MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cshwidxmodr Structured version   Visualization version   Unicode version

Theorem cshwidxmodr 13550
Description: The symbol at a given index of a cyclically shifted nonempty word is the symbol at the shifted index of the original word. (Contributed by AV, 17-Mar-2021.)
Assertion
Ref Expression
cshwidxmodr  |-  ( ( W  e. Word  V  /\  N  e.  ZZ  /\  I  e.  ( 0..^ ( # `  W ) ) )  ->  ( ( W cyclShift  N ) `  (
( I  -  N
)  mod  ( # `  W
) ) )  =  ( W `  I
) )

Proof of Theorem cshwidxmodr
StepHypRef Expression
1 elfzo0 12508 . . . . . . 7  |-  ( I  e.  ( 0..^ (
# `  W )
)  <->  ( I  e. 
NN0  /\  ( # `  W
)  e.  NN  /\  I  <  ( # `  W
) ) )
2 nn0z 11400 . . . . . . . . . . 11  |-  ( I  e.  NN0  ->  I  e.  ZZ )
323ad2ant1 1082 . . . . . . . . . 10  |-  ( ( I  e.  NN0  /\  ( # `  W )  e.  NN  /\  I  <  ( # `  W
) )  ->  I  e.  ZZ )
4 zsubcl 11419 . . . . . . . . . 10  |-  ( ( I  e.  ZZ  /\  N  e.  ZZ )  ->  ( I  -  N
)  e.  ZZ )
53, 4sylan 488 . . . . . . . . 9  |-  ( ( ( I  e.  NN0  /\  ( # `  W
)  e.  NN  /\  I  <  ( # `  W
) )  /\  N  e.  ZZ )  ->  (
I  -  N )  e.  ZZ )
6 simpl2 1065 . . . . . . . . 9  |-  ( ( ( I  e.  NN0  /\  ( # `  W
)  e.  NN  /\  I  <  ( # `  W
) )  /\  N  e.  ZZ )  ->  ( # `
 W )  e.  NN )
75, 6jca 554 . . . . . . . 8  |-  ( ( ( I  e.  NN0  /\  ( # `  W
)  e.  NN  /\  I  <  ( # `  W
) )  /\  N  e.  ZZ )  ->  (
( I  -  N
)  e.  ZZ  /\  ( # `  W )  e.  NN ) )
87ex 450 . . . . . . 7  |-  ( ( I  e.  NN0  /\  ( # `  W )  e.  NN  /\  I  <  ( # `  W
) )  ->  ( N  e.  ZZ  ->  ( ( I  -  N
)  e.  ZZ  /\  ( # `  W )  e.  NN ) ) )
91, 8sylbi 207 . . . . . 6  |-  ( I  e.  ( 0..^ (
# `  W )
)  ->  ( N  e.  ZZ  ->  ( (
I  -  N )  e.  ZZ  /\  ( # `
 W )  e.  NN ) ) )
109impcom 446 . . . . 5  |-  ( ( N  e.  ZZ  /\  I  e.  ( 0..^ ( # `  W
) ) )  -> 
( ( I  -  N )  e.  ZZ  /\  ( # `  W
)  e.  NN ) )
11103adant1 1079 . . . 4  |-  ( ( W  e. Word  V  /\  N  e.  ZZ  /\  I  e.  ( 0..^ ( # `  W ) ) )  ->  ( ( I  -  N )  e.  ZZ  /\  ( # `  W )  e.  NN ) )
12 zmodfzo 12693 . . . 4  |-  ( ( ( I  -  N
)  e.  ZZ  /\  ( # `  W )  e.  NN )  -> 
( ( I  -  N )  mod  ( # `
 W ) )  e.  ( 0..^ (
# `  W )
) )
1311, 12syl 17 . . 3  |-  ( ( W  e. Word  V  /\  N  e.  ZZ  /\  I  e.  ( 0..^ ( # `  W ) ) )  ->  ( ( I  -  N )  mod  ( # `  W
) )  e.  ( 0..^ ( # `  W
) ) )
14 cshwidxmod 13549 . . 3  |-  ( ( W  e. Word  V  /\  N  e.  ZZ  /\  (
( I  -  N
)  mod  ( # `  W
) )  e.  ( 0..^ ( # `  W
) ) )  -> 
( ( W cyclShift  N ) `
 ( ( I  -  N )  mod  ( # `  W
) ) )  =  ( W `  (
( ( ( I  -  N )  mod  ( # `  W
) )  +  N
)  mod  ( # `  W
) ) ) )
1513, 14syld3an3 1371 . 2  |-  ( ( W  e. Word  V  /\  N  e.  ZZ  /\  I  e.  ( 0..^ ( # `  W ) ) )  ->  ( ( W cyclShift  N ) `  (
( I  -  N
)  mod  ( # `  W
) ) )  =  ( W `  (
( ( ( I  -  N )  mod  ( # `  W
) )  +  N
)  mod  ( # `  W
) ) ) )
16 elfzoelz 12470 . . . . . . . . . . . . . . 15  |-  ( I  e.  ( 0..^ (
# `  W )
)  ->  I  e.  ZZ )
1716adantl 482 . . . . . . . . . . . . . 14  |-  ( ( ( I  e.  NN0  /\  ( # `  W
)  e.  NN )  /\  I  e.  ( 0..^ ( # `  W
) ) )  ->  I  e.  ZZ )
1817, 4sylan 488 . . . . . . . . . . . . 13  |-  ( ( ( ( I  e. 
NN0  /\  ( # `  W
)  e.  NN )  /\  I  e.  ( 0..^ ( # `  W
) ) )  /\  N  e.  ZZ )  ->  ( I  -  N
)  e.  ZZ )
1918zred 11482 . . . . . . . . . . . 12  |-  ( ( ( ( I  e. 
NN0  /\  ( # `  W
)  e.  NN )  /\  I  e.  ( 0..^ ( # `  W
) ) )  /\  N  e.  ZZ )  ->  ( I  -  N
)  e.  RR )
20 zre 11381 . . . . . . . . . . . . 13  |-  ( N  e.  ZZ  ->  N  e.  RR )
2120adantl 482 . . . . . . . . . . . 12  |-  ( ( ( ( I  e. 
NN0  /\  ( # `  W
)  e.  NN )  /\  I  e.  ( 0..^ ( # `  W
) ) )  /\  N  e.  ZZ )  ->  N  e.  RR )
22 nnrp 11842 . . . . . . . . . . . . 13  |-  ( (
# `  W )  e.  NN  ->  ( # `  W
)  e.  RR+ )
2322ad3antlr 767 . . . . . . . . . . . 12  |-  ( ( ( ( I  e. 
NN0  /\  ( # `  W
)  e.  NN )  /\  I  e.  ( 0..^ ( # `  W
) ) )  /\  N  e.  ZZ )  ->  ( # `  W
)  e.  RR+ )
24 modaddmod 12709 . . . . . . . . . . . 12  |-  ( ( ( I  -  N
)  e.  RR  /\  N  e.  RR  /\  ( # `
 W )  e.  RR+ )  ->  ( ( ( ( I  -  N )  mod  ( # `
 W ) )  +  N )  mod  ( # `  W
) )  =  ( ( ( I  -  N )  +  N
)  mod  ( # `  W
) ) )
2519, 21, 23, 24syl3anc 1326 . . . . . . . . . . 11  |-  ( ( ( ( I  e. 
NN0  /\  ( # `  W
)  e.  NN )  /\  I  e.  ( 0..^ ( # `  W
) ) )  /\  N  e.  ZZ )  ->  ( ( ( ( I  -  N )  mod  ( # `  W
) )  +  N
)  mod  ( # `  W
) )  =  ( ( ( I  -  N )  +  N
)  mod  ( # `  W
) ) )
26 nn0cn 11302 . . . . . . . . . . . . . 14  |-  ( I  e.  NN0  ->  I  e.  CC )
2726ad2antrr 762 . . . . . . . . . . . . 13  |-  ( ( ( I  e.  NN0  /\  ( # `  W
)  e.  NN )  /\  I  e.  ( 0..^ ( # `  W
) ) )  ->  I  e.  CC )
28 zcn 11382 . . . . . . . . . . . . 13  |-  ( N  e.  ZZ  ->  N  e.  CC )
29 npcan 10290 . . . . . . . . . . . . 13  |-  ( ( I  e.  CC  /\  N  e.  CC )  ->  ( ( I  -  N )  +  N
)  =  I )
3027, 28, 29syl2an 494 . . . . . . . . . . . 12  |-  ( ( ( ( I  e. 
NN0  /\  ( # `  W
)  e.  NN )  /\  I  e.  ( 0..^ ( # `  W
) ) )  /\  N  e.  ZZ )  ->  ( ( I  -  N )  +  N
)  =  I )
3130oveq1d 6665 . . . . . . . . . . 11  |-  ( ( ( ( I  e. 
NN0  /\  ( # `  W
)  e.  NN )  /\  I  e.  ( 0..^ ( # `  W
) ) )  /\  N  e.  ZZ )  ->  ( ( ( I  -  N )  +  N )  mod  ( # `
 W ) )  =  ( I  mod  ( # `  W ) ) )
32 zmodidfzoimp 12700 . . . . . . . . . . . 12  |-  ( I  e.  ( 0..^ (
# `  W )
)  ->  ( I  mod  ( # `  W
) )  =  I )
3332ad2antlr 763 . . . . . . . . . . 11  |-  ( ( ( ( I  e. 
NN0  /\  ( # `  W
)  e.  NN )  /\  I  e.  ( 0..^ ( # `  W
) ) )  /\  N  e.  ZZ )  ->  ( I  mod  ( # `
 W ) )  =  I )
3425, 31, 333eqtrd 2660 . . . . . . . . . 10  |-  ( ( ( ( I  e. 
NN0  /\  ( # `  W
)  e.  NN )  /\  I  e.  ( 0..^ ( # `  W
) ) )  /\  N  e.  ZZ )  ->  ( ( ( ( I  -  N )  mod  ( # `  W
) )  +  N
)  mod  ( # `  W
) )  =  I )
3534fveq2d 6195 . . . . . . . . 9  |-  ( ( ( ( I  e. 
NN0  /\  ( # `  W
)  e.  NN )  /\  I  e.  ( 0..^ ( # `  W
) ) )  /\  N  e.  ZZ )  ->  ( W `  (
( ( ( I  -  N )  mod  ( # `  W
) )  +  N
)  mod  ( # `  W
) ) )  =  ( W `  I
) )
3635ex 450 . . . . . . . 8  |-  ( ( ( I  e.  NN0  /\  ( # `  W
)  e.  NN )  /\  I  e.  ( 0..^ ( # `  W
) ) )  -> 
( N  e.  ZZ  ->  ( W `  (
( ( ( I  -  N )  mod  ( # `  W
) )  +  N
)  mod  ( # `  W
) ) )  =  ( W `  I
) ) )
3736ex 450 . . . . . . 7  |-  ( ( I  e.  NN0  /\  ( # `  W )  e.  NN )  -> 
( I  e.  ( 0..^ ( # `  W
) )  ->  ( N  e.  ZZ  ->  ( W `  ( ( ( ( I  -  N )  mod  ( # `
 W ) )  +  N )  mod  ( # `  W
) ) )  =  ( W `  I
) ) ) )
38373adant3 1081 . . . . . 6  |-  ( ( I  e.  NN0  /\  ( # `  W )  e.  NN  /\  I  <  ( # `  W
) )  ->  (
I  e.  ( 0..^ ( # `  W
) )  ->  ( N  e.  ZZ  ->  ( W `  ( ( ( ( I  -  N )  mod  ( # `
 W ) )  +  N )  mod  ( # `  W
) ) )  =  ( W `  I
) ) ) )
391, 38sylbi 207 . . . . 5  |-  ( I  e.  ( 0..^ (
# `  W )
)  ->  ( I  e.  ( 0..^ ( # `  W ) )  -> 
( N  e.  ZZ  ->  ( W `  (
( ( ( I  -  N )  mod  ( # `  W
) )  +  N
)  mod  ( # `  W
) ) )  =  ( W `  I
) ) ) )
4039pm2.43i 52 . . . 4  |-  ( I  e.  ( 0..^ (
# `  W )
)  ->  ( N  e.  ZZ  ->  ( W `  ( ( ( ( I  -  N )  mod  ( # `  W
) )  +  N
)  mod  ( # `  W
) ) )  =  ( W `  I
) ) )
4140impcom 446 . . 3  |-  ( ( N  e.  ZZ  /\  I  e.  ( 0..^ ( # `  W
) ) )  -> 
( W `  (
( ( ( I  -  N )  mod  ( # `  W
) )  +  N
)  mod  ( # `  W
) ) )  =  ( W `  I
) )
42413adant1 1079 . 2  |-  ( ( W  e. Word  V  /\  N  e.  ZZ  /\  I  e.  ( 0..^ ( # `  W ) ) )  ->  ( W `  ( ( ( ( I  -  N )  mod  ( # `  W
) )  +  N
)  mod  ( # `  W
) ) )  =  ( W `  I
) )
4315, 42eqtrd 2656 1  |-  ( ( W  e. Word  V  /\  N  e.  ZZ  /\  I  e.  ( 0..^ ( # `  W ) ) )  ->  ( ( W cyclShift  N ) `  (
( I  -  N
)  mod  ( # `  W
) ) )  =  ( W `  I
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   class class class wbr 4653   ` cfv 5888  (class class class)co 6650   CCcc 9934   RRcr 9935   0cc0 9936    + caddc 9939    < clt 10074    - cmin 10266   NNcn 11020   NN0cn0 11292   ZZcz 11377   RR+crp 11832  ..^cfzo 12465    mod cmo 12668   #chash 13117  Word cword 13291   cyclShift ccsh 13534
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-hash 13118  df-word 13299  df-concat 13301  df-substr 13303  df-csh 13535
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator