Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dih1 Structured version   Visualization version   Unicode version

Theorem dih1 36575
Description: The value of isomorphism H at the lattice unit is the set of all vectors. (Contributed by NM, 13-Mar-2014.)
Hypotheses
Ref Expression
dih1.m  |-  .1.  =  ( 1. `  K )
dih1.h  |-  H  =  ( LHyp `  K
)
dih1.i  |-  I  =  ( ( DIsoH `  K
) `  W )
dih1.u  |-  U  =  ( ( DVecH `  K
) `  W )
dih1.v  |-  V  =  ( Base `  U
)
Assertion
Ref Expression
dih1  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  ( I `  .1.  )  =  V )

Proof of Theorem dih1
Dummy variables  f 
g  s are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dih1.h . . 3  |-  H  =  ( LHyp `  K
)
2 dih1.i . . 3  |-  I  =  ( ( DIsoH `  K
) `  W )
31, 2dihvalrel 36568 . 2  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  Rel  ( I `  .1.  ) )
4 relxp 5227 . . 3  |-  Rel  (
( ( LTrn `  K
) `  W )  X.  ( ( TEndo `  K
) `  W )
)
5 eqid 2622 . . . . 5  |-  ( (
LTrn `  K ) `  W )  =  ( ( LTrn `  K
) `  W )
6 eqid 2622 . . . . 5  |-  ( (
TEndo `  K ) `  W )  =  ( ( TEndo `  K ) `  W )
7 dih1.u . . . . 5  |-  U  =  ( ( DVecH `  K
) `  W )
8 dih1.v . . . . 5  |-  V  =  ( Base `  U
)
91, 5, 6, 7, 8dvhvbase 36376 . . . 4  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  V  =  ( ( ( LTrn `  K
) `  W )  X.  ( ( TEndo `  K
) `  W )
) )
109releqd 5203 . . 3  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  ( Rel  V  <->  Rel  ( ( ( LTrn `  K
) `  W )  X.  ( ( TEndo `  K
) `  W )
) ) )
114, 10mpbiri 248 . 2  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  Rel  V )
12 id 22 . 2  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  ( K  e.  HL  /\  W  e.  H ) )
13 hlop 34649 . . . . . . . 8  |-  ( K  e.  HL  ->  K  e.  OP )
1413ad2antrr 762 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( f  e.  ( ( LTrn `  K
) `  W )  /\  s  e.  (
( TEndo `  K ) `  W ) ) )  ->  K  e.  OP )
15 simpl 473 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( f  e.  ( ( LTrn `  K
) `  W )  /\  s  e.  (
( TEndo `  K ) `  W ) ) )  ->  ( K  e.  HL  /\  W  e.  H ) )
16 simprl 794 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( f  e.  ( ( LTrn `  K
) `  W )  /\  s  e.  (
( TEndo `  K ) `  W ) ) )  ->  f  e.  ( ( LTrn `  K
) `  W )
)
17 simprr 796 . . . . . . . . . . 11  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( f  e.  ( ( LTrn `  K
) `  W )  /\  s  e.  (
( TEndo `  K ) `  W ) ) )  ->  s  e.  ( ( TEndo `  K ) `  W ) )
18 eqid 2622 . . . . . . . . . . . . . 14  |-  ( le
`  K )  =  ( le `  K
)
19 eqid 2622 . . . . . . . . . . . . . 14  |-  ( oc
`  K )  =  ( oc `  K
)
20 eqid 2622 . . . . . . . . . . . . . 14  |-  ( Atoms `  K )  =  (
Atoms `  K )
2118, 19, 20, 1lhpocnel 35304 . . . . . . . . . . . . 13  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  ( ( ( oc
`  K ) `  W )  e.  (
Atoms `  K )  /\  -.  ( ( oc `  K ) `  W
) ( le `  K ) W ) )
2221adantr 481 . . . . . . . . . . . 12  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( f  e.  ( ( LTrn `  K
) `  W )  /\  s  e.  (
( TEndo `  K ) `  W ) ) )  ->  ( ( ( oc `  K ) `
 W )  e.  ( Atoms `  K )  /\  -.  ( ( oc
`  K ) `  W ) ( le
`  K ) W ) )
23 eqid 2622 . . . . . . . . . . . . 13  |-  ( iota_ g  e.  ( ( LTrn `  K ) `  W
) ( g `  ( ( oc `  K ) `  W
) )  =  ( ( oc `  K
) `  W )
)  =  ( iota_ g  e.  ( ( LTrn `  K ) `  W
) ( g `  ( ( oc `  K ) `  W
) )  =  ( ( oc `  K
) `  W )
)
2418, 20, 1, 5, 23ltrniotacl 35867 . . . . . . . . . . . 12  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( ( oc `  K ) `
 W )  e.  ( Atoms `  K )  /\  -.  ( ( oc
`  K ) `  W ) ( le
`  K ) W )  /\  ( ( ( oc `  K
) `  W )  e.  ( Atoms `  K )  /\  -.  ( ( oc
`  K ) `  W ) ( le
`  K ) W ) )  ->  ( iota_ g  e.  ( (
LTrn `  K ) `  W ) ( g `
 ( ( oc
`  K ) `  W ) )  =  ( ( oc `  K ) `  W
) )  e.  ( ( LTrn `  K
) `  W )
)
2515, 22, 22, 24syl3anc 1326 . . . . . . . . . . 11  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( f  e.  ( ( LTrn `  K
) `  W )  /\  s  e.  (
( TEndo `  K ) `  W ) ) )  ->  ( iota_ g  e.  ( ( LTrn `  K
) `  W )
( g `  (
( oc `  K
) `  W )
)  =  ( ( oc `  K ) `
 W ) )  e.  ( ( LTrn `  K ) `  W
) )
261, 5, 6tendocl 36055 . . . . . . . . . . 11  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  s  e.  ( ( TEndo `  K ) `  W )  /\  ( iota_ g  e.  ( (
LTrn `  K ) `  W ) ( g `
 ( ( oc
`  K ) `  W ) )  =  ( ( oc `  K ) `  W
) )  e.  ( ( LTrn `  K
) `  W )
)  ->  ( s `  ( iota_ g  e.  ( ( LTrn `  K
) `  W )
( g `  (
( oc `  K
) `  W )
)  =  ( ( oc `  K ) `
 W ) ) )  e.  ( (
LTrn `  K ) `  W ) )
2715, 17, 25, 26syl3anc 1326 . . . . . . . . . 10  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( f  e.  ( ( LTrn `  K
) `  W )  /\  s  e.  (
( TEndo `  K ) `  W ) ) )  ->  ( s `  ( iota_ g  e.  ( ( LTrn `  K
) `  W )
( g `  (
( oc `  K
) `  W )
)  =  ( ( oc `  K ) `
 W ) ) )  e.  ( (
LTrn `  K ) `  W ) )
281, 5ltrncnv 35432 . . . . . . . . . 10  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s `  ( iota_ g  e.  ( ( LTrn `  K
) `  W )
( g `  (
( oc `  K
) `  W )
)  =  ( ( oc `  K ) `
 W ) ) )  e.  ( (
LTrn `  K ) `  W ) )  ->  `' ( s `  ( iota_ g  e.  ( ( LTrn `  K
) `  W )
( g `  (
( oc `  K
) `  W )
)  =  ( ( oc `  K ) `
 W ) ) )  e.  ( (
LTrn `  K ) `  W ) )
2927, 28syldan 487 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( f  e.  ( ( LTrn `  K
) `  W )  /\  s  e.  (
( TEndo `  K ) `  W ) ) )  ->  `' ( s `
 ( iota_ g  e.  ( ( LTrn `  K
) `  W )
( g `  (
( oc `  K
) `  W )
)  =  ( ( oc `  K ) `
 W ) ) )  e.  ( (
LTrn `  K ) `  W ) )
301, 5ltrnco 36007 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  f  e.  ( ( LTrn `  K
) `  W )  /\  `' ( s `  ( iota_ g  e.  ( ( LTrn `  K
) `  W )
( g `  (
( oc `  K
) `  W )
)  =  ( ( oc `  K ) `
 W ) ) )  e.  ( (
LTrn `  K ) `  W ) )  -> 
( f  o.  `' ( s `  ( iota_ g  e.  ( (
LTrn `  K ) `  W ) ( g `
 ( ( oc
`  K ) `  W ) )  =  ( ( oc `  K ) `  W
) ) ) )  e.  ( ( LTrn `  K ) `  W
) )
3115, 16, 29, 30syl3anc 1326 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( f  e.  ( ( LTrn `  K
) `  W )  /\  s  e.  (
( TEndo `  K ) `  W ) ) )  ->  ( f  o.  `' ( s `  ( iota_ g  e.  ( ( LTrn `  K
) `  W )
( g `  (
( oc `  K
) `  W )
)  =  ( ( oc `  K ) `
 W ) ) ) )  e.  ( ( LTrn `  K
) `  W )
)
32 eqid 2622 . . . . . . . . 9  |-  ( Base `  K )  =  (
Base `  K )
33 eqid 2622 . . . . . . . . 9  |-  ( ( trL `  K ) `
 W )  =  ( ( trL `  K
) `  W )
3432, 1, 5, 33trlcl 35451 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( f  o.  `' ( s `  ( iota_ g  e.  ( ( LTrn `  K
) `  W )
( g `  (
( oc `  K
) `  W )
)  =  ( ( oc `  K ) `
 W ) ) ) )  e.  ( ( LTrn `  K
) `  W )
)  ->  ( (
( trL `  K
) `  W ) `  ( f  o.  `' ( s `  ( iota_ g  e.  ( (
LTrn `  K ) `  W ) ( g `
 ( ( oc
`  K ) `  W ) )  =  ( ( oc `  K ) `  W
) ) ) ) )  e.  ( Base `  K ) )
3531, 34syldan 487 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( f  e.  ( ( LTrn `  K
) `  W )  /\  s  e.  (
( TEndo `  K ) `  W ) ) )  ->  ( ( ( trL `  K ) `
 W ) `  ( f  o.  `' ( s `  ( iota_ g  e.  ( (
LTrn `  K ) `  W ) ( g `
 ( ( oc
`  K ) `  W ) )  =  ( ( oc `  K ) `  W
) ) ) ) )  e.  ( Base `  K ) )
36 dih1.m . . . . . . . 8  |-  .1.  =  ( 1. `  K )
3732, 18, 36ople1 34478 . . . . . . 7  |-  ( ( K  e.  OP  /\  ( ( ( trL `  K ) `  W
) `  ( f  o.  `' ( s `  ( iota_ g  e.  ( ( LTrn `  K
) `  W )
( g `  (
( oc `  K
) `  W )
)  =  ( ( oc `  K ) `
 W ) ) ) ) )  e.  ( Base `  K
) )  ->  (
( ( trL `  K
) `  W ) `  ( f  o.  `' ( s `  ( iota_ g  e.  ( (
LTrn `  K ) `  W ) ( g `
 ( ( oc
`  K ) `  W ) )  =  ( ( oc `  K ) `  W
) ) ) ) ) ( le `  K )  .1.  )
3814, 35, 37syl2anc 693 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( f  e.  ( ( LTrn `  K
) `  W )  /\  s  e.  (
( TEndo `  K ) `  W ) ) )  ->  ( ( ( trL `  K ) `
 W ) `  ( f  o.  `' ( s `  ( iota_ g  e.  ( (
LTrn `  K ) `  W ) ( g `
 ( ( oc
`  K ) `  W ) )  =  ( ( oc `  K ) `  W
) ) ) ) ) ( le `  K )  .1.  )
3938ex 450 . . . . 5  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  ( ( f  e.  ( ( LTrn `  K
) `  W )  /\  s  e.  (
( TEndo `  K ) `  W ) )  -> 
( ( ( trL `  K ) `  W
) `  ( f  o.  `' ( s `  ( iota_ g  e.  ( ( LTrn `  K
) `  W )
( g `  (
( oc `  K
) `  W )
)  =  ( ( oc `  K ) `
 W ) ) ) ) ) ( le `  K )  .1.  ) )
4039pm4.71d 666 . . . 4  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  ( ( f  e.  ( ( LTrn `  K
) `  W )  /\  s  e.  (
( TEndo `  K ) `  W ) )  <->  ( (
f  e.  ( (
LTrn `  K ) `  W )  /\  s  e.  ( ( TEndo `  K
) `  W )
)  /\  ( (
( trL `  K
) `  W ) `  ( f  o.  `' ( s `  ( iota_ g  e.  ( (
LTrn `  K ) `  W ) ( g `
 ( ( oc
`  K ) `  W ) )  =  ( ( oc `  K ) `  W
) ) ) ) ) ( le `  K )  .1.  )
) )
419eleq2d 2687 . . . . 5  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  ( <. f ,  s
>.  e.  V  <->  <. f ,  s >.  e.  (
( ( LTrn `  K
) `  W )  X.  ( ( TEndo `  K
) `  W )
) ) )
42 opelxp 5146 . . . . 5  |-  ( <.
f ,  s >.  e.  ( ( ( LTrn `  K ) `  W
)  X.  ( (
TEndo `  K ) `  W ) )  <->  ( f  e.  ( ( LTrn `  K
) `  W )  /\  s  e.  (
( TEndo `  K ) `  W ) ) )
4341, 42syl6bb 276 . . . 4  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  ( <. f ,  s
>.  e.  V  <->  ( f  e.  ( ( LTrn `  K
) `  W )  /\  s  e.  (
( TEndo `  K ) `  W ) ) ) )
4413adantr 481 . . . . . 6  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  K  e.  OP )
4532, 36op1cl 34472 . . . . . 6  |-  ( K  e.  OP  ->  .1.  e.  ( Base `  K
) )
4644, 45syl 17 . . . . 5  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  .1.  e.  ( Base `  K ) )
47 hlpos 34652 . . . . . . 7  |-  ( K  e.  HL  ->  K  e.  Poset )
4847adantr 481 . . . . . 6  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  K  e.  Poset )
4932, 1lhpbase 35284 . . . . . . 7  |-  ( W  e.  H  ->  W  e.  ( Base `  K
) )
5049adantl 482 . . . . . 6  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  W  e.  ( Base `  K ) )
51 eqid 2622 . . . . . . 7  |-  (  <o  `  K )  =  ( 
<o  `  K )
5236, 51, 1lhp1cvr 35285 . . . . . 6  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  W (  <o  `  K
)  .1.  )
5332, 18, 51cvrnle 34567 . . . . . 6  |-  ( ( ( K  e.  Poset  /\  W  e.  ( Base `  K )  /\  .1.  e.  ( Base `  K
) )  /\  W
(  <o  `  K )  .1.  )  ->  -.  .1.  ( le `  K ) W )
5448, 50, 46, 52, 53syl31anc 1329 . . . . 5  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  -.  .1.  ( le
`  K ) W )
55 hlol 34648 . . . . . . . 8  |-  ( K  e.  HL  ->  K  e.  OL )
56 eqid 2622 . . . . . . . . 9  |-  ( meet `  K )  =  (
meet `  K )
5732, 56, 36olm12 34515 . . . . . . . 8  |-  ( ( K  e.  OL  /\  W  e.  ( Base `  K ) )  -> 
(  .1.  ( meet `  K ) W )  =  W )
5855, 49, 57syl2an 494 . . . . . . 7  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  (  .1.  ( meet `  K ) W )  =  W )
5958oveq2d 6666 . . . . . 6  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  ( ( ( oc
`  K ) `  W ) ( join `  K ) (  .1.  ( meet `  K
) W ) )  =  ( ( ( oc `  K ) `
 W ) (
join `  K ) W ) )
60 hllat 34650 . . . . . . . 8  |-  ( K  e.  HL  ->  K  e.  Lat )
6160adantr 481 . . . . . . 7  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  K  e.  Lat )
6232, 19opoccl 34481 . . . . . . . 8  |-  ( ( K  e.  OP  /\  W  e.  ( Base `  K ) )  -> 
( ( oc `  K ) `  W
)  e.  ( Base `  K ) )
6313, 49, 62syl2an 494 . . . . . . 7  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  ( ( oc `  K ) `  W
)  e.  ( Base `  K ) )
64 eqid 2622 . . . . . . . 8  |-  ( join `  K )  =  (
join `  K )
6532, 64latjcom 17059 . . . . . . 7  |-  ( ( K  e.  Lat  /\  ( ( oc `  K ) `  W
)  e.  ( Base `  K )  /\  W  e.  ( Base `  K
) )  ->  (
( ( oc `  K ) `  W
) ( join `  K
) W )  =  ( W ( join `  K ) ( ( oc `  K ) `
 W ) ) )
6661, 63, 50, 65syl3anc 1326 . . . . . 6  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  ( ( ( oc
`  K ) `  W ) ( join `  K ) W )  =  ( W (
join `  K )
( ( oc `  K ) `  W
) ) )
6732, 19, 64, 36opexmid 34494 . . . . . . 7  |-  ( ( K  e.  OP  /\  W  e.  ( Base `  K ) )  -> 
( W ( join `  K ) ( ( oc `  K ) `
 W ) )  =  .1.  )
6813, 49, 67syl2an 494 . . . . . 6  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  ( W ( join `  K ) ( ( oc `  K ) `
 W ) )  =  .1.  )
6959, 66, 683eqtrd 2660 . . . . 5  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  ( ( ( oc
`  K ) `  W ) ( join `  K ) (  .1.  ( meet `  K
) W ) )  =  .1.  )
70 eqid 2622 . . . . . 6  |-  ( ( oc `  K ) `
 W )  =  ( ( oc `  K ) `  W
)
71 vex 3203 . . . . . 6  |-  f  e. 
_V
72 vex 3203 . . . . . 6  |-  s  e. 
_V
7332, 18, 64, 56, 20, 1, 70, 5, 33, 6, 2, 23, 71, 72dihopelvalc 36538 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  (  .1.  e.  ( Base `  K )  /\  -.  .1.  ( le
`  K ) W )  /\  ( ( ( ( oc `  K ) `  W
)  e.  ( Atoms `  K )  /\  -.  ( ( oc `  K ) `  W
) ( le `  K ) W )  /\  ( ( ( oc `  K ) `
 W ) (
join `  K )
(  .1.  ( meet `  K ) W ) )  =  .1.  )
)  ->  ( <. f ,  s >.  e.  ( I `  .1.  )  <->  ( ( f  e.  ( ( LTrn `  K
) `  W )  /\  s  e.  (
( TEndo `  K ) `  W ) )  /\  ( ( ( trL `  K ) `  W
) `  ( f  o.  `' ( s `  ( iota_ g  e.  ( ( LTrn `  K
) `  W )
( g `  (
( oc `  K
) `  W )
)  =  ( ( oc `  K ) `
 W ) ) ) ) ) ( le `  K )  .1.  ) ) )
7412, 46, 54, 21, 69, 73syl122anc 1335 . . . 4  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  ( <. f ,  s
>.  e.  ( I `  .1.  )  <->  ( ( f  e.  ( ( LTrn `  K ) `  W
)  /\  s  e.  ( ( TEndo `  K
) `  W )
)  /\  ( (
( trL `  K
) `  W ) `  ( f  o.  `' ( s `  ( iota_ g  e.  ( (
LTrn `  K ) `  W ) ( g `
 ( ( oc
`  K ) `  W ) )  =  ( ( oc `  K ) `  W
) ) ) ) ) ( le `  K )  .1.  )
) )
7540, 43, 743bitr4rd 301 . . 3  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  ( <. f ,  s
>.  e.  ( I `  .1.  )  <->  <. f ,  s
>.  e.  V ) )
7675eqrelrdv2 5219 . 2  |-  ( ( ( Rel  ( I `
 .1.  )  /\  Rel  V )  /\  ( K  e.  HL  /\  W  e.  H ) )  -> 
( I `  .1.  )  =  V )
773, 11, 12, 76syl21anc 1325 1  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  ( I `  .1.  )  =  V )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   <.cop 4183   class class class wbr 4653    X. cxp 5112   `'ccnv 5113    o. ccom 5118   Rel wrel 5119   ` cfv 5888   iota_crio 6610  (class class class)co 6650   Basecbs 15857   lecple 15948   occoc 15949   Posetcpo 16940   joincjn 16944   meetcmee 16945   1.cp1 17038   Latclat 17045   OPcops 34459   OLcol 34461    <o ccvr 34549   Atomscatm 34550   HLchlt 34637   LHypclh 35270   LTrncltrn 35387   trLctrl 35445   TEndoctendo 36040   DVecHcdvh 36367   DIsoHcdih 36517
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-riotaBAD 34239
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-tpos 7352  df-undef 7399  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-sca 15957  df-vsca 15958  df-0g 16102  df-preset 16928  df-poset 16946  df-plt 16958  df-lub 16974  df-glb 16975  df-join 16976  df-meet 16977  df-p0 17039  df-p1 17040  df-lat 17046  df-clat 17108  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-grp 17425  df-minusg 17426  df-sbg 17427  df-subg 17591  df-cntz 17750  df-lsm 18051  df-cmn 18195  df-abl 18196  df-mgp 18490  df-ur 18502  df-ring 18549  df-oppr 18623  df-dvdsr 18641  df-unit 18642  df-invr 18672  df-dvr 18683  df-drng 18749  df-lmod 18865  df-lss 18933  df-lsp 18972  df-lvec 19103  df-oposet 34463  df-ol 34465  df-oml 34466  df-covers 34553  df-ats 34554  df-atl 34585  df-cvlat 34609  df-hlat 34638  df-llines 34784  df-lplanes 34785  df-lvols 34786  df-lines 34787  df-psubsp 34789  df-pmap 34790  df-padd 35082  df-lhyp 35274  df-laut 35275  df-ldil 35390  df-ltrn 35391  df-trl 35446  df-tendo 36043  df-edring 36045  df-disoa 36318  df-dvech 36368  df-dib 36428  df-dic 36462  df-dih 36518
This theorem is referenced by:  dih1rn  36576  dih1cnv  36577  dihglb2  36631  doch0  36647  dochocss  36655
  Copyright terms: Public domain W3C validator