MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ef0lem Structured version   Visualization version   Unicode version

Theorem ef0lem 14809
Description: The series defining the exponential function converges in the (trivial) case of a zero argument. (Contributed by Steve Rodriguez, 7-Jun-2006.) (Revised by Mario Carneiro, 28-Apr-2014.)
Hypothesis
Ref Expression
eftval.1  |-  F  =  ( n  e.  NN0  |->  ( ( A ^
n )  /  ( ! `  n )
) )
Assertion
Ref Expression
ef0lem  |-  ( A  =  0  ->  seq 0 (  +  ,  F )  ~~>  1 )
Distinct variable group:    A, n
Allowed substitution hint:    F( n)

Proof of Theorem ef0lem
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 simpr 477 . . . . . 6  |-  ( ( A  =  0  /\  k  e.  ( ZZ>= ` 
0 ) )  -> 
k  e.  ( ZZ>= ` 
0 ) )
2 nn0uz 11722 . . . . . 6  |-  NN0  =  ( ZZ>= `  0 )
31, 2syl6eleqr 2712 . . . . 5  |-  ( ( A  =  0  /\  k  e.  ( ZZ>= ` 
0 ) )  -> 
k  e.  NN0 )
4 elnn0 11294 . . . . 5  |-  ( k  e.  NN0  <->  ( k  e.  NN  \/  k  =  0 ) )
53, 4sylib 208 . . . 4  |-  ( ( A  =  0  /\  k  e.  ( ZZ>= ` 
0 ) )  -> 
( k  e.  NN  \/  k  =  0
) )
6 nnnn0 11299 . . . . . . . . 9  |-  ( k  e.  NN  ->  k  e.  NN0 )
76adantl 482 . . . . . . . 8  |-  ( ( A  =  0  /\  k  e.  NN )  ->  k  e.  NN0 )
8 eftval.1 . . . . . . . . 9  |-  F  =  ( n  e.  NN0  |->  ( ( A ^
n )  /  ( ! `  n )
) )
98eftval 14807 . . . . . . . 8  |-  ( k  e.  NN0  ->  ( F `
 k )  =  ( ( A ^
k )  /  ( ! `  k )
) )
107, 9syl 17 . . . . . . 7  |-  ( ( A  =  0  /\  k  e.  NN )  ->  ( F `  k )  =  ( ( A ^ k
)  /  ( ! `
 k ) ) )
11 oveq1 6657 . . . . . . . . 9  |-  ( A  =  0  ->  ( A ^ k )  =  ( 0 ^ k
) )
12 0exp 12895 . . . . . . . . 9  |-  ( k  e.  NN  ->  (
0 ^ k )  =  0 )
1311, 12sylan9eq 2676 . . . . . . . 8  |-  ( ( A  =  0  /\  k  e.  NN )  ->  ( A ^
k )  =  0 )
1413oveq1d 6665 . . . . . . 7  |-  ( ( A  =  0  /\  k  e.  NN )  ->  ( ( A ^ k )  / 
( ! `  k
) )  =  ( 0  /  ( ! `
 k ) ) )
15 faccl 13070 . . . . . . . 8  |-  ( k  e.  NN0  ->  ( ! `
 k )  e.  NN )
16 nncn 11028 . . . . . . . . 9  |-  ( ( ! `  k )  e.  NN  ->  ( ! `  k )  e.  CC )
17 nnne0 11053 . . . . . . . . 9  |-  ( ( ! `  k )  e.  NN  ->  ( ! `  k )  =/=  0 )
1816, 17div0d 10800 . . . . . . . 8  |-  ( ( ! `  k )  e.  NN  ->  (
0  /  ( ! `
 k ) )  =  0 )
197, 15, 183syl 18 . . . . . . 7  |-  ( ( A  =  0  /\  k  e.  NN )  ->  ( 0  / 
( ! `  k
) )  =  0 )
2010, 14, 193eqtrd 2660 . . . . . 6  |-  ( ( A  =  0  /\  k  e.  NN )  ->  ( F `  k )  =  0 )
21 nnne0 11053 . . . . . . . . 9  |-  ( k  e.  NN  ->  k  =/=  0 )
22 velsn 4193 . . . . . . . . . 10  |-  ( k  e.  { 0 }  <-> 
k  =  0 )
2322necon3bbii 2841 . . . . . . . . 9  |-  ( -.  k  e.  { 0 }  <->  k  =/=  0
)
2421, 23sylibr 224 . . . . . . . 8  |-  ( k  e.  NN  ->  -.  k  e.  { 0 } )
2524adantl 482 . . . . . . 7  |-  ( ( A  =  0  /\  k  e.  NN )  ->  -.  k  e.  { 0 } )
2625iffalsed 4097 . . . . . 6  |-  ( ( A  =  0  /\  k  e.  NN )  ->  if ( k  e.  { 0 } ,  1 ,  0 )  =  0 )
2720, 26eqtr4d 2659 . . . . 5  |-  ( ( A  =  0  /\  k  e.  NN )  ->  ( F `  k )  =  if ( k  e.  {
0 } ,  1 ,  0 ) )
28 fveq2 6191 . . . . . . 7  |-  ( k  =  0  ->  ( F `  k )  =  ( F ` 
0 ) )
29 oveq1 6657 . . . . . . . . . 10  |-  ( A  =  0  ->  ( A ^ 0 )  =  ( 0 ^ 0 ) )
30 0exp0e1 12865 . . . . . . . . . 10  |-  ( 0 ^ 0 )  =  1
3129, 30syl6eq 2672 . . . . . . . . 9  |-  ( A  =  0  ->  ( A ^ 0 )  =  1 )
3231oveq1d 6665 . . . . . . . 8  |-  ( A  =  0  ->  (
( A ^ 0 )  /  ( ! `
 0 ) )  =  ( 1  / 
( ! `  0
) ) )
33 0nn0 11307 . . . . . . . . 9  |-  0  e.  NN0
348eftval 14807 . . . . . . . . 9  |-  ( 0  e.  NN0  ->  ( F `
 0 )  =  ( ( A ^
0 )  /  ( ! `  0 )
) )
3533, 34ax-mp 5 . . . . . . . 8  |-  ( F `
 0 )  =  ( ( A ^
0 )  /  ( ! `  0 )
)
36 fac0 13063 . . . . . . . . . 10  |-  ( ! `
 0 )  =  1
3736oveq2i 6661 . . . . . . . . 9  |-  ( 1  /  ( ! ` 
0 ) )  =  ( 1  /  1
)
38 1div1e1 10717 . . . . . . . . 9  |-  ( 1  /  1 )  =  1
3937, 38eqtr2i 2645 . . . . . . . 8  |-  1  =  ( 1  / 
( ! `  0
) )
4032, 35, 393eqtr4g 2681 . . . . . . 7  |-  ( A  =  0  ->  ( F `  0 )  =  1 )
4128, 40sylan9eqr 2678 . . . . . 6  |-  ( ( A  =  0  /\  k  =  0 )  ->  ( F `  k )  =  1 )
42 simpr 477 . . . . . . . 8  |-  ( ( A  =  0  /\  k  =  0 )  ->  k  =  0 )
4342, 22sylibr 224 . . . . . . 7  |-  ( ( A  =  0  /\  k  =  0 )  ->  k  e.  {
0 } )
4443iftrued 4094 . . . . . 6  |-  ( ( A  =  0  /\  k  =  0 )  ->  if ( k  e.  { 0 } ,  1 ,  0 )  =  1 )
4541, 44eqtr4d 2659 . . . . 5  |-  ( ( A  =  0  /\  k  =  0 )  ->  ( F `  k )  =  if ( k  e.  {
0 } ,  1 ,  0 ) )
4627, 45jaodan 826 . . . 4  |-  ( ( A  =  0  /\  ( k  e.  NN  \/  k  =  0
) )  ->  ( F `  k )  =  if ( k  e. 
{ 0 } , 
1 ,  0 ) )
475, 46syldan 487 . . 3  |-  ( ( A  =  0  /\  k  e.  ( ZZ>= ` 
0 ) )  -> 
( F `  k
)  =  if ( k  e.  { 0 } ,  1 ,  0 ) )
4833, 2eleqtri 2699 . . . 4  |-  0  e.  ( ZZ>= `  0 )
4948a1i 11 . . 3  |-  ( A  =  0  ->  0  e.  ( ZZ>= `  0 )
)
50 1cnd 10056 . . 3  |-  ( ( A  =  0  /\  k  e.  { 0 } )  ->  1  e.  CC )
51 0z 11388 . . . . . 6  |-  0  e.  ZZ
52 fzsn 12383 . . . . . 6  |-  ( 0  e.  ZZ  ->  (
0 ... 0 )  =  { 0 } )
5351, 52ax-mp 5 . . . . 5  |-  ( 0 ... 0 )  =  { 0 }
5453eqimss2i 3660 . . . 4  |-  { 0 }  C_  ( 0 ... 0 )
5554a1i 11 . . 3  |-  ( A  =  0  ->  { 0 }  C_  ( 0 ... 0 ) )
5647, 49, 50, 55fsumcvg2 14458 . 2  |-  ( A  =  0  ->  seq 0 (  +  ,  F )  ~~>  (  seq 0 (  +  ,  F ) `  0
) )
5751, 40seq1i 12815 . 2  |-  ( A  =  0  ->  (  seq 0 (  +  ,  F ) `  0
)  =  1 )
5856, 57breqtrd 4679 1  |-  ( A  =  0  ->  seq 0 (  +  ,  F )  ~~>  1 )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    \/ wo 383    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794    C_ wss 3574   ifcif 4086   {csn 4177   class class class wbr 4653    |-> cmpt 4729   ` cfv 5888  (class class class)co 6650   0cc0 9936   1c1 9937    + caddc 9939    / cdiv 10684   NNcn 11020   NN0cn0 11292   ZZcz 11377   ZZ>=cuz 11687   ...cfz 12326    seqcseq 12801   ^cexp 12860   !cfa 13060    ~~> cli 14215
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-fz 12327  df-seq 12802  df-exp 12861  df-fac 13061  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219
This theorem is referenced by:  ef0  14821
  Copyright terms: Public domain W3C validator