A  ||  ( B  -  C
) )  /\  ( abs `  ( B  -  C ) )  < 
A )  ->  ( -.  A  <_  ( abs `  ( B  -  C
) )  ->  ( B  -  C )  =  0 ) )
2816, 27mpd 15 . . 3  |-  ( ( ( ( A  e.  NN  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  A  ||  ( B  -  C
) )  /\  ( abs `  ( B  -  C ) )  < 
A )  ->  ( B  -  C )  =  0 )
293, 6, 28subeq0d 10400 . 2  |-  ( ( ( ( A  e.  NN  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  A  ||  ( B  -  C
) )  /\  ( abs `  ( B  -  C ) )  < 
A )  ->  B  =  C )
30 oveq1 6657 . . . . . 6  |-  ( B  =  C  ->  ( B  -  C )  =  ( C  -  C ) )
3130adantl 482 . . . . 5  |-  ( ( ( ( A  e.  NN  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  A  ||  ( B  -  C
) )  /\  B  =  C )  ->  ( B  -  C )  =  ( C  -  C ) )
325ad2antrr 762 . . . . . 6  |-  ( ( ( ( A  e.  NN  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  A  ||  ( B  -  C
) )  /\  B  =  C )  ->  C  e.  CC )
3332subidd 10380 . . . . 5  |-  ( ( ( ( A  e.  NN  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  A  ||  ( B  -  C
) )  /\  B  =  C )  ->  ( C  -  C )  =  0 )
3431, 33eqtrd 2656 . . . 4  |-  ( ( ( ( A  e.  NN  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  A  ||  ( B  -  C
) )  /\  B  =  C )  ->  ( B  -  C )  =  0 )
3534abs00bd 14031 . . 3  |-  ( ( ( ( A  e.  NN  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  A  ||  ( B  -  C
) )  /\  B  =  C )  ->  ( abs `  ( B  -  C ) )  =  0 )
36 nngt0 11049 . . . . 5  |-  ( A  e.  NN  ->  0  <  A )
37363ad2ant1 1082 . . . 4  |-  ( ( A  e.  NN  /\  B  e.  ZZ  /\  C  e.  ZZ )  ->  0  <  A )
3837ad2antrr 762 . . 3  |-  ( ( ( ( A  e.  NN  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  A  ||  ( B  -  C
) )  /\  B  =  C )  ->  0  <  A )
3935, 38eqbrtrd 4675 . 2  |-  ( ( ( ( A  e.  NN  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  A  ||  ( B  -  C
) )  /\  B  =  C )  ->  ( abs `  ( B  -  C ) )  < 
A )
4029, 39impbida 877 1  |-  ( ( ( A  e.  NN  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  A  ||  ( B  -  C ) )  ->  ( ( abs `  ( B  -  C
) )  <  A  <->  B  =  C ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   class class class wbr 4653   ` cfv 5888  (class class class)co 6650   CCcc 9934   RRcr 9935   0cc0 9936    < clt 10074    <_ cle 10075    - cmin 10266   NNcn 11020   ZZcz 11377   abscabs 13974    || cdvds 14983
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-dvds 14984
This theorem is referenced by:  acongeq  37550
  Copyright terms: Public domain W3C validator