MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eupth2lem3lem5 Structured version   Visualization version   Unicode version

Theorem eupth2lem3lem5 27092
Description: Lemma for eupth2 27099. (Contributed by AV, 25-Feb-2021.)
Hypotheses
Ref Expression
trlsegvdeg.v  |-  V  =  (Vtx `  G )
trlsegvdeg.i  |-  I  =  (iEdg `  G )
trlsegvdeg.f  |-  ( ph  ->  Fun  I )
trlsegvdeg.n  |-  ( ph  ->  N  e.  ( 0..^ ( # `  F
) ) )
trlsegvdeg.u  |-  ( ph  ->  U  e.  V )
trlsegvdeg.w  |-  ( ph  ->  F (Trails `  G
) P )
trlsegvdeg.vx  |-  ( ph  ->  (Vtx `  X )  =  V )
trlsegvdeg.vy  |-  ( ph  ->  (Vtx `  Y )  =  V )
trlsegvdeg.vz  |-  ( ph  ->  (Vtx `  Z )  =  V )
trlsegvdeg.ix  |-  ( ph  ->  (iEdg `  X )  =  ( I  |`  ( F " ( 0..^ N ) ) ) )
trlsegvdeg.iy  |-  ( ph  ->  (iEdg `  Y )  =  { <. ( F `  N ) ,  ( I `  ( F `
 N ) )
>. } )
trlsegvdeg.iz  |-  ( ph  ->  (iEdg `  Z )  =  ( I  |`  ( F " ( 0 ... N ) ) ) )
eupth2lem3.o  |-  ( ph  ->  { x  e.  V  |  -.  2  ||  (
(VtxDeg `  X ) `  x ) }  =  if ( ( P ` 
0 )  =  ( P `  N ) ,  (/) ,  { ( P `  0 ) ,  ( P `  N ) } ) )
eupth2lem3.e  |-  ( ph  ->  ( I `  ( F `  N )
)  =  { ( P `  N ) ,  ( P `  ( N  +  1
) ) } )
Assertion
Ref Expression
eupth2lem3lem5  |-  ( ph  ->  ( I `  ( F `  N )
)  e.  ~P V
)
Distinct variable groups:    x, U    x, V    x, X
Allowed substitution hints:    ph( x)    P( x)    F( x)    G( x)    I( x)    N( x)    Y( x)    Z( x)

Proof of Theorem eupth2lem3lem5
StepHypRef Expression
1 eupth2lem3.e . 2  |-  ( ph  ->  ( I `  ( F `  N )
)  =  { ( P `  N ) ,  ( P `  ( N  +  1
) ) } )
2 trlsegvdeg.v . . . 4  |-  V  =  (Vtx `  G )
3 trlsegvdeg.i . . . 4  |-  I  =  (iEdg `  G )
4 trlsegvdeg.f . . . 4  |-  ( ph  ->  Fun  I )
5 trlsegvdeg.n . . . 4  |-  ( ph  ->  N  e.  ( 0..^ ( # `  F
) ) )
6 trlsegvdeg.u . . . 4  |-  ( ph  ->  U  e.  V )
7 trlsegvdeg.w . . . 4  |-  ( ph  ->  F (Trails `  G
) P )
82, 3, 4, 5, 6, 7trlsegvdeglem1 27080 . . 3  |-  ( ph  ->  ( ( P `  N )  e.  V  /\  ( P `  ( N  +  1 ) )  e.  V ) )
9 prelpwi 4915 . . 3  |-  ( ( ( P `  N
)  e.  V  /\  ( P `  ( N  +  1 ) )  e.  V )  ->  { ( P `  N ) ,  ( P `  ( N  +  1 ) ) }  e.  ~P V
)
108, 9syl 17 . 2  |-  ( ph  ->  { ( P `  N ) ,  ( P `  ( N  +  1 ) ) }  e.  ~P V
)
111, 10eqeltrd 2701 1  |-  ( ph  ->  ( I `  ( F `  N )
)  e.  ~P V
)
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   {crab 2916   (/)c0 3915   ifcif 4086   ~Pcpw 4158   {csn 4177   {cpr 4179   <.cop 4183   class class class wbr 4653    |` cres 5116   "cima 5117   Fun wfun 5882   ` cfv 5888  (class class class)co 6650   0cc0 9936   1c1 9937    + caddc 9939   2c2 11070   ...cfz 12326  ..^cfzo 12465   #chash 13117    || cdvds 14983  Vtxcvtx 25874  iEdgciedg 25875  VtxDegcvtxdg 26361  Trailsctrls 26587
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-ifp 1013  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-hash 13118  df-word 13299  df-wlks 26495  df-trls 26589
This theorem is referenced by:  eupth2lem3lem7  27094
  Copyright terms: Public domain W3C validator