MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  slwhash Structured version   Visualization version   Unicode version

Theorem slwhash 18039
Description: A sylow subgroup has cardinality equal to the maximum power of  P dividing the group. (Contributed by Mario Carneiro, 18-Jan-2015.)
Hypotheses
Ref Expression
fislw.1  |-  X  =  ( Base `  G
)
slwhash.3  |-  ( ph  ->  X  e.  Fin )
slwhash.4  |-  ( ph  ->  H  e.  ( P pSyl 
G ) )
Assertion
Ref Expression
slwhash  |-  ( ph  ->  ( # `  H
)  =  ( P ^ ( P  pCnt  (
# `  X )
) ) )

Proof of Theorem slwhash
Dummy variables  g 
k  n  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fislw.1 . . 3  |-  X  =  ( Base `  G
)
2 slwhash.4 . . . . 5  |-  ( ph  ->  H  e.  ( P pSyl 
G ) )
3 slwsubg 18025 . . . . 5  |-  ( H  e.  ( P pSyl  G
)  ->  H  e.  (SubGrp `  G ) )
42, 3syl 17 . . . 4  |-  ( ph  ->  H  e.  (SubGrp `  G ) )
5 subgrcl 17599 . . . 4  |-  ( H  e.  (SubGrp `  G
)  ->  G  e.  Grp )
64, 5syl 17 . . 3  |-  ( ph  ->  G  e.  Grp )
7 slwhash.3 . . 3  |-  ( ph  ->  X  e.  Fin )
8 slwprm 18024 . . . 4  |-  ( H  e.  ( P pSyl  G
)  ->  P  e.  Prime )
92, 8syl 17 . . 3  |-  ( ph  ->  P  e.  Prime )
101grpbn0 17451 . . . . . 6  |-  ( G  e.  Grp  ->  X  =/=  (/) )
116, 10syl 17 . . . . 5  |-  ( ph  ->  X  =/=  (/) )
12 hashnncl 13157 . . . . . 6  |-  ( X  e.  Fin  ->  (
( # `  X )  e.  NN  <->  X  =/=  (/) ) )
137, 12syl 17 . . . . 5  |-  ( ph  ->  ( ( # `  X
)  e.  NN  <->  X  =/=  (/) ) )
1411, 13mpbird 247 . . . 4  |-  ( ph  ->  ( # `  X
)  e.  NN )
159, 14pccld 15555 . . 3  |-  ( ph  ->  ( P  pCnt  ( # `
 X ) )  e.  NN0 )
16 pcdvds 15568 . . . 4  |-  ( ( P  e.  Prime  /\  ( # `
 X )  e.  NN )  ->  ( P ^ ( P  pCnt  (
# `  X )
) )  ||  ( # `
 X ) )
179, 14, 16syl2anc 693 . . 3  |-  ( ph  ->  ( P ^ ( P  pCnt  ( # `  X
) ) )  ||  ( # `  X ) )
181, 6, 7, 9, 15, 17sylow1 18018 . 2  |-  ( ph  ->  E. k  e.  (SubGrp `  G ) ( # `  k )  =  ( P ^ ( P 
pCnt  ( # `  X
) ) ) )
197adantr 481 . . . 4  |-  ( (
ph  /\  ( k  e.  (SubGrp `  G )  /\  ( # `  k
)  =  ( P ^ ( P  pCnt  (
# `  X )
) ) ) )  ->  X  e.  Fin )
204adantr 481 . . . 4  |-  ( (
ph  /\  ( k  e.  (SubGrp `  G )  /\  ( # `  k
)  =  ( P ^ ( P  pCnt  (
# `  X )
) ) ) )  ->  H  e.  (SubGrp `  G ) )
21 simprl 794 . . . 4  |-  ( (
ph  /\  ( k  e.  (SubGrp `  G )  /\  ( # `  k
)  =  ( P ^ ( P  pCnt  (
# `  X )
) ) ) )  ->  k  e.  (SubGrp `  G ) )
22 eqid 2622 . . . 4  |-  ( +g  `  G )  =  ( +g  `  G )
23 eqid 2622 . . . . . . 7  |-  ( Gs  H )  =  ( Gs  H )
2423slwpgp 18028 . . . . . 6  |-  ( H  e.  ( P pSyl  G
)  ->  P pGrp  ( Gs  H ) )
252, 24syl 17 . . . . 5  |-  ( ph  ->  P pGrp  ( Gs  H ) )
2625adantr 481 . . . 4  |-  ( (
ph  /\  ( k  e.  (SubGrp `  G )  /\  ( # `  k
)  =  ( P ^ ( P  pCnt  (
# `  X )
) ) ) )  ->  P pGrp  ( Gs  H
) )
27 simprr 796 . . . 4  |-  ( (
ph  /\  ( k  e.  (SubGrp `  G )  /\  ( # `  k
)  =  ( P ^ ( P  pCnt  (
# `  X )
) ) ) )  ->  ( # `  k
)  =  ( P ^ ( P  pCnt  (
# `  X )
) ) )
28 eqid 2622 . . . 4  |-  ( -g `  G )  =  (
-g `  G )
291, 19, 20, 21, 22, 26, 27, 28sylow2b 18038 . . 3  |-  ( (
ph  /\  ( k  e.  (SubGrp `  G )  /\  ( # `  k
)  =  ( P ^ ( P  pCnt  (
# `  X )
) ) ) )  ->  E. g  e.  X  H  C_  ran  ( x  e.  k  |->  ( ( g ( +g  `  G
) x ) (
-g `  G )
g ) ) )
30 simprr 796 . . . . . 6  |-  ( ( ( ph  /\  (
k  e.  (SubGrp `  G )  /\  ( # `
 k )  =  ( P ^ ( P  pCnt  ( # `  X
) ) ) ) )  /\  ( g  e.  X  /\  H  C_ 
ran  ( x  e.  k  |->  ( ( g ( +g  `  G
) x ) (
-g `  G )
g ) ) ) )  ->  H  C_  ran  ( x  e.  k  |->  ( ( g ( +g  `  G ) x ) ( -g `  G ) g ) ) )
312ad2antrr 762 . . . . . . . 8  |-  ( ( ( ph  /\  (
k  e.  (SubGrp `  G )  /\  ( # `
 k )  =  ( P ^ ( P  pCnt  ( # `  X
) ) ) ) )  /\  ( g  e.  X  /\  H  C_ 
ran  ( x  e.  k  |->  ( ( g ( +g  `  G
) x ) (
-g `  G )
g ) ) ) )  ->  H  e.  ( P pSyl  G )
)
3231, 8syl 17 . . . . . . 7  |-  ( ( ( ph  /\  (
k  e.  (SubGrp `  G )  /\  ( # `
 k )  =  ( P ^ ( P  pCnt  ( # `  X
) ) ) ) )  /\  ( g  e.  X  /\  H  C_ 
ran  ( x  e.  k  |->  ( ( g ( +g  `  G
) x ) (
-g `  G )
g ) ) ) )  ->  P  e.  Prime )
3315ad2antrr 762 . . . . . . . 8  |-  ( ( ( ph  /\  (
k  e.  (SubGrp `  G )  /\  ( # `
 k )  =  ( P ^ ( P  pCnt  ( # `  X
) ) ) ) )  /\  ( g  e.  X  /\  H  C_ 
ran  ( x  e.  k  |->  ( ( g ( +g  `  G
) x ) (
-g `  G )
g ) ) ) )  ->  ( P  pCnt  ( # `  X
) )  e.  NN0 )
3421adantr 481 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
k  e.  (SubGrp `  G )  /\  ( # `
 k )  =  ( P ^ ( P  pCnt  ( # `  X
) ) ) ) )  /\  ( g  e.  X  /\  H  C_ 
ran  ( x  e.  k  |->  ( ( g ( +g  `  G
) x ) (
-g `  G )
g ) ) ) )  ->  k  e.  (SubGrp `  G ) )
35 simprl 794 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
k  e.  (SubGrp `  G )  /\  ( # `
 k )  =  ( P ^ ( P  pCnt  ( # `  X
) ) ) ) )  /\  ( g  e.  X  /\  H  C_ 
ran  ( x  e.  k  |->  ( ( g ( +g  `  G
) x ) (
-g `  G )
g ) ) ) )  ->  g  e.  X )
36 eqid 2622 . . . . . . . . . . . . 13  |-  ( x  e.  k  |->  ( ( g ( +g  `  G
) x ) (
-g `  G )
g ) )  =  ( x  e.  k 
|->  ( ( g ( +g  `  G ) x ) ( -g `  G ) g ) )
371, 22, 28, 36conjsubg 17692 . . . . . . . . . . . 12  |-  ( ( k  e.  (SubGrp `  G )  /\  g  e.  X )  ->  ran  ( x  e.  k  |->  ( ( g ( +g  `  G ) x ) ( -g `  G ) g ) )  e.  (SubGrp `  G ) )
3834, 35, 37syl2anc 693 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
k  e.  (SubGrp `  G )  /\  ( # `
 k )  =  ( P ^ ( P  pCnt  ( # `  X
) ) ) ) )  /\  ( g  e.  X  /\  H  C_ 
ran  ( x  e.  k  |->  ( ( g ( +g  `  G
) x ) (
-g `  G )
g ) ) ) )  ->  ran  ( x  e.  k  |->  ( ( g ( +g  `  G
) x ) (
-g `  G )
g ) )  e.  (SubGrp `  G )
)
39 eqid 2622 . . . . . . . . . . . 12  |-  ( Gs  ran  ( x  e.  k 
|->  ( ( g ( +g  `  G ) x ) ( -g `  G ) g ) ) )  =  ( Gs 
ran  ( x  e.  k  |->  ( ( g ( +g  `  G
) x ) (
-g `  G )
g ) ) )
4039subgbas 17598 . . . . . . . . . . 11  |-  ( ran  ( x  e.  k 
|->  ( ( g ( +g  `  G ) x ) ( -g `  G ) g ) )  e.  (SubGrp `  G )  ->  ran  ( x  e.  k  |->  ( ( g ( +g  `  G ) x ) ( -g `  G ) g ) )  =  ( Base `  ( Gs  ran  ( x  e.  k  |->  ( ( g ( +g  `  G
) x ) (
-g `  G )
g ) ) ) ) )
4138, 40syl 17 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
k  e.  (SubGrp `  G )  /\  ( # `
 k )  =  ( P ^ ( P  pCnt  ( # `  X
) ) ) ) )  /\  ( g  e.  X  /\  H  C_ 
ran  ( x  e.  k  |->  ( ( g ( +g  `  G
) x ) (
-g `  G )
g ) ) ) )  ->  ran  ( x  e.  k  |->  ( ( g ( +g  `  G
) x ) (
-g `  G )
g ) )  =  ( Base `  ( Gs  ran  ( x  e.  k 
|->  ( ( g ( +g  `  G ) x ) ( -g `  G ) g ) ) ) ) )
4241fveq2d 6195 . . . . . . . . 9  |-  ( ( ( ph  /\  (
k  e.  (SubGrp `  G )  /\  ( # `
 k )  =  ( P ^ ( P  pCnt  ( # `  X
) ) ) ) )  /\  ( g  e.  X  /\  H  C_ 
ran  ( x  e.  k  |->  ( ( g ( +g  `  G
) x ) (
-g `  G )
g ) ) ) )  ->  ( # `  ran  ( x  e.  k  |->  ( ( g ( +g  `  G ) x ) ( -g `  G ) g ) ) )  =  (
# `  ( Base `  ( Gs  ran  ( x  e.  k  |->  ( ( g ( +g  `  G
) x ) (
-g `  G )
g ) ) ) ) ) )
431, 22, 28, 36conjsubgen 17693 . . . . . . . . . . . 12  |-  ( ( k  e.  (SubGrp `  G )  /\  g  e.  X )  ->  k  ~~  ran  ( x  e.  k  |->  ( ( g ( +g  `  G
) x ) (
-g `  G )
g ) ) )
4434, 35, 43syl2anc 693 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
k  e.  (SubGrp `  G )  /\  ( # `
 k )  =  ( P ^ ( P  pCnt  ( # `  X
) ) ) ) )  /\  ( g  e.  X  /\  H  C_ 
ran  ( x  e.  k  |->  ( ( g ( +g  `  G
) x ) (
-g `  G )
g ) ) ) )  ->  k  ~~  ran  ( x  e.  k 
|->  ( ( g ( +g  `  G ) x ) ( -g `  G ) g ) ) )
457ad2antrr 762 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
k  e.  (SubGrp `  G )  /\  ( # `
 k )  =  ( P ^ ( P  pCnt  ( # `  X
) ) ) ) )  /\  ( g  e.  X  /\  H  C_ 
ran  ( x  e.  k  |->  ( ( g ( +g  `  G
) x ) (
-g `  G )
g ) ) ) )  ->  X  e.  Fin )
461subgss 17595 . . . . . . . . . . . . . 14  |-  ( k  e.  (SubGrp `  G
)  ->  k  C_  X )
4734, 46syl 17 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
k  e.  (SubGrp `  G )  /\  ( # `
 k )  =  ( P ^ ( P  pCnt  ( # `  X
) ) ) ) )  /\  ( g  e.  X  /\  H  C_ 
ran  ( x  e.  k  |->  ( ( g ( +g  `  G
) x ) (
-g `  G )
g ) ) ) )  ->  k  C_  X )
48 ssfi 8180 . . . . . . . . . . . . 13  |-  ( ( X  e.  Fin  /\  k  C_  X )  -> 
k  e.  Fin )
4945, 47, 48syl2anc 693 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
k  e.  (SubGrp `  G )  /\  ( # `
 k )  =  ( P ^ ( P  pCnt  ( # `  X
) ) ) ) )  /\  ( g  e.  X  /\  H  C_ 
ran  ( x  e.  k  |->  ( ( g ( +g  `  G
) x ) (
-g `  G )
g ) ) ) )  ->  k  e.  Fin )
501subgss 17595 . . . . . . . . . . . . . 14  |-  ( ran  ( x  e.  k 
|->  ( ( g ( +g  `  G ) x ) ( -g `  G ) g ) )  e.  (SubGrp `  G )  ->  ran  ( x  e.  k  |->  ( ( g ( +g  `  G ) x ) ( -g `  G ) g ) )  C_  X )
5138, 50syl 17 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
k  e.  (SubGrp `  G )  /\  ( # `
 k )  =  ( P ^ ( P  pCnt  ( # `  X
) ) ) ) )  /\  ( g  e.  X  /\  H  C_ 
ran  ( x  e.  k  |->  ( ( g ( +g  `  G
) x ) (
-g `  G )
g ) ) ) )  ->  ran  ( x  e.  k  |->  ( ( g ( +g  `  G
) x ) (
-g `  G )
g ) )  C_  X )
52 ssfi 8180 . . . . . . . . . . . . 13  |-  ( ( X  e.  Fin  /\  ran  ( x  e.  k 
|->  ( ( g ( +g  `  G ) x ) ( -g `  G ) g ) )  C_  X )  ->  ran  ( x  e.  k  |->  ( ( g ( +g  `  G
) x ) (
-g `  G )
g ) )  e. 
Fin )
5345, 51, 52syl2anc 693 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
k  e.  (SubGrp `  G )  /\  ( # `
 k )  =  ( P ^ ( P  pCnt  ( # `  X
) ) ) ) )  /\  ( g  e.  X  /\  H  C_ 
ran  ( x  e.  k  |->  ( ( g ( +g  `  G
) x ) (
-g `  G )
g ) ) ) )  ->  ran  ( x  e.  k  |->  ( ( g ( +g  `  G
) x ) (
-g `  G )
g ) )  e. 
Fin )
54 hashen 13135 . . . . . . . . . . . 12  |-  ( ( k  e.  Fin  /\  ran  ( x  e.  k 
|->  ( ( g ( +g  `  G ) x ) ( -g `  G ) g ) )  e.  Fin )  ->  ( ( # `  k
)  =  ( # `  ran  ( x  e.  k  |->  ( ( g ( +g  `  G
) x ) (
-g `  G )
g ) ) )  <-> 
k  ~~  ran  ( x  e.  k  |->  ( ( g ( +g  `  G
) x ) (
-g `  G )
g ) ) ) )
5549, 53, 54syl2anc 693 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
k  e.  (SubGrp `  G )  /\  ( # `
 k )  =  ( P ^ ( P  pCnt  ( # `  X
) ) ) ) )  /\  ( g  e.  X  /\  H  C_ 
ran  ( x  e.  k  |->  ( ( g ( +g  `  G
) x ) (
-g `  G )
g ) ) ) )  ->  ( ( # `
 k )  =  ( # `  ran  ( x  e.  k  |->  ( ( g ( +g  `  G ) x ) ( -g `  G ) g ) ) )  <->  k  ~~  ran  ( x  e.  k 
|->  ( ( g ( +g  `  G ) x ) ( -g `  G ) g ) ) ) )
5644, 55mpbird 247 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
k  e.  (SubGrp `  G )  /\  ( # `
 k )  =  ( P ^ ( P  pCnt  ( # `  X
) ) ) ) )  /\  ( g  e.  X  /\  H  C_ 
ran  ( x  e.  k  |->  ( ( g ( +g  `  G
) x ) (
-g `  G )
g ) ) ) )  ->  ( # `  k
)  =  ( # `  ran  ( x  e.  k  |->  ( ( g ( +g  `  G
) x ) (
-g `  G )
g ) ) ) )
57 simplrr 801 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
k  e.  (SubGrp `  G )  /\  ( # `
 k )  =  ( P ^ ( P  pCnt  ( # `  X
) ) ) ) )  /\  ( g  e.  X  /\  H  C_ 
ran  ( x  e.  k  |->  ( ( g ( +g  `  G
) x ) (
-g `  G )
g ) ) ) )  ->  ( # `  k
)  =  ( P ^ ( P  pCnt  (
# `  X )
) ) )
5856, 57eqtr3d 2658 . . . . . . . . 9  |-  ( ( ( ph  /\  (
k  e.  (SubGrp `  G )  /\  ( # `
 k )  =  ( P ^ ( P  pCnt  ( # `  X
) ) ) ) )  /\  ( g  e.  X  /\  H  C_ 
ran  ( x  e.  k  |->  ( ( g ( +g  `  G
) x ) (
-g `  G )
g ) ) ) )  ->  ( # `  ran  ( x  e.  k  |->  ( ( g ( +g  `  G ) x ) ( -g `  G ) g ) ) )  =  ( P ^ ( P 
pCnt  ( # `  X
) ) ) )
5942, 58eqtr3d 2658 . . . . . . . 8  |-  ( ( ( ph  /\  (
k  e.  (SubGrp `  G )  /\  ( # `
 k )  =  ( P ^ ( P  pCnt  ( # `  X
) ) ) ) )  /\  ( g  e.  X  /\  H  C_ 
ran  ( x  e.  k  |->  ( ( g ( +g  `  G
) x ) (
-g `  G )
g ) ) ) )  ->  ( # `  ( Base `  ( Gs  ran  (
x  e.  k  |->  ( ( g ( +g  `  G ) x ) ( -g `  G
) g ) ) ) ) )  =  ( P ^ ( P  pCnt  ( # `  X
) ) ) )
60 oveq2 6658 . . . . . . . . . 10  |-  ( n  =  ( P  pCnt  (
# `  X )
)  ->  ( P ^ n )  =  ( P ^ ( P  pCnt  ( # `  X
) ) ) )
6160eqeq2d 2632 . . . . . . . . 9  |-  ( n  =  ( P  pCnt  (
# `  X )
)  ->  ( ( # `
 ( Base `  ( Gs  ran  ( x  e.  k 
|->  ( ( g ( +g  `  G ) x ) ( -g `  G ) g ) ) ) ) )  =  ( P ^
n )  <->  ( # `  ( Base `  ( Gs  ran  (
x  e.  k  |->  ( ( g ( +g  `  G ) x ) ( -g `  G
) g ) ) ) ) )  =  ( P ^ ( P  pCnt  ( # `  X
) ) ) ) )
6261rspcev 3309 . . . . . . . 8  |-  ( ( ( P  pCnt  ( # `
 X ) )  e.  NN0  /\  ( # `
 ( Base `  ( Gs  ran  ( x  e.  k 
|->  ( ( g ( +g  `  G ) x ) ( -g `  G ) g ) ) ) ) )  =  ( P ^
( P  pCnt  ( # `
 X ) ) ) )  ->  E. n  e.  NN0  ( # `  ( Base `  ( Gs  ran  (
x  e.  k  |->  ( ( g ( +g  `  G ) x ) ( -g `  G
) g ) ) ) ) )  =  ( P ^ n
) )
6333, 59, 62syl2anc 693 . . . . . . 7  |-  ( ( ( ph  /\  (
k  e.  (SubGrp `  G )  /\  ( # `
 k )  =  ( P ^ ( P  pCnt  ( # `  X
) ) ) ) )  /\  ( g  e.  X  /\  H  C_ 
ran  ( x  e.  k  |->  ( ( g ( +g  `  G
) x ) (
-g `  G )
g ) ) ) )  ->  E. n  e.  NN0  ( # `  ( Base `  ( Gs  ran  (
x  e.  k  |->  ( ( g ( +g  `  G ) x ) ( -g `  G
) g ) ) ) ) )  =  ( P ^ n
) )
6439subggrp 17597 . . . . . . . . 9  |-  ( ran  ( x  e.  k 
|->  ( ( g ( +g  `  G ) x ) ( -g `  G ) g ) )  e.  (SubGrp `  G )  ->  ( Gs  ran  ( x  e.  k 
|->  ( ( g ( +g  `  G ) x ) ( -g `  G ) g ) ) )  e.  Grp )
6538, 64syl 17 . . . . . . . 8  |-  ( ( ( ph  /\  (
k  e.  (SubGrp `  G )  /\  ( # `
 k )  =  ( P ^ ( P  pCnt  ( # `  X
) ) ) ) )  /\  ( g  e.  X  /\  H  C_ 
ran  ( x  e.  k  |->  ( ( g ( +g  `  G
) x ) (
-g `  G )
g ) ) ) )  ->  ( Gs  ran  ( x  e.  k  |->  ( ( g ( +g  `  G ) x ) ( -g `  G ) g ) ) )  e.  Grp )
6641, 53eqeltrrd 2702 . . . . . . . 8  |-  ( ( ( ph  /\  (
k  e.  (SubGrp `  G )  /\  ( # `
 k )  =  ( P ^ ( P  pCnt  ( # `  X
) ) ) ) )  /\  ( g  e.  X  /\  H  C_ 
ran  ( x  e.  k  |->  ( ( g ( +g  `  G
) x ) (
-g `  G )
g ) ) ) )  ->  ( Base `  ( Gs  ran  ( x  e.  k  |->  ( ( g ( +g  `  G
) x ) (
-g `  G )
g ) ) ) )  e.  Fin )
67 eqid 2622 . . . . . . . . 9  |-  ( Base `  ( Gs  ran  ( x  e.  k  |->  ( ( g ( +g  `  G
) x ) (
-g `  G )
g ) ) ) )  =  ( Base `  ( Gs  ran  ( x  e.  k  |->  ( ( g ( +g  `  G
) x ) (
-g `  G )
g ) ) ) )
6867pgpfi 18020 . . . . . . . 8  |-  ( ( ( Gs  ran  ( x  e.  k  |->  ( ( g ( +g  `  G
) x ) (
-g `  G )
g ) ) )  e.  Grp  /\  ( Base `  ( Gs  ran  (
x  e.  k  |->  ( ( g ( +g  `  G ) x ) ( -g `  G
) g ) ) ) )  e.  Fin )  ->  ( P pGrp  ( Gs  ran  ( x  e.  k 
|->  ( ( g ( +g  `  G ) x ) ( -g `  G ) g ) ) )  <->  ( P  e.  Prime  /\  E. n  e.  NN0  ( # `  ( Base `  ( Gs  ran  (
x  e.  k  |->  ( ( g ( +g  `  G ) x ) ( -g `  G
) g ) ) ) ) )  =  ( P ^ n
) ) ) )
6965, 66, 68syl2anc 693 . . . . . . 7  |-  ( ( ( ph  /\  (
k  e.  (SubGrp `  G )  /\  ( # `
 k )  =  ( P ^ ( P  pCnt  ( # `  X
) ) ) ) )  /\  ( g  e.  X  /\  H  C_ 
ran  ( x  e.  k  |->  ( ( g ( +g  `  G
) x ) (
-g `  G )
g ) ) ) )  ->  ( P pGrp  ( Gs  ran  ( x  e.  k  |->  ( ( g ( +g  `  G
) x ) (
-g `  G )
g ) ) )  <-> 
( P  e.  Prime  /\ 
E. n  e.  NN0  ( # `  ( Base `  ( Gs  ran  ( x  e.  k  |->  ( ( g ( +g  `  G
) x ) (
-g `  G )
g ) ) ) ) )  =  ( P ^ n ) ) ) )
7032, 63, 69mpbir2and 957 . . . . . 6  |-  ( ( ( ph  /\  (
k  e.  (SubGrp `  G )  /\  ( # `
 k )  =  ( P ^ ( P  pCnt  ( # `  X
) ) ) ) )  /\  ( g  e.  X  /\  H  C_ 
ran  ( x  e.  k  |->  ( ( g ( +g  `  G
) x ) (
-g `  G )
g ) ) ) )  ->  P pGrp  ( Gs  ran  ( x  e.  k 
|->  ( ( g ( +g  `  G ) x ) ( -g `  G ) g ) ) ) )
7139slwispgp 18026 . . . . . . 7  |-  ( ( H  e.  ( P pSyl 
G )  /\  ran  ( x  e.  k  |->  ( ( g ( +g  `  G ) x ) ( -g `  G ) g ) )  e.  (SubGrp `  G ) )  -> 
( ( H  C_  ran  ( x  e.  k 
|->  ( ( g ( +g  `  G ) x ) ( -g `  G ) g ) )  /\  P pGrp  ( Gs  ran  ( x  e.  k 
|->  ( ( g ( +g  `  G ) x ) ( -g `  G ) g ) ) ) )  <->  H  =  ran  ( x  e.  k 
|->  ( ( g ( +g  `  G ) x ) ( -g `  G ) g ) ) ) )
7231, 38, 71syl2anc 693 . . . . . 6  |-  ( ( ( ph  /\  (
k  e.  (SubGrp `  G )  /\  ( # `
 k )  =  ( P ^ ( P  pCnt  ( # `  X
) ) ) ) )  /\  ( g  e.  X  /\  H  C_ 
ran  ( x  e.  k  |->  ( ( g ( +g  `  G
) x ) (
-g `  G )
g ) ) ) )  ->  ( ( H  C_  ran  ( x  e.  k  |->  ( ( g ( +g  `  G
) x ) (
-g `  G )
g ) )  /\  P pGrp  ( Gs  ran  ( x  e.  k  |->  ( ( g ( +g  `  G
) x ) (
-g `  G )
g ) ) ) )  <->  H  =  ran  ( x  e.  k  |->  ( ( g ( +g  `  G ) x ) ( -g `  G ) g ) ) ) )
7330, 70, 72mpbi2and 956 . . . . 5  |-  ( ( ( ph  /\  (
k  e.  (SubGrp `  G )  /\  ( # `
 k )  =  ( P ^ ( P  pCnt  ( # `  X
) ) ) ) )  /\  ( g  e.  X  /\  H  C_ 
ran  ( x  e.  k  |->  ( ( g ( +g  `  G
) x ) (
-g `  G )
g ) ) ) )  ->  H  =  ran  ( x  e.  k 
|->  ( ( g ( +g  `  G ) x ) ( -g `  G ) g ) ) )
7473fveq2d 6195 . . . 4  |-  ( ( ( ph  /\  (
k  e.  (SubGrp `  G )  /\  ( # `
 k )  =  ( P ^ ( P  pCnt  ( # `  X
) ) ) ) )  /\  ( g  e.  X  /\  H  C_ 
ran  ( x  e.  k  |->  ( ( g ( +g  `  G
) x ) (
-g `  G )
g ) ) ) )  ->  ( # `  H
)  =  ( # `  ran  ( x  e.  k  |->  ( ( g ( +g  `  G
) x ) (
-g `  G )
g ) ) ) )
7574, 58eqtrd 2656 . . 3  |-  ( ( ( ph  /\  (
k  e.  (SubGrp `  G )  /\  ( # `
 k )  =  ( P ^ ( P  pCnt  ( # `  X
) ) ) ) )  /\  ( g  e.  X  /\  H  C_ 
ran  ( x  e.  k  |->  ( ( g ( +g  `  G
) x ) (
-g `  G )
g ) ) ) )  ->  ( # `  H
)  =  ( P ^ ( P  pCnt  (
# `  X )
) ) )
7629, 75rexlimddv 3035 . 2  |-  ( (
ph  /\  ( k  e.  (SubGrp `  G )  /\  ( # `  k
)  =  ( P ^ ( P  pCnt  (
# `  X )
) ) ) )  ->  ( # `  H
)  =  ( P ^ ( P  pCnt  (
# `  X )
) ) )
7718, 76rexlimddv 3035 1  |-  ( ph  ->  ( # `  H
)  =  ( P ^ ( P  pCnt  (
# `  X )
) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   E.wrex 2913    C_ wss 3574   (/)c0 3915   class class class wbr 4653    |-> cmpt 4729   ran crn 5115   ` cfv 5888  (class class class)co 6650    ~~ cen 7952   Fincfn 7955   NNcn 11020   NN0cn0 11292   ^cexp 12860   #chash 13117    || cdvds 14983   Primecprime 15385    pCnt cpc 15541   Basecbs 15857   ↾s cress 15858   +g cplusg 15941   Grpcgrp 17422   -gcsg 17424  SubGrpcsubg 17588   pGrp cpgp 17946   pSyl cslw 17947
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-disj 4621  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-omul 7565  df-er 7742  df-ec 7744  df-qs 7748  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-acn 8768  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-xnn0 11364  df-z 11378  df-uz 11688  df-q 11789  df-rp 11833  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-fac 13061  df-bc 13090  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-sum 14417  df-dvds 14984  df-gcd 15217  df-prm 15386  df-pc 15542  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-0g 16102  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-grp 17425  df-minusg 17426  df-sbg 17427  df-mulg 17541  df-subg 17591  df-eqg 17593  df-ghm 17658  df-ga 17723  df-od 17948  df-pgp 17950  df-slw 17951
This theorem is referenced by:  fislw  18040  sylow2  18041  sylow3lem4  18045
  Copyright terms: Public domain W3C validator