| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > divalglem6 | Structured version Visualization version Unicode version | ||
| Description: Lemma for divalg 15126. (Contributed by Paul Chapman, 21-Mar-2011.) |
| Ref | Expression |
|---|---|
| divalglem6.1 |
|
| divalglem6.2 |
|
| divalglem6.3 |
|
| Ref | Expression |
|---|---|
| divalglem6 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | divalglem6.3 |
. . . 4
| |
| 2 | 1 | zrei 11383 |
. . 3
|
| 3 | 0re 10040 |
. . 3
| |
| 4 | 2, 3 | lttri2i 10151 |
. 2
|
| 5 | divalglem6.2 |
. . . . . . . . 9
| |
| 6 | 0z 11388 |
. . . . . . . . . 10
| |
| 7 | divalglem6.1 |
. . . . . . . . . . 11
| |
| 8 | 7 | nnzi 11401 |
. . . . . . . . . 10
|
| 9 | elfzm11 12411 |
. . . . . . . . . 10
| |
| 10 | 6, 8, 9 | mp2an 708 |
. . . . . . . . 9
|
| 11 | 5, 10 | mpbi 220 |
. . . . . . . 8
|
| 12 | 11 | simp3i 1072 |
. . . . . . 7
|
| 13 | 11 | simp1i 1070 |
. . . . . . . . 9
|
| 14 | 13 | zrei 11383 |
. . . . . . . 8
|
| 15 | 7 | nnrei 11029 |
. . . . . . . 8
|
| 16 | 2, 15 | remulcli 10054 |
. . . . . . . 8
|
| 17 | 14, 15, 16 | ltadd1i 10582 |
. . . . . . 7
|
| 18 | 12, 17 | mpbi 220 |
. . . . . 6
|
| 19 | 2 | renegcli 10342 |
. . . . . . . 8
|
| 20 | 7 | nnnn0i 11300 |
. . . . . . . . . 10
|
| 21 | 20 | nn0ge0i 11320 |
. . . . . . . . 9
|
| 22 | lemulge12 10886 |
. . . . . . . . . 10
| |
| 23 | 22 | an4s 869 |
. . . . . . . . 9
|
| 24 | 15, 21, 23 | mpanl12 718 |
. . . . . . . 8
|
| 25 | 19, 24 | mpan 706 |
. . . . . . 7
|
| 26 | lt0neg1 10534 |
. . . . . . . . 9
| |
| 27 | 2, 26 | ax-mp 5 |
. . . . . . . 8
|
| 28 | znegcl 11412 |
. . . . . . . . . . 11
| |
| 29 | 1, 28 | ax-mp 5 |
. . . . . . . . . 10
|
| 30 | zltp1le 11427 |
. . . . . . . . . 10
| |
| 31 | 6, 29, 30 | mp2an 708 |
. . . . . . . . 9
|
| 32 | 0p1e1 11132 |
. . . . . . . . . 10
| |
| 33 | 32 | breq1i 4660 |
. . . . . . . . 9
|
| 34 | 31, 33 | bitri 264 |
. . . . . . . 8
|
| 35 | 27, 34 | bitri 264 |
. . . . . . 7
|
| 36 | 2 | recni 10052 |
. . . . . . . . . . . 12
|
| 37 | 15 | recni 10052 |
. . . . . . . . . . . 12
|
| 38 | 36, 37 | mulneg1i 10476 |
. . . . . . . . . . 11
|
| 39 | 38 | oveq2i 6661 |
. . . . . . . . . 10
|
| 40 | 16 | recni 10052 |
. . . . . . . . . . 11
|
| 41 | 37, 40 | subnegi 10360 |
. . . . . . . . . 10
|
| 42 | 39, 41 | eqtri 2644 |
. . . . . . . . 9
|
| 43 | 42 | breq1i 4660 |
. . . . . . . 8
|
| 44 | 19, 15 | remulcli 10054 |
. . . . . . . . 9
|
| 45 | suble0 10542 |
. . . . . . . . 9
| |
| 46 | 15, 44, 45 | mp2an 708 |
. . . . . . . 8
|
| 47 | 43, 46 | bitr3i 266 |
. . . . . . 7
|
| 48 | 25, 35, 47 | 3imtr4i 281 |
. . . . . 6
|
| 49 | 14, 16 | readdcli 10053 |
. . . . . . 7
|
| 50 | 15, 16 | readdcli 10053 |
. . . . . . 7
|
| 51 | 49, 50, 3 | ltletri 10165 |
. . . . . 6
|
| 52 | 18, 48, 51 | sylancr 695 |
. . . . 5
|
| 53 | 49, 3 | ltnlei 10158 |
. . . . 5
|
| 54 | 52, 53 | sylib 208 |
. . . 4
|
| 55 | elfzle1 12344 |
. . . 4
| |
| 56 | 54, 55 | nsyl 135 |
. . 3
|
| 57 | zltp1le 11427 |
. . . . . . . . 9
| |
| 58 | 6, 1, 57 | mp2an 708 |
. . . . . . . 8
|
| 59 | 32 | breq1i 4660 |
. . . . . . . 8
|
| 60 | 58, 59 | bitri 264 |
. . . . . . 7
|
| 61 | lemulge12 10886 |
. . . . . . . . 9
| |
| 62 | 15, 2, 61 | mpanl12 718 |
. . . . . . . 8
|
| 63 | 21, 62 | mpan 706 |
. . . . . . 7
|
| 64 | 60, 63 | sylbi 207 |
. . . . . 6
|
| 65 | 11 | simp2i 1071 |
. . . . . . 7
|
| 66 | addge02 10539 |
. . . . . . . 8
| |
| 67 | 16, 14, 66 | mp2an 708 |
. . . . . . 7
|
| 68 | 65, 67 | mpbi 220 |
. . . . . 6
|
| 69 | 15, 16, 49 | letri 10166 |
. . . . . 6
|
| 70 | 64, 68, 69 | sylancl 694 |
. . . . 5
|
| 71 | 15, 49 | lenlti 10157 |
. . . . 5
|
| 72 | 70, 71 | sylib 208 |
. . . 4
|
| 73 | elfzm11 12411 |
. . . . . 6
| |
| 74 | 6, 8, 73 | mp2an 708 |
. . . . 5
|
| 75 | 74 | simp3bi 1078 |
. . . 4
|
| 76 | 72, 75 | nsyl 135 |
. . 3
|
| 77 | 56, 76 | jaoi 394 |
. 2
|
| 78 | 4, 77 | sylbi 207 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-er 7742 df-en 7956 df-dom 7957 df-sdom 7958 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-nn 11021 df-n0 11293 df-z 11378 df-uz 11688 df-fz 12327 |
| This theorem is referenced by: divalglem7 15122 |
| Copyright terms: Public domain | W3C validator |