Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  acongeq Structured version   Visualization version   Unicode version

Theorem acongeq 37550
Description: Two numbers in the fundamental domain are alternating-congruent iff they are equal. TODO: could be used to shorten jm2.26 37569. (Contributed by Stefan O'Rear, 4-Oct-2014.)
Assertion
Ref Expression
acongeq  |-  ( ( A  e.  NN  /\  B  e.  ( 0 ... A )  /\  C  e.  ( 0 ... A ) )  ->  ( B  =  C  <->  ( ( 2  x.  A )  ||  ( B  -  C
)  \/  ( 2  x.  A )  ||  ( B  -  -u C
) ) ) )

Proof of Theorem acongeq
StepHypRef Expression
1 2z 11409 . . . . . . 7  |-  2  e.  ZZ
2 nnz 11399 . . . . . . . 8  |-  ( A  e.  NN  ->  A  e.  ZZ )
323ad2ant1 1082 . . . . . . 7  |-  ( ( A  e.  NN  /\  B  e.  ( 0 ... A )  /\  C  e.  ( 0 ... A ) )  ->  A  e.  ZZ )
4 zmulcl 11426 . . . . . . 7  |-  ( ( 2  e.  ZZ  /\  A  e.  ZZ )  ->  ( 2  x.  A
)  e.  ZZ )
51, 3, 4sylancr 695 . . . . . 6  |-  ( ( A  e.  NN  /\  B  e.  ( 0 ... A )  /\  C  e.  ( 0 ... A ) )  ->  ( 2  x.  A )  e.  ZZ )
6 elfzelz 12342 . . . . . . 7  |-  ( B  e.  ( 0 ... A )  ->  B  e.  ZZ )
763ad2ant2 1083 . . . . . 6  |-  ( ( A  e.  NN  /\  B  e.  ( 0 ... A )  /\  C  e.  ( 0 ... A ) )  ->  B  e.  ZZ )
8 congid 37538 . . . . . 6  |-  ( ( ( 2  x.  A
)  e.  ZZ  /\  B  e.  ZZ )  ->  ( 2  x.  A
)  ||  ( B  -  B ) )
95, 7, 8syl2anc 693 . . . . 5  |-  ( ( A  e.  NN  /\  B  e.  ( 0 ... A )  /\  C  e.  ( 0 ... A ) )  ->  ( 2  x.  A )  ||  ( B  -  B )
)
109adantr 481 . . . 4  |-  ( ( ( A  e.  NN  /\  B  e.  ( 0 ... A )  /\  C  e.  ( 0 ... A ) )  /\  B  =  C )  ->  ( 2  x.  A )  ||  ( B  -  B
) )
11 oveq2 6658 . . . . 5  |-  ( B  =  C  ->  ( B  -  B )  =  ( B  -  C ) )
1211adantl 482 . . . 4  |-  ( ( ( A  e.  NN  /\  B  e.  ( 0 ... A )  /\  C  e.  ( 0 ... A ) )  /\  B  =  C )  ->  ( B  -  B )  =  ( B  -  C ) )
1310, 12breqtrd 4679 . . 3  |-  ( ( ( A  e.  NN  /\  B  e.  ( 0 ... A )  /\  C  e.  ( 0 ... A ) )  /\  B  =  C )  ->  ( 2  x.  A )  ||  ( B  -  C
) )
1413orcd 407 . 2  |-  ( ( ( A  e.  NN  /\  B  e.  ( 0 ... A )  /\  C  e.  ( 0 ... A ) )  /\  B  =  C )  ->  ( (
2  x.  A ) 
||  ( B  -  C )  \/  (
2  x.  A ) 
||  ( B  -  -u C ) ) )
15 elfzelz 12342 . . . . . . . . . 10  |-  ( C  e.  ( 0 ... A )  ->  C  e.  ZZ )
16153ad2ant3 1084 . . . . . . . . 9  |-  ( ( A  e.  NN  /\  B  e.  ( 0 ... A )  /\  C  e.  ( 0 ... A ) )  ->  C  e.  ZZ )
177, 16zsubcld 11487 . . . . . . . 8  |-  ( ( A  e.  NN  /\  B  e.  ( 0 ... A )  /\  C  e.  ( 0 ... A ) )  ->  ( B  -  C )  e.  ZZ )
1817zcnd 11483 . . . . . . 7  |-  ( ( A  e.  NN  /\  B  e.  ( 0 ... A )  /\  C  e.  ( 0 ... A ) )  ->  ( B  -  C )  e.  CC )
1918abscld 14175 . . . . . 6  |-  ( ( A  e.  NN  /\  B  e.  ( 0 ... A )  /\  C  e.  ( 0 ... A ) )  ->  ( abs `  ( B  -  C )
)  e.  RR )
20 nnre 11027 . . . . . . . 8  |-  ( A  e.  NN  ->  A  e.  RR )
21203ad2ant1 1082 . . . . . . 7  |-  ( ( A  e.  NN  /\  B  e.  ( 0 ... A )  /\  C  e.  ( 0 ... A ) )  ->  A  e.  RR )
22 0re 10040 . . . . . . 7  |-  0  e.  RR
23 resubcl 10345 . . . . . . 7  |-  ( ( A  e.  RR  /\  0  e.  RR )  ->  ( A  -  0 )  e.  RR )
2421, 22, 23sylancl 694 . . . . . 6  |-  ( ( A  e.  NN  /\  B  e.  ( 0 ... A )  /\  C  e.  ( 0 ... A ) )  ->  ( A  - 
0 )  e.  RR )
25 2re 11090 . . . . . . 7  |-  2  e.  RR
26 remulcl 10021 . . . . . . 7  |-  ( ( 2  e.  RR  /\  A  e.  RR )  ->  ( 2  x.  A
)  e.  RR )
2725, 21, 26sylancr 695 . . . . . 6  |-  ( ( A  e.  NN  /\  B  e.  ( 0 ... A )  /\  C  e.  ( 0 ... A ) )  ->  ( 2  x.  A )  e.  RR )
28 simp2 1062 . . . . . . 7  |-  ( ( A  e.  NN  /\  B  e.  ( 0 ... A )  /\  C  e.  ( 0 ... A ) )  ->  B  e.  ( 0 ... A ) )
29 simp3 1063 . . . . . . 7  |-  ( ( A  e.  NN  /\  B  e.  ( 0 ... A )  /\  C  e.  ( 0 ... A ) )  ->  C  e.  ( 0 ... A ) )
3024leidd 10594 . . . . . . 7  |-  ( ( A  e.  NN  /\  B  e.  ( 0 ... A )  /\  C  e.  ( 0 ... A ) )  ->  ( A  - 
0 )  <_  ( A  -  0 ) )
31 fzmaxdif 37548 . . . . . . 7  |-  ( ( ( A  e.  ZZ  /\  B  e.  ( 0 ... A ) )  /\  ( A  e.  ZZ  /\  C  e.  ( 0 ... A
) )  /\  ( A  -  0 )  <_  ( A  - 
0 ) )  -> 
( abs `  ( B  -  C )
)  <_  ( A  -  0 ) )
323, 28, 3, 29, 30, 31syl221anc 1337 . . . . . 6  |-  ( ( A  e.  NN  /\  B  e.  ( 0 ... A )  /\  C  e.  ( 0 ... A ) )  ->  ( abs `  ( B  -  C )
)  <_  ( A  -  0 ) )
33 nnrp 11842 . . . . . . . . 9  |-  ( A  e.  NN  ->  A  e.  RR+ )
34333ad2ant1 1082 . . . . . . . 8  |-  ( ( A  e.  NN  /\  B  e.  ( 0 ... A )  /\  C  e.  ( 0 ... A ) )  ->  A  e.  RR+ )
3521, 34ltaddrpd 11905 . . . . . . 7  |-  ( ( A  e.  NN  /\  B  e.  ( 0 ... A )  /\  C  e.  ( 0 ... A ) )  ->  A  <  ( A  +  A )
)
3621recnd 10068 . . . . . . . 8  |-  ( ( A  e.  NN  /\  B  e.  ( 0 ... A )  /\  C  e.  ( 0 ... A ) )  ->  A  e.  CC )
3736subid1d 10381 . . . . . . 7  |-  ( ( A  e.  NN  /\  B  e.  ( 0 ... A )  /\  C  e.  ( 0 ... A ) )  ->  ( A  - 
0 )  =  A )
38362timesd 11275 . . . . . . 7  |-  ( ( A  e.  NN  /\  B  e.  ( 0 ... A )  /\  C  e.  ( 0 ... A ) )  ->  ( 2  x.  A )  =  ( A  +  A ) )
3935, 37, 383brtr4d 4685 . . . . . 6  |-  ( ( A  e.  NN  /\  B  e.  ( 0 ... A )  /\  C  e.  ( 0 ... A ) )  ->  ( A  - 
0 )  <  (
2  x.  A ) )
4019, 24, 27, 32, 39lelttrd 10195 . . . . 5  |-  ( ( A  e.  NN  /\  B  e.  ( 0 ... A )  /\  C  e.  ( 0 ... A ) )  ->  ( abs `  ( B  -  C )
)  <  ( 2  x.  A ) )
4140adantr 481 . . . 4  |-  ( ( ( A  e.  NN  /\  B  e.  ( 0 ... A )  /\  C  e.  ( 0 ... A ) )  /\  ( 2  x.  A )  ||  ( B  -  C )
)  ->  ( abs `  ( B  -  C
) )  <  (
2  x.  A ) )
42 2nn 11185 . . . . . 6  |-  2  e.  NN
43 simpl1 1064 . . . . . 6  |-  ( ( ( A  e.  NN  /\  B  e.  ( 0 ... A )  /\  C  e.  ( 0 ... A ) )  /\  ( 2  x.  A )  ||  ( B  -  C )
)  ->  A  e.  NN )
44 nnmulcl 11043 . . . . . 6  |-  ( ( 2  e.  NN  /\  A  e.  NN )  ->  ( 2  x.  A
)  e.  NN )
4542, 43, 44sylancr 695 . . . . 5  |-  ( ( ( A  e.  NN  /\  B  e.  ( 0 ... A )  /\  C  e.  ( 0 ... A ) )  /\  ( 2  x.  A )  ||  ( B  -  C )
)  ->  ( 2  x.  A )  e.  NN )
46 simpl2 1065 . . . . . 6  |-  ( ( ( A  e.  NN  /\  B  e.  ( 0 ... A )  /\  C  e.  ( 0 ... A ) )  /\  ( 2  x.  A )  ||  ( B  -  C )
)  ->  B  e.  ( 0 ... A
) )
4746, 6syl 17 . . . . 5  |-  ( ( ( A  e.  NN  /\  B  e.  ( 0 ... A )  /\  C  e.  ( 0 ... A ) )  /\  ( 2  x.  A )  ||  ( B  -  C )
)  ->  B  e.  ZZ )
48 simpl3 1066 . . . . . 6  |-  ( ( ( A  e.  NN  /\  B  e.  ( 0 ... A )  /\  C  e.  ( 0 ... A ) )  /\  ( 2  x.  A )  ||  ( B  -  C )
)  ->  C  e.  ( 0 ... A
) )
4948, 15syl 17 . . . . 5  |-  ( ( ( A  e.  NN  /\  B  e.  ( 0 ... A )  /\  C  e.  ( 0 ... A ) )  /\  ( 2  x.  A )  ||  ( B  -  C )
)  ->  C  e.  ZZ )
50 simpr 477 . . . . 5  |-  ( ( ( A  e.  NN  /\  B  e.  ( 0 ... A )  /\  C  e.  ( 0 ... A ) )  /\  ( 2  x.  A )  ||  ( B  -  C )
)  ->  ( 2  x.  A )  ||  ( B  -  C
) )
51 congabseq 37541 . . . . 5  |-  ( ( ( ( 2  x.  A )  e.  NN  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  ( 2  x.  A
)  ||  ( B  -  C ) )  -> 
( ( abs `  ( B  -  C )
)  <  ( 2  x.  A )  <->  B  =  C ) )
5245, 47, 49, 50, 51syl31anc 1329 . . . 4  |-  ( ( ( A  e.  NN  /\  B  e.  ( 0 ... A )  /\  C  e.  ( 0 ... A ) )  /\  ( 2  x.  A )  ||  ( B  -  C )
)  ->  ( ( abs `  ( B  -  C ) )  < 
( 2  x.  A
)  <->  B  =  C
) )
5341, 52mpbid 222 . . 3  |-  ( ( ( A  e.  NN  /\  B  e.  ( 0 ... A )  /\  C  e.  ( 0 ... A ) )  /\  ( 2  x.  A )  ||  ( B  -  C )
)  ->  B  =  C )
54 simpll2 1101 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  NN  /\  B  e.  ( 0 ... A
)  /\  C  e.  ( 0 ... A
) )  /\  (
2  x.  A ) 
||  ( B  -  -u C ) )  /\  C  e.  ( 0 ... ( A  - 
1 ) ) )  ->  B  e.  ( 0 ... A ) )
55 elfzle1 12344 . . . . . . . . . . 11  |-  ( B  e.  ( 0 ... A )  ->  0  <_  B )
5654, 55syl 17 . . . . . . . . . 10  |-  ( ( ( ( A  e.  NN  /\  B  e.  ( 0 ... A
)  /\  C  e.  ( 0 ... A
) )  /\  (
2  x.  A ) 
||  ( B  -  -u C ) )  /\  C  e.  ( 0 ... ( A  - 
1 ) ) )  ->  0  <_  B
)
577zred 11482 . . . . . . . . . . . . . . . 16  |-  ( ( A  e.  NN  /\  B  e.  ( 0 ... A )  /\  C  e.  ( 0 ... A ) )  ->  B  e.  RR )
5816zred 11482 . . . . . . . . . . . . . . . . 17  |-  ( ( A  e.  NN  /\  B  e.  ( 0 ... A )  /\  C  e.  ( 0 ... A ) )  ->  C  e.  RR )
5958renegcld 10457 . . . . . . . . . . . . . . . 16  |-  ( ( A  e.  NN  /\  B  e.  ( 0 ... A )  /\  C  e.  ( 0 ... A ) )  ->  -u C  e.  RR )
6057, 59resubcld 10458 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  NN  /\  B  e.  ( 0 ... A )  /\  C  e.  ( 0 ... A ) )  ->  ( B  -  -u C )  e.  RR )
6160recnd 10068 . . . . . . . . . . . . . 14  |-  ( ( A  e.  NN  /\  B  e.  ( 0 ... A )  /\  C  e.  ( 0 ... A ) )  ->  ( B  -  -u C )  e.  CC )
6261abscld 14175 . . . . . . . . . . . . 13  |-  ( ( A  e.  NN  /\  B  e.  ( 0 ... A )  /\  C  e.  ( 0 ... A ) )  ->  ( abs `  ( B  -  -u C ) )  e.  RR )
6362ad2antrr 762 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  NN  /\  B  e.  ( 0 ... A
)  /\  C  e.  ( 0 ... A
) )  /\  (
2  x.  A ) 
||  ( B  -  -u C ) )  /\  C  e.  ( 0 ... ( A  - 
1 ) ) )  ->  ( abs `  ( B  -  -u C ) )  e.  RR )
64 1re 10039 . . . . . . . . . . . . . . . 16  |-  1  e.  RR
65 resubcl 10345 . . . . . . . . . . . . . . . 16  |-  ( ( A  e.  RR  /\  1  e.  RR )  ->  ( A  -  1 )  e.  RR )
6621, 64, 65sylancl 694 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  NN  /\  B  e.  ( 0 ... A )  /\  C  e.  ( 0 ... A ) )  ->  ( A  - 
1 )  e.  RR )
6766renegcld 10457 . . . . . . . . . . . . . 14  |-  ( ( A  e.  NN  /\  B  e.  ( 0 ... A )  /\  C  e.  ( 0 ... A ) )  ->  -u ( A  - 
1 )  e.  RR )
6821, 67resubcld 10458 . . . . . . . . . . . . 13  |-  ( ( A  e.  NN  /\  B  e.  ( 0 ... A )  /\  C  e.  ( 0 ... A ) )  ->  ( A  -  -u ( A  -  1 ) )  e.  RR )
6968ad2antrr 762 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  NN  /\  B  e.  ( 0 ... A
)  /\  C  e.  ( 0 ... A
) )  /\  (
2  x.  A ) 
||  ( B  -  -u C ) )  /\  C  e.  ( 0 ... ( A  - 
1 ) ) )  ->  ( A  -  -u ( A  -  1 ) )  e.  RR )
7027ad2antrr 762 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  NN  /\  B  e.  ( 0 ... A
)  /\  C  e.  ( 0 ... A
) )  /\  (
2  x.  A ) 
||  ( B  -  -u C ) )  /\  C  e.  ( 0 ... ( A  - 
1 ) ) )  ->  ( 2  x.  A )  e.  RR )
717ad2antrr 762 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  e.  NN  /\  B  e.  ( 0 ... A
)  /\  C  e.  ( 0 ... A
) )  /\  (
2  x.  A ) 
||  ( B  -  -u C ) )  /\  C  e.  ( 0 ... ( A  - 
1 ) ) )  ->  B  e.  ZZ )
7271zcnd 11483 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e.  NN  /\  B  e.  ( 0 ... A
)  /\  C  e.  ( 0 ... A
) )  /\  (
2  x.  A ) 
||  ( B  -  -u C ) )  /\  C  e.  ( 0 ... ( A  - 
1 ) ) )  ->  B  e.  CC )
7316znegcld 11484 . . . . . . . . . . . . . . . 16  |-  ( ( A  e.  NN  /\  B  e.  ( 0 ... A )  /\  C  e.  ( 0 ... A ) )  ->  -u C  e.  ZZ )
7473ad2antrr 762 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  e.  NN  /\  B  e.  ( 0 ... A
)  /\  C  e.  ( 0 ... A
) )  /\  (
2  x.  A ) 
||  ( B  -  -u C ) )  /\  C  e.  ( 0 ... ( A  - 
1 ) ) )  ->  -u C  e.  ZZ )
7574zcnd 11483 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e.  NN  /\  B  e.  ( 0 ... A
)  /\  C  e.  ( 0 ... A
) )  /\  (
2  x.  A ) 
||  ( B  -  -u C ) )  /\  C  e.  ( 0 ... ( A  - 
1 ) ) )  ->  -u C  e.  CC )
7672, 75abssubd 14192 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  NN  /\  B  e.  ( 0 ... A
)  /\  C  e.  ( 0 ... A
) )  /\  (
2  x.  A ) 
||  ( B  -  -u C ) )  /\  C  e.  ( 0 ... ( A  - 
1 ) ) )  ->  ( abs `  ( B  -  -u C ) )  =  ( abs `  ( -u C  -  B ) ) )
77 0zd 11389 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e.  NN  /\  B  e.  ( 0 ... A
)  /\  C  e.  ( 0 ... A
) )  /\  (
2  x.  A ) 
||  ( B  -  -u C ) )  /\  C  e.  ( 0 ... ( A  - 
1 ) ) )  ->  0  e.  ZZ )
78 simpr 477 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A  e.  NN  /\  B  e.  ( 0 ... A
)  /\  C  e.  ( 0 ... A
) )  /\  (
2  x.  A ) 
||  ( B  -  -u C ) )  /\  C  e.  ( 0 ... ( A  - 
1 ) ) )  ->  C  e.  ( 0 ... ( A  -  1 ) ) )
79 0zd 11389 . . . . . . . . . . . . . . . . . 18  |-  ( ( A  e.  NN  /\  B  e.  ( 0 ... A )  /\  C  e.  ( 0 ... A ) )  ->  0  e.  ZZ )
80 1z 11407 . . . . . . . . . . . . . . . . . . 19  |-  1  e.  ZZ
81 zsubcl 11419 . . . . . . . . . . . . . . . . . . 19  |-  ( ( A  e.  ZZ  /\  1  e.  ZZ )  ->  ( A  -  1 )  e.  ZZ )
823, 80, 81sylancl 694 . . . . . . . . . . . . . . . . . 18  |-  ( ( A  e.  NN  /\  B  e.  ( 0 ... A )  /\  C  e.  ( 0 ... A ) )  ->  ( A  - 
1 )  e.  ZZ )
83 fzneg 37549 . . . . . . . . . . . . . . . . . 18  |-  ( ( C  e.  ZZ  /\  0  e.  ZZ  /\  ( A  -  1 )  e.  ZZ )  -> 
( C  e.  ( 0 ... ( A  -  1 ) )  <->  -u C  e.  ( -u ( A  -  1 ) ... -u 0
) ) )
8416, 79, 82, 83syl3anc 1326 . . . . . . . . . . . . . . . . 17  |-  ( ( A  e.  NN  /\  B  e.  ( 0 ... A )  /\  C  e.  ( 0 ... A ) )  ->  ( C  e.  ( 0 ... ( A  -  1 ) )  <->  -u C  e.  (
-u ( A  - 
1 ) ... -u 0
) ) )
8584ad2antrr 762 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A  e.  NN  /\  B  e.  ( 0 ... A
)  /\  C  e.  ( 0 ... A
) )  /\  (
2  x.  A ) 
||  ( B  -  -u C ) )  /\  C  e.  ( 0 ... ( A  - 
1 ) ) )  ->  ( C  e.  ( 0 ... ( A  -  1 ) )  <->  -u C  e.  (
-u ( A  - 
1 ) ... -u 0
) ) )
8678, 85mpbid 222 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  e.  NN  /\  B  e.  ( 0 ... A
)  /\  C  e.  ( 0 ... A
) )  /\  (
2  x.  A ) 
||  ( B  -  -u C ) )  /\  C  e.  ( 0 ... ( A  - 
1 ) ) )  ->  -u C  e.  (
-u ( A  - 
1 ) ... -u 0
) )
87 neg0 10327 . . . . . . . . . . . . . . . . 17  |-  -u 0  =  0
8887a1i 11 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A  e.  NN  /\  B  e.  ( 0 ... A
)  /\  C  e.  ( 0 ... A
) )  /\  (
2  x.  A ) 
||  ( B  -  -u C ) )  /\  C  e.  ( 0 ... ( A  - 
1 ) ) )  ->  -u 0  =  0 )
8988oveq2d 6666 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  e.  NN  /\  B  e.  ( 0 ... A
)  /\  C  e.  ( 0 ... A
) )  /\  (
2  x.  A ) 
||  ( B  -  -u C ) )  /\  C  e.  ( 0 ... ( A  - 
1 ) ) )  ->  ( -u ( A  -  1 ) ... -u 0 )  =  ( -u ( A  -  1 ) ... 0 ) )
9086, 89eleqtrd 2703 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e.  NN  /\  B  e.  ( 0 ... A
)  /\  C  e.  ( 0 ... A
) )  /\  (
2  x.  A ) 
||  ( B  -  -u C ) )  /\  C  e.  ( 0 ... ( A  - 
1 ) ) )  ->  -u C  e.  (
-u ( A  - 
1 ) ... 0
) )
913ad2antrr 762 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e.  NN  /\  B  e.  ( 0 ... A
)  /\  C  e.  ( 0 ... A
) )  /\  (
2  x.  A ) 
||  ( B  -  -u C ) )  /\  C  e.  ( 0 ... ( A  - 
1 ) ) )  ->  A  e.  ZZ )
92 simp1 1061 . . . . . . . . . . . . . . . . . . 19  |-  ( ( A  e.  NN  /\  B  e.  ( 0 ... A )  /\  C  e.  ( 0 ... A ) )  ->  A  e.  NN )
9342, 92, 44sylancr 695 . . . . . . . . . . . . . . . . . 18  |-  ( ( A  e.  NN  /\  B  e.  ( 0 ... A )  /\  C  e.  ( 0 ... A ) )  ->  ( 2  x.  A )  e.  NN )
94 nnm1nn0 11334 . . . . . . . . . . . . . . . . . 18  |-  ( ( 2  x.  A )  e.  NN  ->  (
( 2  x.  A
)  -  1 )  e.  NN0 )
9593, 94syl 17 . . . . . . . . . . . . . . . . 17  |-  ( ( A  e.  NN  /\  B  e.  ( 0 ... A )  /\  C  e.  ( 0 ... A ) )  ->  ( ( 2  x.  A )  - 
1 )  e.  NN0 )
9695nn0ge0d 11354 . . . . . . . . . . . . . . . 16  |-  ( ( A  e.  NN  /\  B  e.  ( 0 ... A )  /\  C  e.  ( 0 ... A ) )  ->  0  <_  (
( 2  x.  A
)  -  1 ) )
97 0m0e0 11130 . . . . . . . . . . . . . . . . 17  |-  ( 0  -  0 )  =  0
9897a1i 11 . . . . . . . . . . . . . . . 16  |-  ( ( A  e.  NN  /\  B  e.  ( 0 ... A )  /\  C  e.  ( 0 ... A ) )  ->  ( 0  -  0 )  =  0 )
99 1cnd 10056 . . . . . . . . . . . . . . . . . 18  |-  ( ( A  e.  NN  /\  B  e.  ( 0 ... A )  /\  C  e.  ( 0 ... A ) )  ->  1  e.  CC )
10036, 36, 99addsubassd 10412 . . . . . . . . . . . . . . . . 17  |-  ( ( A  e.  NN  /\  B  e.  ( 0 ... A )  /\  C  e.  ( 0 ... A ) )  ->  ( ( A  +  A )  - 
1 )  =  ( A  +  ( A  -  1 ) ) )
10138oveq1d 6665 . . . . . . . . . . . . . . . . 17  |-  ( ( A  e.  NN  /\  B  e.  ( 0 ... A )  /\  C  e.  ( 0 ... A ) )  ->  ( ( 2  x.  A )  - 
1 )  =  ( ( A  +  A
)  -  1 ) )
102 ax-1cn 9994 . . . . . . . . . . . . . . . . . . 19  |-  1  e.  CC
103 subcl 10280 . . . . . . . . . . . . . . . . . . 19  |-  ( ( A  e.  CC  /\  1  e.  CC )  ->  ( A  -  1 )  e.  CC )
10436, 102, 103sylancl 694 . . . . . . . . . . . . . . . . . 18  |-  ( ( A  e.  NN  /\  B  e.  ( 0 ... A )  /\  C  e.  ( 0 ... A ) )  ->  ( A  - 
1 )  e.  CC )
10536, 104subnegd 10399 . . . . . . . . . . . . . . . . 17  |-  ( ( A  e.  NN  /\  B  e.  ( 0 ... A )  /\  C  e.  ( 0 ... A ) )  ->  ( A  -  -u ( A  -  1 ) )  =  ( A  +  ( A  -  1 ) ) )
106100, 101, 1053eqtr4rd 2667 . . . . . . . . . . . . . . . 16  |-  ( ( A  e.  NN  /\  B  e.  ( 0 ... A )  /\  C  e.  ( 0 ... A ) )  ->  ( A  -  -u ( A  -  1 ) )  =  ( ( 2  x.  A
)  -  1 ) )
10796, 98, 1063brtr4d 4685 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  NN  /\  B  e.  ( 0 ... A )  /\  C  e.  ( 0 ... A ) )  ->  ( 0  -  0 )  <_  ( A  -  -u ( A  -  1 ) ) )
108107ad2antrr 762 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e.  NN  /\  B  e.  ( 0 ... A
)  /\  C  e.  ( 0 ... A
) )  /\  (
2  x.  A ) 
||  ( B  -  -u C ) )  /\  C  e.  ( 0 ... ( A  - 
1 ) ) )  ->  ( 0  -  0 )  <_  ( A  -  -u ( A  -  1 ) ) )
109 fzmaxdif 37548 . . . . . . . . . . . . . 14  |-  ( ( ( 0  e.  ZZ  /\  -u C  e.  ( -u ( A  -  1 ) ... 0 ) )  /\  ( A  e.  ZZ  /\  B  e.  ( 0 ... A
) )  /\  (
0  -  0 )  <_  ( A  -  -u ( A  -  1 ) ) )  -> 
( abs `  ( -u C  -  B ) )  <_  ( A  -  -u ( A  - 
1 ) ) )
11077, 90, 91, 54, 108, 109syl221anc 1337 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  NN  /\  B  e.  ( 0 ... A
)  /\  C  e.  ( 0 ... A
) )  /\  (
2  x.  A ) 
||  ( B  -  -u C ) )  /\  C  e.  ( 0 ... ( A  - 
1 ) ) )  ->  ( abs `  ( -u C  -  B ) )  <_  ( A  -  -u ( A  - 
1 ) ) )
11176, 110eqbrtrd 4675 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  NN  /\  B  e.  ( 0 ... A
)  /\  C  e.  ( 0 ... A
) )  /\  (
2  x.  A ) 
||  ( B  -  -u C ) )  /\  C  e.  ( 0 ... ( A  - 
1 ) ) )  ->  ( abs `  ( B  -  -u C ) )  <_  ( A  -  -u ( A  - 
1 ) ) )
11227ltm1d 10956 . . . . . . . . . . . . . 14  |-  ( ( A  e.  NN  /\  B  e.  ( 0 ... A )  /\  C  e.  ( 0 ... A ) )  ->  ( ( 2  x.  A )  - 
1 )  <  (
2  x.  A ) )
113106, 112eqbrtrd 4675 . . . . . . . . . . . . 13  |-  ( ( A  e.  NN  /\  B  e.  ( 0 ... A )  /\  C  e.  ( 0 ... A ) )  ->  ( A  -  -u ( A  -  1 ) )  <  (
2  x.  A ) )
114113ad2antrr 762 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  NN  /\  B  e.  ( 0 ... A
)  /\  C  e.  ( 0 ... A
) )  /\  (
2  x.  A ) 
||  ( B  -  -u C ) )  /\  C  e.  ( 0 ... ( A  - 
1 ) ) )  ->  ( A  -  -u ( A  -  1 ) )  <  (
2  x.  A ) )
11563, 69, 70, 111, 114lelttrd 10195 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  NN  /\  B  e.  ( 0 ... A
)  /\  C  e.  ( 0 ... A
) )  /\  (
2  x.  A ) 
||  ( B  -  -u C ) )  /\  C  e.  ( 0 ... ( A  - 
1 ) ) )  ->  ( abs `  ( B  -  -u C ) )  <  ( 2  x.  A ) )
11693ad2antrr 762 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  NN  /\  B  e.  ( 0 ... A
)  /\  C  e.  ( 0 ... A
) )  /\  (
2  x.  A ) 
||  ( B  -  -u C ) )  /\  C  e.  ( 0 ... ( A  - 
1 ) ) )  ->  ( 2  x.  A )  e.  NN )
117 simplr 792 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  NN  /\  B  e.  ( 0 ... A
)  /\  C  e.  ( 0 ... A
) )  /\  (
2  x.  A ) 
||  ( B  -  -u C ) )  /\  C  e.  ( 0 ... ( A  - 
1 ) ) )  ->  ( 2  x.  A )  ||  ( B  -  -u C ) )
118 congabseq 37541 . . . . . . . . . . . 12  |-  ( ( ( ( 2  x.  A )  e.  NN  /\  B  e.  ZZ  /\  -u C  e.  ZZ )  /\  ( 2  x.  A )  ||  ( B  -  -u C ) )  ->  ( ( abs `  ( B  -  -u C ) )  < 
( 2  x.  A
)  <->  B  =  -u C
) )
119116, 71, 74, 117, 118syl31anc 1329 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  NN  /\  B  e.  ( 0 ... A
)  /\  C  e.  ( 0 ... A
) )  /\  (
2  x.  A ) 
||  ( B  -  -u C ) )  /\  C  e.  ( 0 ... ( A  - 
1 ) ) )  ->  ( ( abs `  ( B  -  -u C
) )  <  (
2  x.  A )  <-> 
B  =  -u C
) )
120115, 119mpbid 222 . . . . . . . . . 10  |-  ( ( ( ( A  e.  NN  /\  B  e.  ( 0 ... A
)  /\  C  e.  ( 0 ... A
) )  /\  (
2  x.  A ) 
||  ( B  -  -u C ) )  /\  C  e.  ( 0 ... ( A  - 
1 ) ) )  ->  B  =  -u C )
12156, 120breqtrd 4679 . . . . . . . . 9  |-  ( ( ( ( A  e.  NN  /\  B  e.  ( 0 ... A
)  /\  C  e.  ( 0 ... A
) )  /\  (
2  x.  A ) 
||  ( B  -  -u C ) )  /\  C  e.  ( 0 ... ( A  - 
1 ) ) )  ->  0  <_  -u C
)
122 elfzelz 12342 . . . . . . . . . . . 12  |-  ( C  e.  ( 0 ... ( A  -  1 ) )  ->  C  e.  ZZ )
123122zred 11482 . . . . . . . . . . 11  |-  ( C  e.  ( 0 ... ( A  -  1 ) )  ->  C  e.  RR )
124123adantl 482 . . . . . . . . . 10  |-  ( ( ( ( A  e.  NN  /\  B  e.  ( 0 ... A
)  /\  C  e.  ( 0 ... A
) )  /\  (
2  x.  A ) 
||  ( B  -  -u C ) )  /\  C  e.  ( 0 ... ( A  - 
1 ) ) )  ->  C  e.  RR )
125124le0neg1d 10599 . . . . . . . . 9  |-  ( ( ( ( A  e.  NN  /\  B  e.  ( 0 ... A
)  /\  C  e.  ( 0 ... A
) )  /\  (
2  x.  A ) 
||  ( B  -  -u C ) )  /\  C  e.  ( 0 ... ( A  - 
1 ) ) )  ->  ( C  <_ 
0  <->  0  <_  -u C
) )
126121, 125mpbird 247 . . . . . . . 8  |-  ( ( ( ( A  e.  NN  /\  B  e.  ( 0 ... A
)  /\  C  e.  ( 0 ... A
) )  /\  (
2  x.  A ) 
||  ( B  -  -u C ) )  /\  C  e.  ( 0 ... ( A  - 
1 ) ) )  ->  C  <_  0
)
127 elfzle1 12344 . . . . . . . . 9  |-  ( C  e.  ( 0 ... ( A  -  1 ) )  ->  0  <_  C )
128127adantl 482 . . . . . . . 8  |-  ( ( ( ( A  e.  NN  /\  B  e.  ( 0 ... A
)  /\  C  e.  ( 0 ... A
) )  /\  (
2  x.  A ) 
||  ( B  -  -u C ) )  /\  C  e.  ( 0 ... ( A  - 
1 ) ) )  ->  0  <_  C
)
129 letri3 10123 . . . . . . . . 9  |-  ( ( C  e.  RR  /\  0  e.  RR )  ->  ( C  =  0  <-> 
( C  <_  0  /\  0  <_  C ) ) )
130124, 22, 129sylancl 694 . . . . . . . 8  |-  ( ( ( ( A  e.  NN  /\  B  e.  ( 0 ... A
)  /\  C  e.  ( 0 ... A
) )  /\  (
2  x.  A ) 
||  ( B  -  -u C ) )  /\  C  e.  ( 0 ... ( A  - 
1 ) ) )  ->  ( C  =  0  <->  ( C  <_ 
0  /\  0  <_  C ) ) )
131126, 128, 130mpbir2and 957 . . . . . . 7  |-  ( ( ( ( A  e.  NN  /\  B  e.  ( 0 ... A
)  /\  C  e.  ( 0 ... A
) )  /\  (
2  x.  A ) 
||  ( B  -  -u C ) )  /\  C  e.  ( 0 ... ( A  - 
1 ) ) )  ->  C  =  0 )
132131negeqd 10275 . . . . . 6  |-  ( ( ( ( A  e.  NN  /\  B  e.  ( 0 ... A
)  /\  C  e.  ( 0 ... A
) )  /\  (
2  x.  A ) 
||  ( B  -  -u C ) )  /\  C  e.  ( 0 ... ( A  - 
1 ) ) )  ->  -u C  =  -u
0 )
133132, 88eqtrd 2656 . . . . 5  |-  ( ( ( ( A  e.  NN  /\  B  e.  ( 0 ... A
)  /\  C  e.  ( 0 ... A
) )  /\  (
2  x.  A ) 
||  ( B  -  -u C ) )  /\  C  e.  ( 0 ... ( A  - 
1 ) ) )  ->  -u C  =  0 )
134133, 120, 1313eqtr4d 2666 . . . 4  |-  ( ( ( ( A  e.  NN  /\  B  e.  ( 0 ... A
)  /\  C  e.  ( 0 ... A
) )  /\  (
2  x.  A ) 
||  ( B  -  -u C ) )  /\  C  e.  ( 0 ... ( A  - 
1 ) ) )  ->  B  =  C )
135 oveq2 6658 . . . . . . . . 9  |-  ( C  =  A  ->  ( B  -  C )  =  ( B  -  A ) )
136135adantl 482 . . . . . . . 8  |-  ( ( ( ( A  e.  NN  /\  B  e.  ( 0 ... A
)  /\  C  e.  ( 0 ... A
) )  /\  (
2  x.  A ) 
||  ( B  -  -u C ) )  /\  C  =  A )  ->  ( B  -  C
)  =  ( B  -  A ) )
137136fveq2d 6195 . . . . . . 7  |-  ( ( ( ( A  e.  NN  /\  B  e.  ( 0 ... A
)  /\  C  e.  ( 0 ... A
) )  /\  (
2  x.  A ) 
||  ( B  -  -u C ) )  /\  C  =  A )  ->  ( abs `  ( B  -  C )
)  =  ( abs `  ( B  -  A
) ) )
13840ad2antrr 762 . . . . . . 7  |-  ( ( ( ( A  e.  NN  /\  B  e.  ( 0 ... A
)  /\  C  e.  ( 0 ... A
) )  /\  (
2  x.  A ) 
||  ( B  -  -u C ) )  /\  C  =  A )  ->  ( abs `  ( B  -  C )
)  <  ( 2  x.  A ) )
139137, 138eqbrtrrd 4677 . . . . . 6  |-  ( ( ( ( A  e.  NN  /\  B  e.  ( 0 ... A
)  /\  C  e.  ( 0 ... A
) )  /\  (
2  x.  A ) 
||  ( B  -  -u C ) )  /\  C  =  A )  ->  ( abs `  ( B  -  A )
)  <  ( 2  x.  A ) )
14093ad2antrr 762 . . . . . . 7  |-  ( ( ( ( A  e.  NN  /\  B  e.  ( 0 ... A
)  /\  C  e.  ( 0 ... A
) )  /\  (
2  x.  A ) 
||  ( B  -  -u C ) )  /\  C  =  A )  ->  ( 2  x.  A
)  e.  NN )
1417ad2antrr 762 . . . . . . 7  |-  ( ( ( ( A  e.  NN  /\  B  e.  ( 0 ... A
)  /\  C  e.  ( 0 ... A
) )  /\  (
2  x.  A ) 
||  ( B  -  -u C ) )  /\  C  =  A )  ->  B  e.  ZZ )
1423ad2antrr 762 . . . . . . 7  |-  ( ( ( ( A  e.  NN  /\  B  e.  ( 0 ... A
)  /\  C  e.  ( 0 ... A
) )  /\  (
2  x.  A ) 
||  ( B  -  -u C ) )  /\  C  =  A )  ->  A  e.  ZZ )
143 simplr 792 . . . . . . . . 9  |-  ( ( ( ( A  e.  NN  /\  B  e.  ( 0 ... A
)  /\  C  e.  ( 0 ... A
) )  /\  (
2  x.  A ) 
||  ( B  -  -u C ) )  /\  C  =  A )  ->  ( 2  x.  A
)  ||  ( B  -  -u C ) )
1447zcnd 11483 . . . . . . . . . . . . . 14  |-  ( ( A  e.  NN  /\  B  e.  ( 0 ... A )  /\  C  e.  ( 0 ... A ) )  ->  B  e.  CC )
14536, 36, 144ppncand 10432 . . . . . . . . . . . . 13  |-  ( ( A  e.  NN  /\  B  e.  ( 0 ... A )  /\  C  e.  ( 0 ... A ) )  ->  ( ( A  +  A )  +  ( B  -  A
) )  =  ( A  +  B ) )
14636, 144addcomd 10238 . . . . . . . . . . . . 13  |-  ( ( A  e.  NN  /\  B  e.  ( 0 ... A )  /\  C  e.  ( 0 ... A ) )  ->  ( A  +  B )  =  ( B  +  A ) )
147145, 146eqtrd 2656 . . . . . . . . . . . 12  |-  ( ( A  e.  NN  /\  B  e.  ( 0 ... A )  /\  C  e.  ( 0 ... A ) )  ->  ( ( A  +  A )  +  ( B  -  A
) )  =  ( B  +  A ) )
148147ad2antrr 762 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  NN  /\  B  e.  ( 0 ... A
)  /\  C  e.  ( 0 ... A
) )  /\  (
2  x.  A ) 
||  ( B  -  -u C ) )  /\  C  =  A )  ->  ( ( A  +  A )  +  ( B  -  A ) )  =  ( B  +  A ) )
149 oveq2 6658 . . . . . . . . . . . 12  |-  ( C  =  A  ->  ( B  +  C )  =  ( B  +  A ) )
150149adantl 482 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  NN  /\  B  e.  ( 0 ... A
)  /\  C  e.  ( 0 ... A
) )  /\  (
2  x.  A ) 
||  ( B  -  -u C ) )  /\  C  =  A )  ->  ( B  +  C
)  =  ( B  +  A ) )
151148, 150eqtr4d 2659 . . . . . . . . . 10  |-  ( ( ( ( A  e.  NN  /\  B  e.  ( 0 ... A
)  /\  C  e.  ( 0 ... A
) )  /\  (
2  x.  A ) 
||  ( B  -  -u C ) )  /\  C  =  A )  ->  ( ( A  +  A )  +  ( B  -  A ) )  =  ( B  +  C ) )
15238oveq1d 6665 . . . . . . . . . . 11  |-  ( ( A  e.  NN  /\  B  e.  ( 0 ... A )  /\  C  e.  ( 0 ... A ) )  ->  ( ( 2  x.  A )  +  ( B  -  A
) )  =  ( ( A  +  A
)  +  ( B  -  A ) ) )
153152ad2antrr 762 . . . . . . . . . 10  |-  ( ( ( ( A  e.  NN  /\  B  e.  ( 0 ... A
)  /\  C  e.  ( 0 ... A
) )  /\  (
2  x.  A ) 
||  ( B  -  -u C ) )  /\  C  =  A )  ->  ( ( 2  x.  A )  +  ( B  -  A ) )  =  ( ( A  +  A )  +  ( B  -  A ) ) )
15416zcnd 11483 . . . . . . . . . . . 12  |-  ( ( A  e.  NN  /\  B  e.  ( 0 ... A )  /\  C  e.  ( 0 ... A ) )  ->  C  e.  CC )
155144, 154subnegd 10399 . . . . . . . . . . 11  |-  ( ( A  e.  NN  /\  B  e.  ( 0 ... A )  /\  C  e.  ( 0 ... A ) )  ->  ( B  -  -u C )  =  ( B  +  C ) )
156155ad2antrr 762 . . . . . . . . . 10  |-  ( ( ( ( A  e.  NN  /\  B  e.  ( 0 ... A
)  /\  C  e.  ( 0 ... A
) )  /\  (
2  x.  A ) 
||  ( B  -  -u C ) )  /\  C  =  A )  ->  ( B  -  -u C
)  =  ( B  +  C ) )
157151, 153, 1563eqtr4d 2666 . . . . . . . . 9  |-  ( ( ( ( A  e.  NN  /\  B  e.  ( 0 ... A
)  /\  C  e.  ( 0 ... A
) )  /\  (
2  x.  A ) 
||  ( B  -  -u C ) )  /\  C  =  A )  ->  ( ( 2  x.  A )  +  ( B  -  A ) )  =  ( B  -  -u C ) )
158143, 157breqtrrd 4681 . . . . . . . 8  |-  ( ( ( ( A  e.  NN  /\  B  e.  ( 0 ... A
)  /\  C  e.  ( 0 ... A
) )  /\  (
2  x.  A ) 
||  ( B  -  -u C ) )  /\  C  =  A )  ->  ( 2  x.  A
)  ||  ( (
2  x.  A )  +  ( B  -  A ) ) )
1595ad2antrr 762 . . . . . . . . 9  |-  ( ( ( ( A  e.  NN  /\  B  e.  ( 0 ... A
)  /\  C  e.  ( 0 ... A
) )  /\  (
2  x.  A ) 
||  ( B  -  -u C ) )  /\  C  =  A )  ->  ( 2  x.  A
)  e.  ZZ )
1607, 3zsubcld 11487 . . . . . . . . . 10  |-  ( ( A  e.  NN  /\  B  e.  ( 0 ... A )  /\  C  e.  ( 0 ... A ) )  ->  ( B  -  A )  e.  ZZ )
161160ad2antrr 762 . . . . . . . . 9  |-  ( ( ( ( A  e.  NN  /\  B  e.  ( 0 ... A
)  /\  C  e.  ( 0 ... A
) )  /\  (
2  x.  A ) 
||  ( B  -  -u C ) )  /\  C  =  A )  ->  ( B  -  A
)  e.  ZZ )
162 dvdsadd 15024 . . . . . . . . 9  |-  ( ( ( 2  x.  A
)  e.  ZZ  /\  ( B  -  A
)  e.  ZZ )  ->  ( ( 2  x.  A )  ||  ( B  -  A
)  <->  ( 2  x.  A )  ||  (
( 2  x.  A
)  +  ( B  -  A ) ) ) )
163159, 161, 162syl2anc 693 . . . . . . . 8  |-  ( ( ( ( A  e.  NN  /\  B  e.  ( 0 ... A
)  /\  C  e.  ( 0 ... A
) )  /\  (
2  x.  A ) 
||  ( B  -  -u C ) )  /\  C  =  A )  ->  ( ( 2  x.  A )  ||  ( B  -  A )  <->  ( 2  x.  A ) 
||  ( ( 2  x.  A )  +  ( B  -  A
) ) ) )
164158, 163mpbird 247 . . . . . . 7  |-  ( ( ( ( A  e.  NN  /\  B  e.  ( 0 ... A
)  /\  C  e.  ( 0 ... A
) )  /\  (
2  x.  A ) 
||  ( B  -  -u C ) )  /\  C  =  A )  ->  ( 2  x.  A
)  ||  ( B  -  A ) )
165 congabseq 37541 . . . . . . 7  |-  ( ( ( ( 2  x.  A )  e.  NN  /\  B  e.  ZZ  /\  A  e.  ZZ )  /\  ( 2  x.  A
)  ||  ( B  -  A ) )  -> 
( ( abs `  ( B  -  A )
)  <  ( 2  x.  A )  <->  B  =  A ) )
166140, 141, 142, 164, 165syl31anc 1329 . . . . . 6  |-  ( ( ( ( A  e.  NN  /\  B  e.  ( 0 ... A
)  /\  C  e.  ( 0 ... A
) )  /\  (
2  x.  A ) 
||  ( B  -  -u C ) )  /\  C  =  A )  ->  ( ( abs `  ( B  -  A )
)  <  ( 2  x.  A )  <->  B  =  A ) )
167139, 166mpbid 222 . . . . 5  |-  ( ( ( ( A  e.  NN  /\  B  e.  ( 0 ... A
)  /\  C  e.  ( 0 ... A
) )  /\  (
2  x.  A ) 
||  ( B  -  -u C ) )  /\  C  =  A )  ->  B  =  A )
168 simpr 477 . . . . 5  |-  ( ( ( ( A  e.  NN  /\  B  e.  ( 0 ... A
)  /\  C  e.  ( 0 ... A
) )  /\  (
2  x.  A ) 
||  ( B  -  -u C ) )  /\  C  =  A )  ->  C  =  A )
169167, 168eqtr4d 2659 . . . 4  |-  ( ( ( ( A  e.  NN  /\  B  e.  ( 0 ... A
)  /\  C  e.  ( 0 ... A
) )  /\  (
2  x.  A ) 
||  ( B  -  -u C ) )  /\  C  =  A )  ->  B  =  C )
170 nnnn0 11299 . . . . . . . 8  |-  ( A  e.  NN  ->  A  e.  NN0 )
1711703ad2ant1 1082 . . . . . . 7  |-  ( ( A  e.  NN  /\  B  e.  ( 0 ... A )  /\  C  e.  ( 0 ... A ) )  ->  A  e.  NN0 )
172 nn0uz 11722 . . . . . . 7  |-  NN0  =  ( ZZ>= `  0 )
173171, 172syl6eleq 2711 . . . . . 6  |-  ( ( A  e.  NN  /\  B  e.  ( 0 ... A )  /\  C  e.  ( 0 ... A ) )  ->  A  e.  (
ZZ>= `  0 ) )
174 fzm1 12420 . . . . . . 7  |-  ( A  e.  ( ZZ>= `  0
)  ->  ( C  e.  ( 0 ... A
)  <->  ( C  e.  ( 0 ... ( A  -  1 ) )  \/  C  =  A ) ) )
175174biimpa 501 . . . . . 6  |-  ( ( A  e.  ( ZZ>= ` 
0 )  /\  C  e.  ( 0 ... A
) )  ->  ( C  e.  ( 0 ... ( A  - 
1 ) )  \/  C  =  A ) )
176173, 29, 175syl2anc 693 . . . . 5  |-  ( ( A  e.  NN  /\  B  e.  ( 0 ... A )  /\  C  e.  ( 0 ... A ) )  ->  ( C  e.  ( 0 ... ( A  -  1 ) )  \/  C  =  A ) )
177176adantr 481 . . . 4  |-  ( ( ( A  e.  NN  /\  B  e.  ( 0 ... A )  /\  C  e.  ( 0 ... A ) )  /\  ( 2  x.  A )  ||  ( B  -  -u C ) )  ->  ( C  e.  ( 0 ... ( A  -  1 ) )  \/  C  =  A ) )
178134, 169, 177mpjaodan 827 . . 3  |-  ( ( ( A  e.  NN  /\  B  e.  ( 0 ... A )  /\  C  e.  ( 0 ... A ) )  /\  ( 2  x.  A )  ||  ( B  -  -u C ) )  ->  B  =  C )
17953, 178jaodan 826 . 2  |-  ( ( ( A  e.  NN  /\  B  e.  ( 0 ... A )  /\  C  e.  ( 0 ... A ) )  /\  ( ( 2  x.  A )  ||  ( B  -  C
)  \/  ( 2  x.  A )  ||  ( B  -  -u C
) ) )  ->  B  =  C )
18014, 179impbida 877 1  |-  ( ( A  e.  NN  /\  B  e.  ( 0 ... A )  /\  C  e.  ( 0 ... A ) )  ->  ( B  =  C  <->  ( ( 2  x.  A )  ||  ( B  -  C
)  \/  ( 2  x.  A )  ||  ( B  -  -u C
) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   class class class wbr 4653   ` cfv 5888  (class class class)co 6650   CCcc 9934   RRcr 9935   0cc0 9936   1c1 9937    + caddc 9939    x. cmul 9941    < clt 10074    <_ cle 10075    - cmin 10266   -ucneg 10267   NNcn 11020   2c2 11070   NN0cn0 11292   ZZcz 11377   ZZ>=cuz 11687   RR+crp 11832   ...cfz 12326   abscabs 13974    || cdvds 14983
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-fz 12327  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-dvds 14984
This theorem is referenced by:  jm2.27a  37572
  Copyright terms: Public domain W3C validator