![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ltnlei | Structured version Visualization version Unicode version |
Description: 'Less than' in terms of 'less than or equal to'. (Contributed by NM, 11-Jul-2005.) |
Ref | Expression |
---|---|
lt.1 |
![]() ![]() ![]() ![]() |
lt.2 |
![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
ltnlei |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lt.2 |
. . 3
![]() ![]() ![]() ![]() | |
2 | lt.1 |
. . 3
![]() ![]() ![]() ![]() | |
3 | 1, 2 | lenlti 10157 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
4 | 3 | con2bii 347 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-br 4654 df-opab 4713 df-xp 5120 df-cnv 5122 df-xr 10078 df-le 10080 |
This theorem is referenced by: letrii 10162 nn0ge2m1nn 11360 zgt1rpn0n1 11871 0nelfz1 12360 fzpreddisj 12390 hashnn0n0nn 13180 hashge2el2dif 13262 n2dvds1 15104 divalglem5 15120 divalglem6 15121 sadcadd 15180 strlemor1OLD 15969 htpycc 22779 pco1 22815 pcohtpylem 22819 pcopt 22822 pcopt2 22823 pcoass 22824 pcorevlem 22826 vitalilem5 23381 vieta1lem2 24066 ppiltx 24903 ppiublem1 24927 chtub 24937 axlowdimlem16 25837 axlowdim 25841 lfgrnloop 26020 lfuhgr1v0e 26146 lfgrwlkprop 26584 ballotlem2 30550 subfacp1lem1 31161 subfacp1lem5 31166 bcneg1 31622 poimirlem9 33418 poimirlem16 33425 poimirlem17 33426 poimirlem19 33428 poimirlem20 33429 poimirlem22 33431 fdc 33541 pellexlem6 37398 jm2.23 37563 |
Copyright terms: Public domain | W3C validator |