Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dihglb2 Structured version   Visualization version   Unicode version

Theorem dihglb2 36631
Description: Isomorphism H of a lattice glb. (Contributed by NM, 11-Apr-2014.)
Hypotheses
Ref Expression
dihglb.b  |-  B  =  ( Base `  K
)
dihglb.g  |-  G  =  ( glb `  K
)
dihglb.h  |-  H  =  ( LHyp `  K
)
dihglb.i  |-  I  =  ( ( DIsoH `  K
) `  W )
dihglb2.u  |-  U  =  ( ( DVecH `  K
) `  W )
dihglb2.v  |-  V  =  ( Base `  U
)
Assertion
Ref Expression
dihglb2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  S  C_  V
)  ->  ( I `  ( G `  {
x  e.  B  |  S  C_  ( I `  x ) } ) )  =  |^| { y  e.  ran  I  |  S  C_  y }
)
Distinct variable groups:    x, B    x, I    x, K    x, S, y    y, B    y, H    y, I    y, K   
y, S    y, V    y, W
Allowed substitution hints:    U( x, y)    G( x, y)    H( x)    V( x)    W( x)

Proof of Theorem dihglb2
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 simpl 473 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  S  C_  V
)  ->  ( K  e.  HL  /\  W  e.  H ) )
2 ssrab2 3687 . . . 4  |-  { x  e.  B  |  S  C_  ( I `  x
) }  C_  B
32a1i 11 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  S  C_  V
)  ->  { x  e.  B  |  S  C_  ( I `  x
) }  C_  B
)
4 hlop 34649 . . . . . . 7  |-  ( K  e.  HL  ->  K  e.  OP )
54ad2antrr 762 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  S  C_  V
)  ->  K  e.  OP )
6 dihglb.b . . . . . . 7  |-  B  =  ( Base `  K
)
7 eqid 2622 . . . . . . 7  |-  ( 1.
`  K )  =  ( 1. `  K
)
86, 7op1cl 34472 . . . . . 6  |-  ( K  e.  OP  ->  ( 1. `  K )  e.  B )
95, 8syl 17 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  S  C_  V
)  ->  ( 1. `  K )  e.  B
)
10 simpr 477 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  S  C_  V
)  ->  S  C_  V
)
11 dihglb.h . . . . . . . 8  |-  H  =  ( LHyp `  K
)
12 dihglb.i . . . . . . . 8  |-  I  =  ( ( DIsoH `  K
) `  W )
13 dihglb2.u . . . . . . . 8  |-  U  =  ( ( DVecH `  K
) `  W )
14 dihglb2.v . . . . . . . 8  |-  V  =  ( Base `  U
)
157, 11, 12, 13, 14dih1 36575 . . . . . . 7  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  ( I `  ( 1. `  K ) )  =  V )
1615adantr 481 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  S  C_  V
)  ->  ( I `  ( 1. `  K
) )  =  V )
1710, 16sseqtr4d 3642 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  S  C_  V
)  ->  S  C_  (
I `  ( 1. `  K ) ) )
18 fveq2 6191 . . . . . . 7  |-  ( x  =  ( 1. `  K )  ->  (
I `  x )  =  ( I `  ( 1. `  K ) ) )
1918sseq2d 3633 . . . . . 6  |-  ( x  =  ( 1. `  K )  ->  ( S  C_  ( I `  x )  <->  S  C_  (
I `  ( 1. `  K ) ) ) )
2019elrab 3363 . . . . 5  |-  ( ( 1. `  K )  e.  { x  e.  B  |  S  C_  ( I `  x
) }  <->  ( ( 1. `  K )  e.  B  /\  S  C_  ( I `  ( 1. `  K ) ) ) )
219, 17, 20sylanbrc 698 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  S  C_  V
)  ->  ( 1. `  K )  e.  {
x  e.  B  |  S  C_  ( I `  x ) } )
22 ne0i 3921 . . . 4  |-  ( ( 1. `  K )  e.  { x  e.  B  |  S  C_  ( I `  x
) }  ->  { x  e.  B  |  S  C_  ( I `  x
) }  =/=  (/) )
2321, 22syl 17 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  S  C_  V
)  ->  { x  e.  B  |  S  C_  ( I `  x
) }  =/=  (/) )
24 dihglb.g . . . 4  |-  G  =  ( glb `  K
)
256, 24, 11, 12dihglb 36630 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( { x  e.  B  |  S  C_  ( I `  x
) }  C_  B  /\  { x  e.  B  |  S  C_  ( I `
 x ) }  =/=  (/) ) )  -> 
( I `  ( G `  { x  e.  B  |  S  C_  ( I `  x
) } ) )  =  |^|_ z  e.  {
x  e.  B  |  S  C_  ( I `  x ) }  (
I `  z )
)
261, 3, 23, 25syl12anc 1324 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  S  C_  V
)  ->  ( I `  ( G `  {
x  e.  B  |  S  C_  ( I `  x ) } ) )  =  |^|_ z  e.  { x  e.  B  |  S  C_  ( I `
 x ) }  ( I `  z
) )
27 fvex 6201 . . . 4  |-  ( I `
 z )  e. 
_V
2827dfiin2 4555 . . 3  |-  |^|_ z  e.  { x  e.  B  |  S  C_  ( I `
 x ) }  ( I `  z
)  =  |^| { y  |  E. z  e. 
{ x  e.  B  |  S  C_  ( I `
 x ) } y  =  ( I `
 z ) }
296, 11, 12dihfn 36557 . . . . . . . . . . . 12  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  I  Fn  B )
3029ad2antrr 762 . . . . . . . . . . 11  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  S  C_  V )  /\  S  C_  y )  ->  I  Fn  B )
31 fvelrnb 6243 . . . . . . . . . . 11  |-  ( I  Fn  B  ->  (
y  e.  ran  I  <->  E. z  e.  B  ( I `  z )  =  y ) )
3230, 31syl 17 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  S  C_  V )  /\  S  C_  y )  ->  (
y  e.  ran  I  <->  E. z  e.  B  ( I `  z )  =  y ) )
33 eqcom 2629 . . . . . . . . . . . 12  |-  ( ( I `  z )  =  y  <->  y  =  ( I `  z
) )
3433rexbii 3041 . . . . . . . . . . 11  |-  ( E. z  e.  B  ( I `  z )  =  y  <->  E. z  e.  B  y  =  ( I `  z
) )
35 df-rex 2918 . . . . . . . . . . 11  |-  ( E. z  e.  B  y  =  ( I `  z )  <->  E. z
( z  e.  B  /\  y  =  (
I `  z )
) )
3634, 35bitri 264 . . . . . . . . . 10  |-  ( E. z  e.  B  ( I `  z )  =  y  <->  E. z
( z  e.  B  /\  y  =  (
I `  z )
) )
3732, 36syl6bb 276 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  S  C_  V )  /\  S  C_  y )  ->  (
y  e.  ran  I  <->  E. z ( z  e.  B  /\  y  =  ( I `  z
) ) ) )
3837ex 450 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  S  C_  V
)  ->  ( S  C_  y  ->  ( y  e.  ran  I  <->  E. z
( z  e.  B  /\  y  =  (
I `  z )
) ) ) )
3938pm5.32rd 672 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  S  C_  V
)  ->  ( (
y  e.  ran  I  /\  S  C_  y )  <-> 
( E. z ( z  e.  B  /\  y  =  ( I `  z ) )  /\  S  C_  y ) ) )
40 df-rex 2918 . . . . . . . 8  |-  ( E. z  e.  { x  e.  B  |  S  C_  ( I `  x
) } y  =  ( I `  z
)  <->  E. z ( z  e.  { x  e.  B  |  S  C_  ( I `  x
) }  /\  y  =  ( I `  z ) ) )
41 fveq2 6191 . . . . . . . . . . . . 13  |-  ( x  =  z  ->  (
I `  x )  =  ( I `  z ) )
4241sseq2d 3633 . . . . . . . . . . . 12  |-  ( x  =  z  ->  ( S  C_  ( I `  x )  <->  S  C_  (
I `  z )
) )
4342elrab 3363 . . . . . . . . . . 11  |-  ( z  e.  { x  e.  B  |  S  C_  ( I `  x
) }  <->  ( z  e.  B  /\  S  C_  ( I `  z
) ) )
4443anbi1i 731 . . . . . . . . . 10  |-  ( ( z  e.  { x  e.  B  |  S  C_  ( I `  x
) }  /\  y  =  ( I `  z ) )  <->  ( (
z  e.  B  /\  S  C_  ( I `  z ) )  /\  y  =  ( I `  z ) ) )
45 sseq2 3627 . . . . . . . . . . . 12  |-  ( y  =  ( I `  z )  ->  ( S  C_  y  <->  S  C_  (
I `  z )
) )
4645anbi2d 740 . . . . . . . . . . 11  |-  ( y  =  ( I `  z )  ->  (
( z  e.  B  /\  S  C_  y )  <-> 
( z  e.  B  /\  S  C_  ( I `
 z ) ) ) )
4746pm5.32ri 670 . . . . . . . . . 10  |-  ( ( ( z  e.  B  /\  S  C_  y )  /\  y  =  ( I `  z ) )  <->  ( ( z  e.  B  /\  S  C_  ( I `  z
) )  /\  y  =  ( I `  z ) ) )
48 an32 839 . . . . . . . . . 10  |-  ( ( ( z  e.  B  /\  S  C_  y )  /\  y  =  ( I `  z ) )  <->  ( ( z  e.  B  /\  y  =  ( I `  z ) )  /\  S  C_  y ) )
4944, 47, 483bitr2i 288 . . . . . . . . 9  |-  ( ( z  e.  { x  e.  B  |  S  C_  ( I `  x
) }  /\  y  =  ( I `  z ) )  <->  ( (
z  e.  B  /\  y  =  ( I `  z ) )  /\  S  C_  y ) )
5049exbii 1774 . . . . . . . 8  |-  ( E. z ( z  e. 
{ x  e.  B  |  S  C_  ( I `
 x ) }  /\  y  =  ( I `  z ) )  <->  E. z ( ( z  e.  B  /\  y  =  ( I `  z ) )  /\  S  C_  y ) )
51 19.41v 1914 . . . . . . . 8  |-  ( E. z ( ( z  e.  B  /\  y  =  ( I `  z ) )  /\  S  C_  y )  <->  ( E. z ( z  e.  B  /\  y  =  ( I `  z
) )  /\  S  C_  y ) )
5240, 50, 513bitrri 287 . . . . . . 7  |-  ( ( E. z ( z  e.  B  /\  y  =  ( I `  z ) )  /\  S  C_  y )  <->  E. z  e.  { x  e.  B  |  S  C_  ( I `
 x ) } y  =  ( I `
 z ) )
5339, 52syl6rbb 277 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  S  C_  V
)  ->  ( E. z  e.  { x  e.  B  |  S  C_  ( I `  x
) } y  =  ( I `  z
)  <->  ( y  e. 
ran  I  /\  S  C_  y ) ) )
5453abbidv 2741 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  S  C_  V
)  ->  { y  |  E. z  e.  {
x  e.  B  |  S  C_  ( I `  x ) } y  =  ( I `  z ) }  =  { y  |  ( y  e.  ran  I  /\  S  C_  y ) } )
55 df-rab 2921 . . . . 5  |-  { y  e.  ran  I  |  S  C_  y }  =  { y  |  ( y  e.  ran  I  /\  S  C_  y ) }
5654, 55syl6eqr 2674 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  S  C_  V
)  ->  { y  |  E. z  e.  {
x  e.  B  |  S  C_  ( I `  x ) } y  =  ( I `  z ) }  =  { y  e.  ran  I  |  S  C_  y } )
5756inteqd 4480 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  S  C_  V
)  ->  |^| { y  |  E. z  e. 
{ x  e.  B  |  S  C_  ( I `
 x ) } y  =  ( I `
 z ) }  =  |^| { y  e.  ran  I  |  S  C_  y }
)
5828, 57syl5eq 2668 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  S  C_  V
)  ->  |^|_ z  e. 
{ x  e.  B  |  S  C_  ( I `
 x ) }  ( I `  z
)  =  |^| { y  e.  ran  I  |  S  C_  y }
)
5926, 58eqtrd 2656 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  S  C_  V
)  ->  ( I `  ( G `  {
x  e.  B  |  S  C_  ( I `  x ) } ) )  =  |^| { y  e.  ran  I  |  S  C_  y }
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483   E.wex 1704    e. wcel 1990   {cab 2608    =/= wne 2794   E.wrex 2913   {crab 2916    C_ wss 3574   (/)c0 3915   |^|cint 4475   |^|_ciin 4521   ran crn 5115    Fn wfn 5883   ` cfv 5888   Basecbs 15857   glbcglb 16943   1.cp1 17038   OPcops 34459   HLchlt 34637   LHypclh 35270   DVecHcdvh 36367   DIsoHcdih 36517
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-riotaBAD 34239
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-tpos 7352  df-undef 7399  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-sca 15957  df-vsca 15958  df-0g 16102  df-preset 16928  df-poset 16946  df-plt 16958  df-lub 16974  df-glb 16975  df-join 16976  df-meet 16977  df-p0 17039  df-p1 17040  df-lat 17046  df-clat 17108  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-grp 17425  df-minusg 17426  df-sbg 17427  df-subg 17591  df-cntz 17750  df-lsm 18051  df-cmn 18195  df-abl 18196  df-mgp 18490  df-ur 18502  df-ring 18549  df-oppr 18623  df-dvdsr 18641  df-unit 18642  df-invr 18672  df-dvr 18683  df-drng 18749  df-lmod 18865  df-lss 18933  df-lsp 18972  df-lvec 19103  df-lsatoms 34263  df-oposet 34463  df-ol 34465  df-oml 34466  df-covers 34553  df-ats 34554  df-atl 34585  df-cvlat 34609  df-hlat 34638  df-llines 34784  df-lplanes 34785  df-lvols 34786  df-lines 34787  df-psubsp 34789  df-pmap 34790  df-padd 35082  df-lhyp 35274  df-laut 35275  df-ldil 35390  df-ltrn 35391  df-trl 35446  df-tendo 36043  df-edring 36045  df-disoa 36318  df-dvech 36368  df-dib 36428  df-dic 36462  df-dih 36518
This theorem is referenced by:  dochval2  36641
  Copyright terms: Public domain W3C validator