MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvprmselgcd1 Structured version   Visualization version   Unicode version

Theorem fvprmselgcd1 15749
Description: The greatest common divisor of two values of the prime selection function for different arguments is 1. (Contributed by AV, 19-Aug-2020.)
Hypothesis
Ref Expression
fvprmselelfz.f  |-  F  =  ( m  e.  NN  |->  if ( m  e.  Prime ,  m ,  1 ) )
Assertion
Ref Expression
fvprmselgcd1  |-  ( ( X  e.  ( 1 ... N )  /\  Y  e.  ( 1 ... N )  /\  X  =/=  Y )  -> 
( ( F `  X )  gcd  ( F `  Y )
)  =  1 )
Distinct variable groups:    m, N    m, X    m, Y
Allowed substitution hint:    F( m)

Proof of Theorem fvprmselgcd1
StepHypRef Expression
1 fvprmselelfz.f . . . . . . 7  |-  F  =  ( m  e.  NN  |->  if ( m  e.  Prime ,  m ,  1 ) )
21a1i 11 . . . . . 6  |-  ( ( ( X  e.  Prime  /\  Y  e.  Prime )  /\  ( X  e.  ( 1 ... N )  /\  Y  e.  ( 1 ... N )  /\  X  =/=  Y
) )  ->  F  =  ( m  e.  NN  |->  if ( m  e.  Prime ,  m ,  1 ) ) )
3 eleq1 2689 . . . . . . . 8  |-  ( m  =  X  ->  (
m  e.  Prime  <->  X  e.  Prime ) )
4 id 22 . . . . . . . 8  |-  ( m  =  X  ->  m  =  X )
53, 4ifbieq1d 4109 . . . . . . 7  |-  ( m  =  X  ->  if ( m  e.  Prime ,  m ,  1 )  =  if ( X  e.  Prime ,  X , 
1 ) )
6 iftrue 4092 . . . . . . . 8  |-  ( X  e.  Prime  ->  if ( X  e.  Prime ,  X ,  1 )  =  X )
76ad2antrr 762 . . . . . . 7  |-  ( ( ( X  e.  Prime  /\  Y  e.  Prime )  /\  ( X  e.  ( 1 ... N )  /\  Y  e.  ( 1 ... N )  /\  X  =/=  Y
) )  ->  if ( X  e.  Prime ,  X ,  1 )  =  X )
85, 7sylan9eqr 2678 . . . . . 6  |-  ( ( ( ( X  e. 
Prime  /\  Y  e.  Prime )  /\  ( X  e.  ( 1 ... N
)  /\  Y  e.  ( 1 ... N
)  /\  X  =/=  Y ) )  /\  m  =  X )  ->  if ( m  e.  Prime ,  m ,  1 )  =  X )
9 elfznn 12370 . . . . . . . 8  |-  ( X  e.  ( 1 ... N )  ->  X  e.  NN )
1093ad2ant1 1082 . . . . . . 7  |-  ( ( X  e.  ( 1 ... N )  /\  Y  e.  ( 1 ... N )  /\  X  =/=  Y )  ->  X  e.  NN )
1110adantl 482 . . . . . 6  |-  ( ( ( X  e.  Prime  /\  Y  e.  Prime )  /\  ( X  e.  ( 1 ... N )  /\  Y  e.  ( 1 ... N )  /\  X  =/=  Y
) )  ->  X  e.  NN )
12 simpll 790 . . . . . 6  |-  ( ( ( X  e.  Prime  /\  Y  e.  Prime )  /\  ( X  e.  ( 1 ... N )  /\  Y  e.  ( 1 ... N )  /\  X  =/=  Y
) )  ->  X  e.  Prime )
132, 8, 11, 12fvmptd 6288 . . . . 5  |-  ( ( ( X  e.  Prime  /\  Y  e.  Prime )  /\  ( X  e.  ( 1 ... N )  /\  Y  e.  ( 1 ... N )  /\  X  =/=  Y
) )  ->  ( F `  X )  =  X )
14 eleq1 2689 . . . . . . . 8  |-  ( m  =  Y  ->  (
m  e.  Prime  <->  Y  e.  Prime ) )
15 id 22 . . . . . . . 8  |-  ( m  =  Y  ->  m  =  Y )
1614, 15ifbieq1d 4109 . . . . . . 7  |-  ( m  =  Y  ->  if ( m  e.  Prime ,  m ,  1 )  =  if ( Y  e.  Prime ,  Y , 
1 ) )
17 iftrue 4092 . . . . . . . 8  |-  ( Y  e.  Prime  ->  if ( Y  e.  Prime ,  Y ,  1 )  =  Y )
1817ad2antlr 763 . . . . . . 7  |-  ( ( ( X  e.  Prime  /\  Y  e.  Prime )  /\  ( X  e.  ( 1 ... N )  /\  Y  e.  ( 1 ... N )  /\  X  =/=  Y
) )  ->  if ( Y  e.  Prime ,  Y ,  1 )  =  Y )
1916, 18sylan9eqr 2678 . . . . . 6  |-  ( ( ( ( X  e. 
Prime  /\  Y  e.  Prime )  /\  ( X  e.  ( 1 ... N
)  /\  Y  e.  ( 1 ... N
)  /\  X  =/=  Y ) )  /\  m  =  Y )  ->  if ( m  e.  Prime ,  m ,  1 )  =  Y )
20 elfznn 12370 . . . . . . . 8  |-  ( Y  e.  ( 1 ... N )  ->  Y  e.  NN )
21203ad2ant2 1083 . . . . . . 7  |-  ( ( X  e.  ( 1 ... N )  /\  Y  e.  ( 1 ... N )  /\  X  =/=  Y )  ->  Y  e.  NN )
2221adantl 482 . . . . . 6  |-  ( ( ( X  e.  Prime  /\  Y  e.  Prime )  /\  ( X  e.  ( 1 ... N )  /\  Y  e.  ( 1 ... N )  /\  X  =/=  Y
) )  ->  Y  e.  NN )
23 simplr 792 . . . . . 6  |-  ( ( ( X  e.  Prime  /\  Y  e.  Prime )  /\  ( X  e.  ( 1 ... N )  /\  Y  e.  ( 1 ... N )  /\  X  =/=  Y
) )  ->  Y  e.  Prime )
242, 19, 22, 23fvmptd 6288 . . . . 5  |-  ( ( ( X  e.  Prime  /\  Y  e.  Prime )  /\  ( X  e.  ( 1 ... N )  /\  Y  e.  ( 1 ... N )  /\  X  =/=  Y
) )  ->  ( F `  Y )  =  Y )
2513, 24oveq12d 6668 . . . 4  |-  ( ( ( X  e.  Prime  /\  Y  e.  Prime )  /\  ( X  e.  ( 1 ... N )  /\  Y  e.  ( 1 ... N )  /\  X  =/=  Y
) )  ->  (
( F `  X
)  gcd  ( F `  Y ) )  =  ( X  gcd  Y
) )
26 prmrp 15424 . . . . . . 7  |-  ( ( X  e.  Prime  /\  Y  e.  Prime )  ->  (
( X  gcd  Y
)  =  1  <->  X  =/=  Y ) )
2726biimprcd 240 . . . . . 6  |-  ( X  =/=  Y  ->  (
( X  e.  Prime  /\  Y  e.  Prime )  ->  ( X  gcd  Y
)  =  1 ) )
28273ad2ant3 1084 . . . . 5  |-  ( ( X  e.  ( 1 ... N )  /\  Y  e.  ( 1 ... N )  /\  X  =/=  Y )  -> 
( ( X  e. 
Prime  /\  Y  e.  Prime )  ->  ( X  gcd  Y )  =  1 ) )
2928impcom 446 . . . 4  |-  ( ( ( X  e.  Prime  /\  Y  e.  Prime )  /\  ( X  e.  ( 1 ... N )  /\  Y  e.  ( 1 ... N )  /\  X  =/=  Y
) )  ->  ( X  gcd  Y )  =  1 )
3025, 29eqtrd 2656 . . 3  |-  ( ( ( X  e.  Prime  /\  Y  e.  Prime )  /\  ( X  e.  ( 1 ... N )  /\  Y  e.  ( 1 ... N )  /\  X  =/=  Y
) )  ->  (
( F `  X
)  gcd  ( F `  Y ) )  =  1 )
3130ex 450 . 2  |-  ( ( X  e.  Prime  /\  Y  e.  Prime )  ->  (
( X  e.  ( 1 ... N )  /\  Y  e.  ( 1 ... N )  /\  X  =/=  Y
)  ->  ( ( F `  X )  gcd  ( F `  Y
) )  =  1 ) )
321a1i 11 . . . . . 6  |-  ( ( ( X  e.  Prime  /\ 
-.  Y  e.  Prime )  /\  ( X  e.  ( 1 ... N
)  /\  Y  e.  ( 1 ... N
)  /\  X  =/=  Y ) )  ->  F  =  ( m  e.  NN  |->  if ( m  e.  Prime ,  m ,  1 ) ) )
336ad2antrr 762 . . . . . . 7  |-  ( ( ( X  e.  Prime  /\ 
-.  Y  e.  Prime )  /\  ( X  e.  ( 1 ... N
)  /\  Y  e.  ( 1 ... N
)  /\  X  =/=  Y ) )  ->  if ( X  e.  Prime ,  X ,  1 )  =  X )
345, 33sylan9eqr 2678 . . . . . 6  |-  ( ( ( ( X  e. 
Prime  /\  -.  Y  e. 
Prime )  /\  ( X  e.  ( 1 ... N )  /\  Y  e.  ( 1 ... N )  /\  X  =/=  Y ) )  /\  m  =  X )  ->  if (
m  e.  Prime ,  m ,  1 )  =  X )
3510adantl 482 . . . . . 6  |-  ( ( ( X  e.  Prime  /\ 
-.  Y  e.  Prime )  /\  ( X  e.  ( 1 ... N
)  /\  Y  e.  ( 1 ... N
)  /\  X  =/=  Y ) )  ->  X  e.  NN )
36 simpll 790 . . . . . 6  |-  ( ( ( X  e.  Prime  /\ 
-.  Y  e.  Prime )  /\  ( X  e.  ( 1 ... N
)  /\  Y  e.  ( 1 ... N
)  /\  X  =/=  Y ) )  ->  X  e.  Prime )
3732, 34, 35, 36fvmptd 6288 . . . . 5  |-  ( ( ( X  e.  Prime  /\ 
-.  Y  e.  Prime )  /\  ( X  e.  ( 1 ... N
)  /\  Y  e.  ( 1 ... N
)  /\  X  =/=  Y ) )  ->  ( F `  X )  =  X )
38 iffalse 4095 . . . . . . . 8  |-  ( -.  Y  e.  Prime  ->  if ( Y  e.  Prime ,  Y ,  1 )  =  1 )
3938ad2antlr 763 . . . . . . 7  |-  ( ( ( X  e.  Prime  /\ 
-.  Y  e.  Prime )  /\  ( X  e.  ( 1 ... N
)  /\  Y  e.  ( 1 ... N
)  /\  X  =/=  Y ) )  ->  if ( Y  e.  Prime ,  Y ,  1 )  =  1 )
4016, 39sylan9eqr 2678 . . . . . 6  |-  ( ( ( ( X  e. 
Prime  /\  -.  Y  e. 
Prime )  /\  ( X  e.  ( 1 ... N )  /\  Y  e.  ( 1 ... N )  /\  X  =/=  Y ) )  /\  m  =  Y )  ->  if (
m  e.  Prime ,  m ,  1 )  =  1 )
4121adantl 482 . . . . . 6  |-  ( ( ( X  e.  Prime  /\ 
-.  Y  e.  Prime )  /\  ( X  e.  ( 1 ... N
)  /\  Y  e.  ( 1 ... N
)  /\  X  =/=  Y ) )  ->  Y  e.  NN )
42 1nn 11031 . . . . . . 7  |-  1  e.  NN
4342a1i 11 . . . . . 6  |-  ( ( ( X  e.  Prime  /\ 
-.  Y  e.  Prime )  /\  ( X  e.  ( 1 ... N
)  /\  Y  e.  ( 1 ... N
)  /\  X  =/=  Y ) )  ->  1  e.  NN )
4432, 40, 41, 43fvmptd 6288 . . . . 5  |-  ( ( ( X  e.  Prime  /\ 
-.  Y  e.  Prime )  /\  ( X  e.  ( 1 ... N
)  /\  Y  e.  ( 1 ... N
)  /\  X  =/=  Y ) )  ->  ( F `  Y )  =  1 )
4537, 44oveq12d 6668 . . . 4  |-  ( ( ( X  e.  Prime  /\ 
-.  Y  e.  Prime )  /\  ( X  e.  ( 1 ... N
)  /\  Y  e.  ( 1 ... N
)  /\  X  =/=  Y ) )  ->  (
( F `  X
)  gcd  ( F `  Y ) )  =  ( X  gcd  1
) )
46 prmz 15389 . . . . . 6  |-  ( X  e.  Prime  ->  X  e.  ZZ )
47 gcd1 15249 . . . . . 6  |-  ( X  e.  ZZ  ->  ( X  gcd  1 )  =  1 )
4846, 47syl 17 . . . . 5  |-  ( X  e.  Prime  ->  ( X  gcd  1 )  =  1 )
4948ad2antrr 762 . . . 4  |-  ( ( ( X  e.  Prime  /\ 
-.  Y  e.  Prime )  /\  ( X  e.  ( 1 ... N
)  /\  Y  e.  ( 1 ... N
)  /\  X  =/=  Y ) )  ->  ( X  gcd  1 )  =  1 )
5045, 49eqtrd 2656 . . 3  |-  ( ( ( X  e.  Prime  /\ 
-.  Y  e.  Prime )  /\  ( X  e.  ( 1 ... N
)  /\  Y  e.  ( 1 ... N
)  /\  X  =/=  Y ) )  ->  (
( F `  X
)  gcd  ( F `  Y ) )  =  1 )
5150ex 450 . 2  |-  ( ( X  e.  Prime  /\  -.  Y  e.  Prime )  -> 
( ( X  e.  ( 1 ... N
)  /\  Y  e.  ( 1 ... N
)  /\  X  =/=  Y )  ->  ( ( F `  X )  gcd  ( F `  Y
) )  =  1 ) )
521a1i 11 . . . . . 6  |-  ( ( ( -.  X  e. 
Prime  /\  Y  e.  Prime )  /\  ( X  e.  ( 1 ... N
)  /\  Y  e.  ( 1 ... N
)  /\  X  =/=  Y ) )  ->  F  =  ( m  e.  NN  |->  if ( m  e.  Prime ,  m ,  1 ) ) )
53 iffalse 4095 . . . . . . . 8  |-  ( -.  X  e.  Prime  ->  if ( X  e.  Prime ,  X ,  1 )  =  1 )
5453ad2antrr 762 . . . . . . 7  |-  ( ( ( -.  X  e. 
Prime  /\  Y  e.  Prime )  /\  ( X  e.  ( 1 ... N
)  /\  Y  e.  ( 1 ... N
)  /\  X  =/=  Y ) )  ->  if ( X  e.  Prime ,  X ,  1 )  =  1 )
555, 54sylan9eqr 2678 . . . . . 6  |-  ( ( ( ( -.  X  e.  Prime  /\  Y  e.  Prime )  /\  ( X  e.  ( 1 ... N )  /\  Y  e.  ( 1 ... N
)  /\  X  =/=  Y ) )  /\  m  =  X )  ->  if ( m  e.  Prime ,  m ,  1 )  =  1 )
5610adantl 482 . . . . . 6  |-  ( ( ( -.  X  e. 
Prime  /\  Y  e.  Prime )  /\  ( X  e.  ( 1 ... N
)  /\  Y  e.  ( 1 ... N
)  /\  X  =/=  Y ) )  ->  X  e.  NN )
5742a1i 11 . . . . . 6  |-  ( ( ( -.  X  e. 
Prime  /\  Y  e.  Prime )  /\  ( X  e.  ( 1 ... N
)  /\  Y  e.  ( 1 ... N
)  /\  X  =/=  Y ) )  ->  1  e.  NN )
5852, 55, 56, 57fvmptd 6288 . . . . 5  |-  ( ( ( -.  X  e. 
Prime  /\  Y  e.  Prime )  /\  ( X  e.  ( 1 ... N
)  /\  Y  e.  ( 1 ... N
)  /\  X  =/=  Y ) )  ->  ( F `  X )  =  1 )
5917ad2antlr 763 . . . . . . 7  |-  ( ( ( -.  X  e. 
Prime  /\  Y  e.  Prime )  /\  ( X  e.  ( 1 ... N
)  /\  Y  e.  ( 1 ... N
)  /\  X  =/=  Y ) )  ->  if ( Y  e.  Prime ,  Y ,  1 )  =  Y )
6016, 59sylan9eqr 2678 . . . . . 6  |-  ( ( ( ( -.  X  e.  Prime  /\  Y  e.  Prime )  /\  ( X  e.  ( 1 ... N )  /\  Y  e.  ( 1 ... N
)  /\  X  =/=  Y ) )  /\  m  =  Y )  ->  if ( m  e.  Prime ,  m ,  1 )  =  Y )
6121adantl 482 . . . . . 6  |-  ( ( ( -.  X  e. 
Prime  /\  Y  e.  Prime )  /\  ( X  e.  ( 1 ... N
)  /\  Y  e.  ( 1 ... N
)  /\  X  =/=  Y ) )  ->  Y  e.  NN )
62 simplr 792 . . . . . 6  |-  ( ( ( -.  X  e. 
Prime  /\  Y  e.  Prime )  /\  ( X  e.  ( 1 ... N
)  /\  Y  e.  ( 1 ... N
)  /\  X  =/=  Y ) )  ->  Y  e.  Prime )
6352, 60, 61, 62fvmptd 6288 . . . . 5  |-  ( ( ( -.  X  e. 
Prime  /\  Y  e.  Prime )  /\  ( X  e.  ( 1 ... N
)  /\  Y  e.  ( 1 ... N
)  /\  X  =/=  Y ) )  ->  ( F `  Y )  =  Y )
6458, 63oveq12d 6668 . . . 4  |-  ( ( ( -.  X  e. 
Prime  /\  Y  e.  Prime )  /\  ( X  e.  ( 1 ... N
)  /\  Y  e.  ( 1 ... N
)  /\  X  =/=  Y ) )  ->  (
( F `  X
)  gcd  ( F `  Y ) )  =  ( 1  gcd  Y
) )
65 prmz 15389 . . . . . 6  |-  ( Y  e.  Prime  ->  Y  e.  ZZ )
66 1gcd 15254 . . . . . 6  |-  ( Y  e.  ZZ  ->  (
1  gcd  Y )  =  1 )
6765, 66syl 17 . . . . 5  |-  ( Y  e.  Prime  ->  ( 1  gcd  Y )  =  1 )
6867ad2antlr 763 . . . 4  |-  ( ( ( -.  X  e. 
Prime  /\  Y  e.  Prime )  /\  ( X  e.  ( 1 ... N
)  /\  Y  e.  ( 1 ... N
)  /\  X  =/=  Y ) )  ->  (
1  gcd  Y )  =  1 )
6964, 68eqtrd 2656 . . 3  |-  ( ( ( -.  X  e. 
Prime  /\  Y  e.  Prime )  /\  ( X  e.  ( 1 ... N
)  /\  Y  e.  ( 1 ... N
)  /\  X  =/=  Y ) )  ->  (
( F `  X
)  gcd  ( F `  Y ) )  =  1 )
7069ex 450 . 2  |-  ( ( -.  X  e.  Prime  /\  Y  e.  Prime )  ->  ( ( X  e.  ( 1 ... N
)  /\  Y  e.  ( 1 ... N
)  /\  X  =/=  Y )  ->  ( ( F `  X )  gcd  ( F `  Y
) )  =  1 ) )
711a1i 11 . . . . . 6  |-  ( ( ( -.  X  e. 
Prime  /\  -.  Y  e. 
Prime )  /\  ( X  e.  ( 1 ... N )  /\  Y  e.  ( 1 ... N )  /\  X  =/=  Y ) )  ->  F  =  ( m  e.  NN  |->  if ( m  e.  Prime ,  m ,  1 ) ) )
7253ad2antrr 762 . . . . . . 7  |-  ( ( ( -.  X  e. 
Prime  /\  -.  Y  e. 
Prime )  /\  ( X  e.  ( 1 ... N )  /\  Y  e.  ( 1 ... N )  /\  X  =/=  Y ) )  ->  if ( X  e.  Prime ,  X , 
1 )  =  1 )
735, 72sylan9eqr 2678 . . . . . 6  |-  ( ( ( ( -.  X  e.  Prime  /\  -.  Y  e.  Prime )  /\  ( X  e.  ( 1 ... N )  /\  Y  e.  ( 1 ... N )  /\  X  =/=  Y ) )  /\  m  =  X )  ->  if (
m  e.  Prime ,  m ,  1 )  =  1 )
7410adantl 482 . . . . . 6  |-  ( ( ( -.  X  e. 
Prime  /\  -.  Y  e. 
Prime )  /\  ( X  e.  ( 1 ... N )  /\  Y  e.  ( 1 ... N )  /\  X  =/=  Y ) )  ->  X  e.  NN )
7542a1i 11 . . . . . 6  |-  ( ( ( -.  X  e. 
Prime  /\  -.  Y  e. 
Prime )  /\  ( X  e.  ( 1 ... N )  /\  Y  e.  ( 1 ... N )  /\  X  =/=  Y ) )  ->  1  e.  NN )
7671, 73, 74, 75fvmptd 6288 . . . . 5  |-  ( ( ( -.  X  e. 
Prime  /\  -.  Y  e. 
Prime )  /\  ( X  e.  ( 1 ... N )  /\  Y  e.  ( 1 ... N )  /\  X  =/=  Y ) )  ->  ( F `  X )  =  1 )
7738ad2antlr 763 . . . . . . 7  |-  ( ( ( -.  X  e. 
Prime  /\  -.  Y  e. 
Prime )  /\  ( X  e.  ( 1 ... N )  /\  Y  e.  ( 1 ... N )  /\  X  =/=  Y ) )  ->  if ( Y  e.  Prime ,  Y , 
1 )  =  1 )
7816, 77sylan9eqr 2678 . . . . . 6  |-  ( ( ( ( -.  X  e.  Prime  /\  -.  Y  e.  Prime )  /\  ( X  e.  ( 1 ... N )  /\  Y  e.  ( 1 ... N )  /\  X  =/=  Y ) )  /\  m  =  Y )  ->  if (
m  e.  Prime ,  m ,  1 )  =  1 )
7921adantl 482 . . . . . 6  |-  ( ( ( -.  X  e. 
Prime  /\  -.  Y  e. 
Prime )  /\  ( X  e.  ( 1 ... N )  /\  Y  e.  ( 1 ... N )  /\  X  =/=  Y ) )  ->  Y  e.  NN )
8071, 78, 79, 75fvmptd 6288 . . . . 5  |-  ( ( ( -.  X  e. 
Prime  /\  -.  Y  e. 
Prime )  /\  ( X  e.  ( 1 ... N )  /\  Y  e.  ( 1 ... N )  /\  X  =/=  Y ) )  ->  ( F `  Y )  =  1 )
8176, 80oveq12d 6668 . . . 4  |-  ( ( ( -.  X  e. 
Prime  /\  -.  Y  e. 
Prime )  /\  ( X  e.  ( 1 ... N )  /\  Y  e.  ( 1 ... N )  /\  X  =/=  Y ) )  ->  ( ( F `
 X )  gcd  ( F `  Y
) )  =  ( 1  gcd  1 ) )
82 1z 11407 . . . . 5  |-  1  e.  ZZ
83 1gcd 15254 . . . . 5  |-  ( 1  e.  ZZ  ->  (
1  gcd  1 )  =  1 )
8482, 83mp1i 13 . . . 4  |-  ( ( ( -.  X  e. 
Prime  /\  -.  Y  e. 
Prime )  /\  ( X  e.  ( 1 ... N )  /\  Y  e.  ( 1 ... N )  /\  X  =/=  Y ) )  ->  ( 1  gcd  1 )  =  1 )
8581, 84eqtrd 2656 . . 3  |-  ( ( ( -.  X  e. 
Prime  /\  -.  Y  e. 
Prime )  /\  ( X  e.  ( 1 ... N )  /\  Y  e.  ( 1 ... N )  /\  X  =/=  Y ) )  ->  ( ( F `
 X )  gcd  ( F `  Y
) )  =  1 )
8685ex 450 . 2  |-  ( ( -.  X  e.  Prime  /\ 
-.  Y  e.  Prime )  ->  ( ( X  e.  ( 1 ... N )  /\  Y  e.  ( 1 ... N
)  /\  X  =/=  Y )  ->  ( ( F `  X )  gcd  ( F `  Y
) )  =  1 ) )
8731, 51, 70, 864cases 990 1  |-  ( ( X  e.  ( 1 ... N )  /\  Y  e.  ( 1 ... N )  /\  X  =/=  Y )  -> 
( ( F `  X )  gcd  ( F `  Y )
)  =  1 )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   ifcif 4086    |-> cmpt 4729   ` cfv 5888  (class class class)co 6650   1c1 9937   NNcn 11020   ZZcz 11377   ...cfz 12326    gcd cgcd 15216   Primecprime 15385
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-fz 12327  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-dvds 14984  df-gcd 15217  df-prm 15386
This theorem is referenced by:  prmodvdslcmf  15751
  Copyright terms: Public domain W3C validator