MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  divalglem6 Structured version   Visualization version   Unicode version

Theorem divalglem6 15121
Description: Lemma for divalg 15126. (Contributed by Paul Chapman, 21-Mar-2011.)
Hypotheses
Ref Expression
divalglem6.1  |-  A  e.  NN
divalglem6.2  |-  X  e.  ( 0 ... ( A  -  1 ) )
divalglem6.3  |-  K  e.  ZZ
Assertion
Ref Expression
divalglem6  |-  ( K  =/=  0  ->  -.  ( X  +  ( K  x.  A )
)  e.  ( 0 ... ( A  - 
1 ) ) )

Proof of Theorem divalglem6
StepHypRef Expression
1 divalglem6.3 . . . 4  |-  K  e.  ZZ
21zrei 11383 . . 3  |-  K  e.  RR
3 0re 10040 . . 3  |-  0  e.  RR
42, 3lttri2i 10151 . 2  |-  ( K  =/=  0  <->  ( K  <  0  \/  0  < 
K ) )
5 divalglem6.2 . . . . . . . . 9  |-  X  e.  ( 0 ... ( A  -  1 ) )
6 0z 11388 . . . . . . . . . 10  |-  0  e.  ZZ
7 divalglem6.1 . . . . . . . . . . 11  |-  A  e.  NN
87nnzi 11401 . . . . . . . . . 10  |-  A  e.  ZZ
9 elfzm11 12411 . . . . . . . . . 10  |-  ( ( 0  e.  ZZ  /\  A  e.  ZZ )  ->  ( X  e.  ( 0 ... ( A  -  1 ) )  <-> 
( X  e.  ZZ  /\  0  <_  X  /\  X  <  A ) ) )
106, 8, 9mp2an 708 . . . . . . . . 9  |-  ( X  e.  ( 0 ... ( A  -  1 ) )  <->  ( X  e.  ZZ  /\  0  <_  X  /\  X  <  A
) )
115, 10mpbi 220 . . . . . . . 8  |-  ( X  e.  ZZ  /\  0  <_  X  /\  X  < 
A )
1211simp3i 1072 . . . . . . 7  |-  X  < 
A
1311simp1i 1070 . . . . . . . . 9  |-  X  e.  ZZ
1413zrei 11383 . . . . . . . 8  |-  X  e.  RR
157nnrei 11029 . . . . . . . 8  |-  A  e.  RR
162, 15remulcli 10054 . . . . . . . 8  |-  ( K  x.  A )  e.  RR
1714, 15, 16ltadd1i 10582 . . . . . . 7  |-  ( X  <  A  <->  ( X  +  ( K  x.  A ) )  < 
( A  +  ( K  x.  A ) ) )
1812, 17mpbi 220 . . . . . 6  |-  ( X  +  ( K  x.  A ) )  < 
( A  +  ( K  x.  A ) )
192renegcli 10342 . . . . . . . 8  |-  -u K  e.  RR
207nnnn0i 11300 . . . . . . . . . 10  |-  A  e. 
NN0
2120nn0ge0i 11320 . . . . . . . . 9  |-  0  <_  A
22 lemulge12 10886 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  -u K  e.  RR )  /\  ( 0  <_  A  /\  1  <_  -u K
) )  ->  A  <_  ( -u K  x.  A ) )
2322an4s 869 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( -u K  e.  RR  /\  1  <_  -u K ) )  ->  A  <_  ( -u K  x.  A ) )
2415, 21, 23mpanl12 718 . . . . . . . 8  |-  ( (
-u K  e.  RR  /\  1  <_  -u K )  ->  A  <_  ( -u K  x.  A ) )
2519, 24mpan 706 . . . . . . 7  |-  ( 1  <_  -u K  ->  A  <_  ( -u K  x.  A ) )
26 lt0neg1 10534 . . . . . . . . 9  |-  ( K  e.  RR  ->  ( K  <  0  <->  0  <  -u K ) )
272, 26ax-mp 5 . . . . . . . 8  |-  ( K  <  0  <->  0  <  -u K )
28 znegcl 11412 . . . . . . . . . . 11  |-  ( K  e.  ZZ  ->  -u K  e.  ZZ )
291, 28ax-mp 5 . . . . . . . . . 10  |-  -u K  e.  ZZ
30 zltp1le 11427 . . . . . . . . . 10  |-  ( ( 0  e.  ZZ  /\  -u K  e.  ZZ )  ->  ( 0  <  -u K  <->  ( 0  +  1 )  <_  -u K
) )
316, 29, 30mp2an 708 . . . . . . . . 9  |-  ( 0  <  -u K  <->  ( 0  +  1 )  <_  -u K )
32 0p1e1 11132 . . . . . . . . . 10  |-  ( 0  +  1 )  =  1
3332breq1i 4660 . . . . . . . . 9  |-  ( ( 0  +  1 )  <_  -u K  <->  1  <_  -u K )
3431, 33bitri 264 . . . . . . . 8  |-  ( 0  <  -u K  <->  1  <_  -u K )
3527, 34bitri 264 . . . . . . 7  |-  ( K  <  0  <->  1  <_  -u K )
362recni 10052 . . . . . . . . . . . 12  |-  K  e.  CC
3715recni 10052 . . . . . . . . . . . 12  |-  A  e.  CC
3836, 37mulneg1i 10476 . . . . . . . . . . 11  |-  ( -u K  x.  A )  =  -u ( K  x.  A )
3938oveq2i 6661 . . . . . . . . . 10  |-  ( A  -  ( -u K  x.  A ) )  =  ( A  -  -u ( K  x.  A )
)
4016recni 10052 . . . . . . . . . . 11  |-  ( K  x.  A )  e.  CC
4137, 40subnegi 10360 . . . . . . . . . 10  |-  ( A  -  -u ( K  x.  A ) )  =  ( A  +  ( K  x.  A ) )
4239, 41eqtri 2644 . . . . . . . . 9  |-  ( A  -  ( -u K  x.  A ) )  =  ( A  +  ( K  x.  A ) )
4342breq1i 4660 . . . . . . . 8  |-  ( ( A  -  ( -u K  x.  A )
)  <_  0  <->  ( A  +  ( K  x.  A ) )  <_ 
0 )
4419, 15remulcli 10054 . . . . . . . . 9  |-  ( -u K  x.  A )  e.  RR
45 suble0 10542 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  ( -u K  x.  A
)  e.  RR )  ->  ( ( A  -  ( -u K  x.  A ) )  <_ 
0  <->  A  <_  ( -u K  x.  A )
) )
4615, 44, 45mp2an 708 . . . . . . . 8  |-  ( ( A  -  ( -u K  x.  A )
)  <_  0  <->  A  <_  (
-u K  x.  A
) )
4743, 46bitr3i 266 . . . . . . 7  |-  ( ( A  +  ( K  x.  A ) )  <_  0  <->  A  <_  (
-u K  x.  A
) )
4825, 35, 473imtr4i 281 . . . . . 6  |-  ( K  <  0  ->  ( A  +  ( K  x.  A ) )  <_ 
0 )
4914, 16readdcli 10053 . . . . . . 7  |-  ( X  +  ( K  x.  A ) )  e.  RR
5015, 16readdcli 10053 . . . . . . 7  |-  ( A  +  ( K  x.  A ) )  e.  RR
5149, 50, 3ltletri 10165 . . . . . 6  |-  ( ( ( X  +  ( K  x.  A ) )  <  ( A  +  ( K  x.  A ) )  /\  ( A  +  ( K  x.  A )
)  <_  0 )  ->  ( X  +  ( K  x.  A
) )  <  0
)
5218, 48, 51sylancr 695 . . . . 5  |-  ( K  <  0  ->  ( X  +  ( K  x.  A ) )  <  0 )
5349, 3ltnlei 10158 . . . . 5  |-  ( ( X  +  ( K  x.  A ) )  <  0  <->  -.  0  <_  ( X  +  ( K  x.  A ) ) )
5452, 53sylib 208 . . . 4  |-  ( K  <  0  ->  -.  0  <_  ( X  +  ( K  x.  A
) ) )
55 elfzle1 12344 . . . 4  |-  ( ( X  +  ( K  x.  A ) )  e.  ( 0 ... ( A  -  1 ) )  ->  0  <_  ( X  +  ( K  x.  A ) ) )
5654, 55nsyl 135 . . 3  |-  ( K  <  0  ->  -.  ( X  +  ( K  x.  A )
)  e.  ( 0 ... ( A  - 
1 ) ) )
57 zltp1le 11427 . . . . . . . . 9  |-  ( ( 0  e.  ZZ  /\  K  e.  ZZ )  ->  ( 0  <  K  <->  ( 0  +  1 )  <_  K ) )
586, 1, 57mp2an 708 . . . . . . . 8  |-  ( 0  <  K  <->  ( 0  +  1 )  <_  K )
5932breq1i 4660 . . . . . . . 8  |-  ( ( 0  +  1 )  <_  K  <->  1  <_  K )
6058, 59bitri 264 . . . . . . 7  |-  ( 0  <  K  <->  1  <_  K )
61 lemulge12 10886 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  K  e.  RR )  /\  ( 0  <_  A  /\  1  <_  K
) )  ->  A  <_  ( K  x.  A
) )
6215, 2, 61mpanl12 718 . . . . . . . 8  |-  ( ( 0  <_  A  /\  1  <_  K )  ->  A  <_  ( K  x.  A ) )
6321, 62mpan 706 . . . . . . 7  |-  ( 1  <_  K  ->  A  <_  ( K  x.  A
) )
6460, 63sylbi 207 . . . . . 6  |-  ( 0  <  K  ->  A  <_  ( K  x.  A
) )
6511simp2i 1071 . . . . . . 7  |-  0  <_  X
66 addge02 10539 . . . . . . . 8  |-  ( ( ( K  x.  A
)  e.  RR  /\  X  e.  RR )  ->  ( 0  <_  X  <->  ( K  x.  A )  <_  ( X  +  ( K  x.  A
) ) ) )
6716, 14, 66mp2an 708 . . . . . . 7  |-  ( 0  <_  X  <->  ( K  x.  A )  <_  ( X  +  ( K  x.  A ) ) )
6865, 67mpbi 220 . . . . . 6  |-  ( K  x.  A )  <_ 
( X  +  ( K  x.  A ) )
6915, 16, 49letri 10166 . . . . . 6  |-  ( ( A  <_  ( K  x.  A )  /\  ( K  x.  A )  <_  ( X  +  ( K  x.  A ) ) )  ->  A  <_  ( X  +  ( K  x.  A ) ) )
7064, 68, 69sylancl 694 . . . . 5  |-  ( 0  <  K  ->  A  <_  ( X  +  ( K  x.  A ) ) )
7115, 49lenlti 10157 . . . . 5  |-  ( A  <_  ( X  +  ( K  x.  A
) )  <->  -.  ( X  +  ( K  x.  A ) )  < 
A )
7270, 71sylib 208 . . . 4  |-  ( 0  <  K  ->  -.  ( X  +  ( K  x.  A )
)  <  A )
73 elfzm11 12411 . . . . . 6  |-  ( ( 0  e.  ZZ  /\  A  e.  ZZ )  ->  ( ( X  +  ( K  x.  A
) )  e.  ( 0 ... ( A  -  1 ) )  <-> 
( ( X  +  ( K  x.  A
) )  e.  ZZ  /\  0  <_  ( X  +  ( K  x.  A ) )  /\  ( X  +  ( K  x.  A )
)  <  A )
) )
746, 8, 73mp2an 708 . . . . 5  |-  ( ( X  +  ( K  x.  A ) )  e.  ( 0 ... ( A  -  1 ) )  <->  ( ( X  +  ( K  x.  A ) )  e.  ZZ  /\  0  <_ 
( X  +  ( K  x.  A ) )  /\  ( X  +  ( K  x.  A ) )  < 
A ) )
7574simp3bi 1078 . . . 4  |-  ( ( X  +  ( K  x.  A ) )  e.  ( 0 ... ( A  -  1 ) )  ->  ( X  +  ( K  x.  A ) )  < 
A )
7672, 75nsyl 135 . . 3  |-  ( 0  <  K  ->  -.  ( X  +  ( K  x.  A )
)  e.  ( 0 ... ( A  - 
1 ) ) )
7756, 76jaoi 394 . 2  |-  ( ( K  <  0  \/  0  <  K )  ->  -.  ( X  +  ( K  x.  A ) )  e.  ( 0 ... ( A  -  1 ) ) )
784, 77sylbi 207 1  |-  ( K  =/=  0  ->  -.  ( X  +  ( K  x.  A )
)  e.  ( 0 ... ( A  - 
1 ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    /\ w3a 1037    e. wcel 1990    =/= wne 2794   class class class wbr 4653  (class class class)co 6650   RRcr 9935   0cc0 9936   1c1 9937    + caddc 9939    x. cmul 9941    < clt 10074    <_ cle 10075    - cmin 10266   -ucneg 10267   NNcn 11020   ZZcz 11377   ...cfz 12326
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327
This theorem is referenced by:  divalglem7  15122
  Copyright terms: Public domain W3C validator