MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eupth2lem3lem7 Structured version   Visualization version   Unicode version

Theorem eupth2lem3lem7 27094
Description: Lemma for eupth2lem3 27096: Combining trlsegvdeg 27087, eupth2lem3lem3 27090, eupth2lem3lem4 27091 and eupth2lem3lem6 27093. (Contributed by Mario Carneiro, 8-Apr-2015.) (Revised by AV, 27-Feb-2021.)
Hypotheses
Ref Expression
trlsegvdeg.v  |-  V  =  (Vtx `  G )
trlsegvdeg.i  |-  I  =  (iEdg `  G )
trlsegvdeg.f  |-  ( ph  ->  Fun  I )
trlsegvdeg.n  |-  ( ph  ->  N  e.  ( 0..^ ( # `  F
) ) )
trlsegvdeg.u  |-  ( ph  ->  U  e.  V )
trlsegvdeg.w  |-  ( ph  ->  F (Trails `  G
) P )
trlsegvdeg.vx  |-  ( ph  ->  (Vtx `  X )  =  V )
trlsegvdeg.vy  |-  ( ph  ->  (Vtx `  Y )  =  V )
trlsegvdeg.vz  |-  ( ph  ->  (Vtx `  Z )  =  V )
trlsegvdeg.ix  |-  ( ph  ->  (iEdg `  X )  =  ( I  |`  ( F " ( 0..^ N ) ) ) )
trlsegvdeg.iy  |-  ( ph  ->  (iEdg `  Y )  =  { <. ( F `  N ) ,  ( I `  ( F `
 N ) )
>. } )
trlsegvdeg.iz  |-  ( ph  ->  (iEdg `  Z )  =  ( I  |`  ( F " ( 0 ... N ) ) ) )
eupth2lem3.o  |-  ( ph  ->  { x  e.  V  |  -.  2  ||  (
(VtxDeg `  X ) `  x ) }  =  if ( ( P ` 
0 )  =  ( P `  N ) ,  (/) ,  { ( P `  0 ) ,  ( P `  N ) } ) )
eupth2lem3.e  |-  ( ph  ->  ( I `  ( F `  N )
)  =  { ( P `  N ) ,  ( P `  ( N  +  1
) ) } )
Assertion
Ref Expression
eupth2lem3lem7  |-  ( ph  ->  ( -.  2  ||  ( (VtxDeg `  Z ) `  U )  <->  U  e.  if ( ( P ` 
0 )  =  ( P `  ( N  +  1 ) ) ,  (/) ,  { ( P `  0 ) ,  ( P `  ( N  +  1
) ) } ) ) )
Distinct variable groups:    x, U    x, V    x, X
Allowed substitution hints:    ph( x)    P( x)    F( x)    G( x)    I( x)    N( x)    Y( x)    Z( x)

Proof of Theorem eupth2lem3lem7
StepHypRef Expression
1 trlsegvdeg.v . . . . 5  |-  V  =  (Vtx `  G )
2 trlsegvdeg.i . . . . 5  |-  I  =  (iEdg `  G )
3 trlsegvdeg.f . . . . 5  |-  ( ph  ->  Fun  I )
4 trlsegvdeg.n . . . . 5  |-  ( ph  ->  N  e.  ( 0..^ ( # `  F
) ) )
5 trlsegvdeg.u . . . . 5  |-  ( ph  ->  U  e.  V )
6 trlsegvdeg.w . . . . 5  |-  ( ph  ->  F (Trails `  G
) P )
7 trlsegvdeg.vx . . . . 5  |-  ( ph  ->  (Vtx `  X )  =  V )
8 trlsegvdeg.vy . . . . 5  |-  ( ph  ->  (Vtx `  Y )  =  V )
9 trlsegvdeg.vz . . . . 5  |-  ( ph  ->  (Vtx `  Z )  =  V )
10 trlsegvdeg.ix . . . . 5  |-  ( ph  ->  (iEdg `  X )  =  ( I  |`  ( F " ( 0..^ N ) ) ) )
11 trlsegvdeg.iy . . . . 5  |-  ( ph  ->  (iEdg `  Y )  =  { <. ( F `  N ) ,  ( I `  ( F `
 N ) )
>. } )
12 trlsegvdeg.iz . . . . 5  |-  ( ph  ->  (iEdg `  Z )  =  ( I  |`  ( F " ( 0 ... N ) ) ) )
131, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12trlsegvdeg 27087 . . . 4  |-  ( ph  ->  ( (VtxDeg `  Z
) `  U )  =  ( ( (VtxDeg `  X ) `  U
)  +  ( (VtxDeg `  Y ) `  U
) ) )
1413breq2d 4665 . . 3  |-  ( ph  ->  ( 2  ||  (
(VtxDeg `  Z ) `  U )  <->  2  ||  ( ( (VtxDeg `  X ) `  U
)  +  ( (VtxDeg `  Y ) `  U
) ) ) )
1514notbid 308 . 2  |-  ( ph  ->  ( -.  2  ||  ( (VtxDeg `  Z ) `  U )  <->  -.  2  ||  ( ( (VtxDeg `  X ) `  U
)  +  ( (VtxDeg `  Y ) `  U
) ) ) )
16 eupth2lem3.o . . . 4  |-  ( ph  ->  { x  e.  V  |  -.  2  ||  (
(VtxDeg `  X ) `  x ) }  =  if ( ( P ` 
0 )  =  ( P `  N ) ,  (/) ,  { ( P `  0 ) ,  ( P `  N ) } ) )
17 eupth2lem3.e . . . . 5  |-  ( ph  ->  ( I `  ( F `  N )
)  =  { ( P `  N ) ,  ( P `  ( N  +  1
) ) } )
18 ifpprsnss 4299 . . . . 5  |-  ( ( I `  ( F `
 N ) )  =  { ( P `
 N ) ,  ( P `  ( N  +  1 ) ) }  -> if- ( ( P `  N )  =  ( P `  ( N  +  1
) ) ,  ( I `  ( F `
 N ) )  =  { ( P `
 N ) } ,  { ( P `
 N ) ,  ( P `  ( N  +  1 ) ) }  C_  (
I `  ( F `  N ) ) ) )
1917, 18syl 17 . . . 4  |-  ( ph  -> if- ( ( P `  N )  =  ( P `  ( N  +  1 ) ) ,  ( I `  ( F `  N ) )  =  { ( P `  N ) } ,  { ( P `  N ) ,  ( P `  ( N  +  1
) ) }  C_  ( I `  ( F `  N )
) ) )
201, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 16, 19eupth2lem3lem3 27090 . . 3  |-  ( (
ph  /\  ( P `  N )  =  ( P `  ( N  +  1 ) ) )  ->  ( -.  2  ||  ( ( (VtxDeg `  X ) `  U
)  +  ( (VtxDeg `  Y ) `  U
) )  <->  U  e.  if ( ( P ` 
0 )  =  ( P `  ( N  +  1 ) ) ,  (/) ,  { ( P `  0 ) ,  ( P `  ( N  +  1
) ) } ) ) )
211, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 16, 17eupth2lem3lem5 27092 . . . . . . 7  |-  ( ph  ->  ( I `  ( F `  N )
)  e.  ~P V
)
221, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 16, 19, 21eupth2lem3lem4 27091 . . . . . 6  |-  ( (
ph  /\  ( P `  N )  =/=  ( P `  ( N  +  1 ) )  /\  ( U  =  ( P `  N
)  \/  U  =  ( P `  ( N  +  1 ) ) ) )  -> 
( -.  2  ||  ( ( (VtxDeg `  X ) `  U
)  +  ( (VtxDeg `  Y ) `  U
) )  <->  U  e.  if ( ( P ` 
0 )  =  ( P `  ( N  +  1 ) ) ,  (/) ,  { ( P `  0 ) ,  ( P `  ( N  +  1
) ) } ) ) )
23223expa 1265 . . . . 5  |-  ( ( ( ph  /\  ( P `  N )  =/=  ( P `  ( N  +  1 ) ) )  /\  ( U  =  ( P `  N )  \/  U  =  ( P `  ( N  +  1
) ) ) )  ->  ( -.  2  ||  ( ( (VtxDeg `  X ) `  U
)  +  ( (VtxDeg `  Y ) `  U
) )  <->  U  e.  if ( ( P ` 
0 )  =  ( P `  ( N  +  1 ) ) ,  (/) ,  { ( P `  0 ) ,  ( P `  ( N  +  1
) ) } ) ) )
2423expcom 451 . . . 4  |-  ( ( U  =  ( P `
 N )  \/  U  =  ( P `
 ( N  + 
1 ) ) )  ->  ( ( ph  /\  ( P `  N
)  =/=  ( P `
 ( N  + 
1 ) ) )  ->  ( -.  2  ||  ( ( (VtxDeg `  X ) `  U
)  +  ( (VtxDeg `  Y ) `  U
) )  <->  U  e.  if ( ( P ` 
0 )  =  ( P `  ( N  +  1 ) ) ,  (/) ,  { ( P `  0 ) ,  ( P `  ( N  +  1
) ) } ) ) ) )
25 neanior 2886 . . . . 5  |-  ( ( U  =/=  ( P `
 N )  /\  U  =/=  ( P `  ( N  +  1
) ) )  <->  -.  ( U  =  ( P `  N )  \/  U  =  ( P `  ( N  +  1
) ) ) )
261, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 16, 17eupth2lem3lem6 27093 . . . . . . 7  |-  ( (
ph  /\  ( P `  N )  =/=  ( P `  ( N  +  1 ) )  /\  ( U  =/=  ( P `  N
)  /\  U  =/=  ( P `  ( N  +  1 ) ) ) )  ->  ( -.  2  ||  ( ( (VtxDeg `  X ) `  U )  +  ( (VtxDeg `  Y ) `  U ) )  <->  U  e.  if ( ( P ` 
0 )  =  ( P `  ( N  +  1 ) ) ,  (/) ,  { ( P `  0 ) ,  ( P `  ( N  +  1
) ) } ) ) )
27263expa 1265 . . . . . 6  |-  ( ( ( ph  /\  ( P `  N )  =/=  ( P `  ( N  +  1 ) ) )  /\  ( U  =/=  ( P `  N )  /\  U  =/=  ( P `  ( N  +  1 ) ) ) )  -> 
( -.  2  ||  ( ( (VtxDeg `  X ) `  U
)  +  ( (VtxDeg `  Y ) `  U
) )  <->  U  e.  if ( ( P ` 
0 )  =  ( P `  ( N  +  1 ) ) ,  (/) ,  { ( P `  0 ) ,  ( P `  ( N  +  1
) ) } ) ) )
2827expcom 451 . . . . 5  |-  ( ( U  =/=  ( P `
 N )  /\  U  =/=  ( P `  ( N  +  1
) ) )  -> 
( ( ph  /\  ( P `  N )  =/=  ( P `  ( N  +  1
) ) )  -> 
( -.  2  ||  ( ( (VtxDeg `  X ) `  U
)  +  ( (VtxDeg `  Y ) `  U
) )  <->  U  e.  if ( ( P ` 
0 )  =  ( P `  ( N  +  1 ) ) ,  (/) ,  { ( P `  0 ) ,  ( P `  ( N  +  1
) ) } ) ) ) )
2925, 28sylbir 225 . . . 4  |-  ( -.  ( U  =  ( P `  N )  \/  U  =  ( P `  ( N  +  1 ) ) )  ->  ( ( ph  /\  ( P `  N )  =/=  ( P `  ( N  +  1 ) ) )  ->  ( -.  2  ||  ( ( (VtxDeg `  X ) `  U
)  +  ( (VtxDeg `  Y ) `  U
) )  <->  U  e.  if ( ( P ` 
0 )  =  ( P `  ( N  +  1 ) ) ,  (/) ,  { ( P `  0 ) ,  ( P `  ( N  +  1
) ) } ) ) ) )
3024, 29pm2.61i 176 . . 3  |-  ( (
ph  /\  ( P `  N )  =/=  ( P `  ( N  +  1 ) ) )  ->  ( -.  2  ||  ( ( (VtxDeg `  X ) `  U
)  +  ( (VtxDeg `  Y ) `  U
) )  <->  U  e.  if ( ( P ` 
0 )  =  ( P `  ( N  +  1 ) ) ,  (/) ,  { ( P `  0 ) ,  ( P `  ( N  +  1
) ) } ) ) )
3120, 30pm2.61dane 2881 . 2  |-  ( ph  ->  ( -.  2  ||  ( ( (VtxDeg `  X ) `  U
)  +  ( (VtxDeg `  Y ) `  U
) )  <->  U  e.  if ( ( P ` 
0 )  =  ( P `  ( N  +  1 ) ) ,  (/) ,  { ( P `  0 ) ,  ( P `  ( N  +  1
) ) } ) ) )
3215, 31bitrd 268 1  |-  ( ph  ->  ( -.  2  ||  ( (VtxDeg `  Z ) `  U )  <->  U  e.  if ( ( P ` 
0 )  =  ( P `  ( N  +  1 ) ) ,  (/) ,  { ( P `  0 ) ,  ( P `  ( N  +  1
) ) } ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384  if-wif 1012    = wceq 1483    e. wcel 1990    =/= wne 2794   {crab 2916    C_ wss 3574   (/)c0 3915   ifcif 4086   {csn 4177   {cpr 4179   <.cop 4183   class class class wbr 4653    |` cres 5116   "cima 5117   Fun wfun 5882   ` cfv 5888  (class class class)co 6650   0cc0 9936   1c1 9937    + caddc 9939   2c2 11070   ...cfz 12326  ..^cfzo 12465   #chash 13117    || cdvds 14983  Vtxcvtx 25874  iEdgciedg 25875  VtxDegcvtxdg 26361  Trailsctrls 26587
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-ifp 1013  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-xnn0 11364  df-z 11378  df-uz 11688  df-rp 11833  df-xadd 11947  df-fz 12327  df-fzo 12466  df-seq 12802  df-exp 12861  df-hash 13118  df-word 13299  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-dvds 14984  df-edg 25940  df-uhgr 25953  df-ushgr 25954  df-uspgr 26045  df-vtxdg 26362  df-wlks 26495  df-trls 26589
This theorem is referenced by:  eupth2lem3  27096
  Copyright terms: Public domain W3C validator