| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nnrp | Structured version Visualization version Unicode version | ||
| Description: A positive integer is a positive real. (Contributed by NM, 28-Nov-2008.) |
| Ref | Expression |
|---|---|
| nnrp |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnre 11027 |
. 2
| |
| 2 | nngt0 11049 |
. 2
| |
| 3 | elrp 11834 |
. 2
| |
| 4 | 1, 2, 3 | sylanbrc 698 |
1
|
| Copyright terms: Public domain | W3C validator |