MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsuppmapnn0fiub0 Structured version   Visualization version   Unicode version

Theorem fsuppmapnn0fiub0 12793
Description: If all functions of a finite set of functions over the nonnegative integers are finitely supported, then all these functions are zero for all integers greater than a fixed integer. (Contributed by AV, 3-Oct-2019.)
Assertion
Ref Expression
fsuppmapnn0fiub0  |-  ( ( M  C_  ( R  ^m  NN0 )  /\  M  e.  Fin  /\  Z  e.  V )  ->  ( A. f  e.  M  f finSupp  Z  ->  E. m  e.  NN0  A. f  e.  M  A. x  e. 
NN0  ( m  < 
x  ->  ( f `  x )  =  Z ) ) )
Distinct variable groups:    f, M, m    R, f, m    f, V, m    f, Z, m   
x, M    x, R    x, V    x, Z, f, m

Proof of Theorem fsuppmapnn0fiub0
StepHypRef Expression
1 fsuppmapnn0fiubex 12792 . 2  |-  ( ( M  C_  ( R  ^m  NN0 )  /\  M  e.  Fin  /\  Z  e.  V )  ->  ( A. f  e.  M  f finSupp  Z  ->  E. m  e.  NN0  A. f  e.  M  ( f supp  Z
)  C_  ( 0 ... m ) ) )
2 ssel2 3598 . . . . . . . . . . . . . 14  |-  ( ( M  C_  ( R  ^m  NN0 )  /\  f  e.  M )  ->  f  e.  ( R  ^m  NN0 ) )
32ancoms 469 . . . . . . . . . . . . 13  |-  ( ( f  e.  M  /\  M  C_  ( R  ^m  NN0 ) )  ->  f  e.  ( R  ^m  NN0 ) )
4 elmapfn 7880 . . . . . . . . . . . . 13  |-  ( f  e.  ( R  ^m  NN0 )  ->  f  Fn  NN0 )
53, 4syl 17 . . . . . . . . . . . 12  |-  ( ( f  e.  M  /\  M  C_  ( R  ^m  NN0 ) )  ->  f  Fn  NN0 )
65expcom 451 . . . . . . . . . . 11  |-  ( M 
C_  ( R  ^m  NN0 )  ->  ( f  e.  M  ->  f  Fn 
NN0 ) )
763ad2ant1 1082 . . . . . . . . . 10  |-  ( ( M  C_  ( R  ^m  NN0 )  /\  M  e.  Fin  /\  Z  e.  V )  ->  (
f  e.  M  -> 
f  Fn  NN0 )
)
87adantr 481 . . . . . . . . 9  |-  ( ( ( M  C_  ( R  ^m  NN0 )  /\  M  e.  Fin  /\  Z  e.  V )  /\  m  e.  NN0 )  ->  (
f  e.  M  -> 
f  Fn  NN0 )
)
98imp 445 . . . . . . . 8  |-  ( ( ( ( M  C_  ( R  ^m  NN0 )  /\  M  e.  Fin  /\  Z  e.  V )  /\  m  e.  NN0 )  /\  f  e.  M
)  ->  f  Fn  NN0 )
10 nn0ex 11298 . . . . . . . . 9  |-  NN0  e.  _V
1110a1i 11 . . . . . . . 8  |-  ( ( ( ( M  C_  ( R  ^m  NN0 )  /\  M  e.  Fin  /\  Z  e.  V )  /\  m  e.  NN0 )  /\  f  e.  M
)  ->  NN0  e.  _V )
12 simpll3 1102 . . . . . . . 8  |-  ( ( ( ( M  C_  ( R  ^m  NN0 )  /\  M  e.  Fin  /\  Z  e.  V )  /\  m  e.  NN0 )  /\  f  e.  M
)  ->  Z  e.  V )
13 suppvalfn 7302 . . . . . . . 8  |-  ( ( f  Fn  NN0  /\  NN0 
e.  _V  /\  Z  e.  V )  ->  (
f supp  Z )  =  {
x  e.  NN0  | 
( f `  x
)  =/=  Z }
)
149, 11, 12, 13syl3anc 1326 . . . . . . 7  |-  ( ( ( ( M  C_  ( R  ^m  NN0 )  /\  M  e.  Fin  /\  Z  e.  V )  /\  m  e.  NN0 )  /\  f  e.  M
)  ->  ( f supp  Z )  =  { x  e.  NN0  |  ( f `
 x )  =/= 
Z } )
1514sseq1d 3632 . . . . . 6  |-  ( ( ( ( M  C_  ( R  ^m  NN0 )  /\  M  e.  Fin  /\  Z  e.  V )  /\  m  e.  NN0 )  /\  f  e.  M
)  ->  ( (
f supp  Z )  C_  (
0 ... m )  <->  { x  e.  NN0  |  ( f `
 x )  =/= 
Z }  C_  (
0 ... m ) ) )
16 rabss 3679 . . . . . 6  |-  ( { x  e.  NN0  | 
( f `  x
)  =/=  Z }  C_  ( 0 ... m
)  <->  A. x  e.  NN0  ( ( f `  x )  =/=  Z  ->  x  e.  ( 0 ... m ) ) )
1715, 16syl6bb 276 . . . . 5  |-  ( ( ( ( M  C_  ( R  ^m  NN0 )  /\  M  e.  Fin  /\  Z  e.  V )  /\  m  e.  NN0 )  /\  f  e.  M
)  ->  ( (
f supp  Z )  C_  (
0 ... m )  <->  A. x  e.  NN0  ( ( f `
 x )  =/= 
Z  ->  x  e.  ( 0 ... m
) ) ) )
18 nne 2798 . . . . . . . . . 10  |-  ( -.  ( f `  x
)  =/=  Z  <->  ( f `  x )  =  Z )
1918biimpi 206 . . . . . . . . 9  |-  ( -.  ( f `  x
)  =/=  Z  -> 
( f `  x
)  =  Z )
20192a1d 26 . . . . . . . 8  |-  ( -.  ( f `  x
)  =/=  Z  -> 
( ( ( ( ( M  C_  ( R  ^m  NN0 )  /\  M  e.  Fin  /\  Z  e.  V )  /\  m  e.  NN0 )  /\  f  e.  M )  /\  x  e.  NN0 )  ->  (
m  <  x  ->  ( f `  x )  =  Z ) ) )
21 elfz2nn0 12431 . . . . . . . . 9  |-  ( x  e.  ( 0 ... m )  <->  ( x  e.  NN0  /\  m  e. 
NN0  /\  x  <_  m ) )
22 nn0re 11301 . . . . . . . . . . . . 13  |-  ( x  e.  NN0  ->  x  e.  RR )
23 nn0re 11301 . . . . . . . . . . . . 13  |-  ( m  e.  NN0  ->  m  e.  RR )
24 lenlt 10116 . . . . . . . . . . . . 13  |-  ( ( x  e.  RR  /\  m  e.  RR )  ->  ( x  <_  m  <->  -.  m  <  x ) )
2522, 23, 24syl2an 494 . . . . . . . . . . . 12  |-  ( ( x  e.  NN0  /\  m  e.  NN0 )  -> 
( x  <_  m  <->  -.  m  <  x ) )
26 pm2.21 120 . . . . . . . . . . . 12  |-  ( -.  m  <  x  -> 
( m  <  x  ->  ( f `  x
)  =  Z ) )
2725, 26syl6bi 243 . . . . . . . . . . 11  |-  ( ( x  e.  NN0  /\  m  e.  NN0 )  -> 
( x  <_  m  ->  ( m  <  x  ->  ( f `  x
)  =  Z ) ) )
28273impia 1261 . . . . . . . . . 10  |-  ( ( x  e.  NN0  /\  m  e.  NN0  /\  x  <_  m )  ->  (
m  <  x  ->  ( f `  x )  =  Z ) )
2928a1d 25 . . . . . . . . 9  |-  ( ( x  e.  NN0  /\  m  e.  NN0  /\  x  <_  m )  ->  (
( ( ( ( M  C_  ( R  ^m  NN0 )  /\  M  e.  Fin  /\  Z  e.  V )  /\  m  e.  NN0 )  /\  f  e.  M )  /\  x  e.  NN0 )  ->  (
m  <  x  ->  ( f `  x )  =  Z ) ) )
3021, 29sylbi 207 . . . . . . . 8  |-  ( x  e.  ( 0 ... m )  ->  (
( ( ( ( M  C_  ( R  ^m  NN0 )  /\  M  e.  Fin  /\  Z  e.  V )  /\  m  e.  NN0 )  /\  f  e.  M )  /\  x  e.  NN0 )  ->  (
m  <  x  ->  ( f `  x )  =  Z ) ) )
3120, 30ja 173 . . . . . . 7  |-  ( ( ( f `  x
)  =/=  Z  ->  x  e.  ( 0 ... m ) )  ->  ( ( ( ( ( M  C_  ( R  ^m  NN0 )  /\  M  e.  Fin  /\  Z  e.  V )  /\  m  e.  NN0 )  /\  f  e.  M
)  /\  x  e.  NN0 )  ->  ( m  <  x  ->  ( f `  x )  =  Z ) ) )
3231com12 32 . . . . . 6  |-  ( ( ( ( ( M 
C_  ( R  ^m  NN0 )  /\  M  e. 
Fin  /\  Z  e.  V )  /\  m  e.  NN0 )  /\  f  e.  M )  /\  x  e.  NN0 )  ->  (
( ( f `  x )  =/=  Z  ->  x  e.  ( 0 ... m ) )  ->  ( m  < 
x  ->  ( f `  x )  =  Z ) ) )
3332ralimdva 2962 . . . . 5  |-  ( ( ( ( M  C_  ( R  ^m  NN0 )  /\  M  e.  Fin  /\  Z  e.  V )  /\  m  e.  NN0 )  /\  f  e.  M
)  ->  ( A. x  e.  NN0  ( ( f `  x )  =/=  Z  ->  x  e.  ( 0 ... m
) )  ->  A. x  e.  NN0  ( m  < 
x  ->  ( f `  x )  =  Z ) ) )
3417, 33sylbid 230 . . . 4  |-  ( ( ( ( M  C_  ( R  ^m  NN0 )  /\  M  e.  Fin  /\  Z  e.  V )  /\  m  e.  NN0 )  /\  f  e.  M
)  ->  ( (
f supp  Z )  C_  (
0 ... m )  ->  A. x  e.  NN0  ( m  <  x  -> 
( f `  x
)  =  Z ) ) )
3534ralimdva 2962 . . 3  |-  ( ( ( M  C_  ( R  ^m  NN0 )  /\  M  e.  Fin  /\  Z  e.  V )  /\  m  e.  NN0 )  ->  ( A. f  e.  M  ( f supp  Z )  C_  ( 0 ... m
)  ->  A. f  e.  M  A. x  e.  NN0  ( m  < 
x  ->  ( f `  x )  =  Z ) ) )
3635reximdva 3017 . 2  |-  ( ( M  C_  ( R  ^m  NN0 )  /\  M  e.  Fin  /\  Z  e.  V )  ->  ( E. m  e.  NN0  A. f  e.  M  ( f supp  Z )  C_  ( 0 ... m
)  ->  E. m  e.  NN0  A. f  e.  M  A. x  e. 
NN0  ( m  < 
x  ->  ( f `  x )  =  Z ) ) )
371, 36syld 47 1  |-  ( ( M  C_  ( R  ^m  NN0 )  /\  M  e.  Fin  /\  Z  e.  V )  ->  ( A. f  e.  M  f finSupp  Z  ->  E. m  e.  NN0  A. f  e.  M  A. x  e. 
NN0  ( m  < 
x  ->  ( f `  x )  =  Z ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912   E.wrex 2913   {crab 2916   _Vcvv 3200    C_ wss 3574   class class class wbr 4653    Fn wfn 5883   ` cfv 5888  (class class class)co 6650   supp csupp 7295    ^m cmap 7857   Fincfn 7955   finSupp cfsupp 8275   RRcr 9935   0cc0 9936    < clt 10074    <_ cle 10075   NN0cn0 11292   ...cfz 12326
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-sup 8348  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327
This theorem is referenced by:  pmatcoe1fsupp  20506
  Copyright terms: Public domain W3C validator