Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  esumpfinvallem Structured version   Visualization version   Unicode version

Theorem esumpfinvallem 30136
Description: Lemma for esumpfinval 30137. (Contributed by Thierry Arnoux, 28-Jun-2017.)
Assertion
Ref Expression
esumpfinvallem  |-  ( ( A  e.  V  /\  F : A --> ( 0 [,) +oo ) )  ->  (fld 
gsumg  F )  =  ( ( RR*ss  ( 0 [,] +oo ) ) 
gsumg  F ) )

Proof of Theorem esumpfinvallem
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fex 6490 . . . 4  |-  ( ( F : A --> ( 0 [,) +oo )  /\  A  e.  V )  ->  F  e.  _V )
21ancoms 469 . . 3  |-  ( ( A  e.  V  /\  F : A --> ( 0 [,) +oo ) )  ->  F  e.  _V )
3 ovexd 6680 . . 3  |-  ( ( A  e.  V  /\  F : A --> ( 0 [,) +oo ) )  ->  (flds  ( 0 [,) +oo )
)  e.  _V )
4 ovexd 6680 . . 3  |-  ( ( A  e.  V  /\  F : A --> ( 0 [,) +oo ) )  ->  ( RR*ss  (
0 [,) +oo )
)  e.  _V )
5 rge0ssre 12280 . . . . . . 7  |-  ( 0 [,) +oo )  C_  RR
6 ax-resscn 9993 . . . . . . 7  |-  RR  C_  CC
75, 6sstri 3612 . . . . . 6  |-  ( 0 [,) +oo )  C_  CC
8 eqid 2622 . . . . . . 7  |-  (flds  ( 0 [,) +oo ) )  =  (flds  ( 0 [,) +oo ) )
9 cnfldbas 19750 . . . . . . 7  |-  CC  =  ( Base ` fld )
108, 9ressbas2 15931 . . . . . 6  |-  ( ( 0 [,) +oo )  C_  CC  ->  ( 0 [,) +oo )  =  ( Base `  (flds  ( 0 [,) +oo ) ) ) )
117, 10ax-mp 5 . . . . 5  |-  ( 0 [,) +oo )  =  ( Base `  (flds  ( 0 [,) +oo ) ) )
12 icossxr 12258 . . . . . 6  |-  ( 0 [,) +oo )  C_  RR*
13 eqid 2622 . . . . . . 7  |-  ( RR*ss  ( 0 [,) +oo ) )  =  (
RR*ss  ( 0 [,) +oo ) )
14 xrsbas 19762 . . . . . . 7  |-  RR*  =  ( Base `  RR*s )
1513, 14ressbas2 15931 . . . . . 6  |-  ( ( 0 [,) +oo )  C_ 
RR*  ->  ( 0 [,) +oo )  =  ( Base `  ( RR*ss  (
0 [,) +oo )
) ) )
1612, 15ax-mp 5 . . . . 5  |-  ( 0 [,) +oo )  =  ( Base `  ( RR*ss  ( 0 [,) +oo ) ) )
1711, 16eqtr3i 2646 . . . 4  |-  ( Base `  (flds  ( 0 [,) +oo )
) )  =  (
Base `  ( RR*ss  ( 0 [,) +oo ) ) )
1817a1i 11 . . 3  |-  ( ( A  e.  V  /\  F : A --> ( 0 [,) +oo ) )  ->  ( Base `  (flds  ( 0 [,) +oo ) ) )  =  ( Base `  ( RR*ss  ( 0 [,) +oo ) ) ) )
19 simprl 794 . . . . 5  |-  ( ( ( A  e.  V  /\  F : A --> ( 0 [,) +oo ) )  /\  ( x  e.  ( Base `  (flds  ( 0 [,) +oo ) ) )  /\  y  e.  ( Base `  (flds  ( 0 [,) +oo ) ) ) ) )  ->  x  e.  ( Base `  (flds  ( 0 [,) +oo )
) ) )
2019, 11syl6eleqr 2712 . . . 4  |-  ( ( ( A  e.  V  /\  F : A --> ( 0 [,) +oo ) )  /\  ( x  e.  ( Base `  (flds  ( 0 [,) +oo ) ) )  /\  y  e.  ( Base `  (flds  ( 0 [,) +oo ) ) ) ) )  ->  x  e.  ( 0 [,) +oo ) )
21 simprr 796 . . . . 5  |-  ( ( ( A  e.  V  /\  F : A --> ( 0 [,) +oo ) )  /\  ( x  e.  ( Base `  (flds  ( 0 [,) +oo ) ) )  /\  y  e.  ( Base `  (flds  ( 0 [,) +oo ) ) ) ) )  -> 
y  e.  ( Base `  (flds  ( 0 [,) +oo )
) ) )
2221, 11syl6eleqr 2712 . . . 4  |-  ( ( ( A  e.  V  /\  F : A --> ( 0 [,) +oo ) )  /\  ( x  e.  ( Base `  (flds  ( 0 [,) +oo ) ) )  /\  y  e.  ( Base `  (flds  ( 0 [,) +oo ) ) ) ) )  -> 
y  e.  ( 0 [,) +oo ) )
23 ge0addcl 12284 . . . . 5  |-  ( ( x  e.  ( 0 [,) +oo )  /\  y  e.  ( 0 [,) +oo ) )  ->  ( x  +  y )  e.  ( 0 [,) +oo )
)
24 ovex 6678 . . . . . . 7  |-  ( 0 [,) +oo )  e. 
_V
25 cnfldadd 19751 . . . . . . . 8  |-  +  =  ( +g  ` fld )
268, 25ressplusg 15993 . . . . . . 7  |-  ( ( 0 [,) +oo )  e.  _V  ->  +  =  ( +g  `  (flds  ( 0 [,) +oo ) ) ) )
2724, 26ax-mp 5 . . . . . 6  |-  +  =  ( +g  `  (flds  ( 0 [,) +oo ) ) )
2827oveqi 6663 . . . . 5  |-  ( x  +  y )  =  ( x ( +g  `  (flds  ( 0 [,) +oo )
) ) y )
2923, 28, 113eltr3g 2717 . . . 4  |-  ( ( x  e.  ( 0 [,) +oo )  /\  y  e.  ( 0 [,) +oo ) )  ->  ( x ( +g  `  (flds  ( 0 [,) +oo ) ) ) y )  e.  ( Base `  (flds  ( 0 [,) +oo )
) ) )
3020, 22, 29syl2anc 693 . . 3  |-  ( ( ( A  e.  V  /\  F : A --> ( 0 [,) +oo ) )  /\  ( x  e.  ( Base `  (flds  ( 0 [,) +oo ) ) )  /\  y  e.  ( Base `  (flds  ( 0 [,) +oo ) ) ) ) )  -> 
( x ( +g  `  (flds  ( 0 [,) +oo )
) ) y )  e.  ( Base `  (flds  ( 0 [,) +oo ) ) ) )
31 simpl 473 . . . . . . 7  |-  ( ( x  e.  ( 0 [,) +oo )  /\  y  e.  ( 0 [,) +oo ) )  ->  x  e.  ( 0 [,) +oo )
)
325, 31sseldi 3601 . . . . . 6  |-  ( ( x  e.  ( 0 [,) +oo )  /\  y  e.  ( 0 [,) +oo ) )  ->  x  e.  RR )
33 simpr 477 . . . . . . 7  |-  ( ( x  e.  ( 0 [,) +oo )  /\  y  e.  ( 0 [,) +oo ) )  ->  y  e.  ( 0 [,) +oo )
)
345, 33sseldi 3601 . . . . . 6  |-  ( ( x  e.  ( 0 [,) +oo )  /\  y  e.  ( 0 [,) +oo ) )  ->  y  e.  RR )
35 rexadd 12063 . . . . . . 7  |-  ( ( x  e.  RR  /\  y  e.  RR )  ->  ( x +e
y )  =  ( x  +  y ) )
3635eqcomd 2628 . . . . . 6  |-  ( ( x  e.  RR  /\  y  e.  RR )  ->  ( x  +  y )  =  ( x +e y ) )
3732, 34, 36syl2anc 693 . . . . 5  |-  ( ( x  e.  ( 0 [,) +oo )  /\  y  e.  ( 0 [,) +oo ) )  ->  ( x  +  y )  =  ( x +e y ) )
38 xrsadd 19763 . . . . . . . 8  |-  +e 
=  ( +g  `  RR*s
)
3913, 38ressplusg 15993 . . . . . . 7  |-  ( ( 0 [,) +oo )  e.  _V  ->  +e 
=  ( +g  `  ( RR*ss  ( 0 [,) +oo ) ) ) )
4024, 39ax-mp 5 . . . . . 6  |-  +e 
=  ( +g  `  ( RR*ss  ( 0 [,) +oo ) ) )
4140oveqi 6663 . . . . 5  |-  ( x +e y )  =  ( x ( +g  `  ( RR*ss  ( 0 [,) +oo ) ) ) y )
4237, 28, 413eqtr3g 2679 . . . 4  |-  ( ( x  e.  ( 0 [,) +oo )  /\  y  e.  ( 0 [,) +oo ) )  ->  ( x ( +g  `  (flds  ( 0 [,) +oo ) ) ) y )  =  ( x ( +g  `  ( RR*ss  ( 0 [,) +oo ) ) ) y ) )
4320, 22, 42syl2anc 693 . . 3  |-  ( ( ( A  e.  V  /\  F : A --> ( 0 [,) +oo ) )  /\  ( x  e.  ( Base `  (flds  ( 0 [,) +oo ) ) )  /\  y  e.  ( Base `  (flds  ( 0 [,) +oo ) ) ) ) )  -> 
( x ( +g  `  (flds  ( 0 [,) +oo )
) ) y )  =  ( x ( +g  `  ( RR*ss  ( 0 [,) +oo ) ) ) y ) )
44 simpr 477 . . . 4  |-  ( ( A  e.  V  /\  F : A --> ( 0 [,) +oo ) )  ->  F : A --> ( 0 [,) +oo ) )
45 ffun 6048 . . . 4  |-  ( F : A --> ( 0 [,) +oo )  ->  Fun  F )
4644, 45syl 17 . . 3  |-  ( ( A  e.  V  /\  F : A --> ( 0 [,) +oo ) )  ->  Fun  F )
47 frn 6053 . . . . 5  |-  ( F : A --> ( 0 [,) +oo )  ->  ran  F  C_  ( 0 [,) +oo ) )
4844, 47syl 17 . . . 4  |-  ( ( A  e.  V  /\  F : A --> ( 0 [,) +oo ) )  ->  ran  F  C_  (
0 [,) +oo )
)
4948, 11syl6sseq 3651 . . 3  |-  ( ( A  e.  V  /\  F : A --> ( 0 [,) +oo ) )  ->  ran  F  C_  ( Base `  (flds  ( 0 [,) +oo )
) ) )
502, 3, 4, 18, 30, 43, 46, 49gsumpropd2 17274 . 2  |-  ( ( A  e.  V  /\  F : A --> ( 0 [,) +oo ) )  ->  ( (flds  ( 0 [,) +oo ) )  gsumg  F )  =  ( ( RR*ss  ( 0 [,) +oo ) ) 
gsumg  F ) )
51 cnfldex 19749 . . . 4  |-fld  e.  _V
5251a1i 11 . . 3  |-  ( ( A  e.  V  /\  F : A --> ( 0 [,) +oo ) )  ->fld 
e.  _V )
53 simpl 473 . . 3  |-  ( ( A  e.  V  /\  F : A --> ( 0 [,) +oo ) )  ->  A  e.  V
)
547a1i 11 . . 3  |-  ( ( A  e.  V  /\  F : A --> ( 0 [,) +oo ) )  ->  ( 0 [,) +oo )  C_  CC )
55 0e0icopnf 12282 . . . 4  |-  0  e.  ( 0 [,) +oo )
5655a1i 11 . . 3  |-  ( ( A  e.  V  /\  F : A --> ( 0 [,) +oo ) )  ->  0  e.  ( 0 [,) +oo )
)
57 simpr 477 . . . . 5  |-  ( ( ( A  e.  V  /\  F : A --> ( 0 [,) +oo ) )  /\  x  e.  CC )  ->  x  e.  CC )
5857addid2d 10237 . . . 4  |-  ( ( ( A  e.  V  /\  F : A --> ( 0 [,) +oo ) )  /\  x  e.  CC )  ->  ( 0  +  x )  =  x )
5957addid1d 10236 . . . 4  |-  ( ( ( A  e.  V  /\  F : A --> ( 0 [,) +oo ) )  /\  x  e.  CC )  ->  ( x  + 
0 )  =  x )
6058, 59jca 554 . . 3  |-  ( ( ( A  e.  V  /\  F : A --> ( 0 [,) +oo ) )  /\  x  e.  CC )  ->  ( ( 0  +  x )  =  x  /\  ( x  +  0 )  =  x ) )
619, 25, 8, 52, 53, 54, 44, 56, 60gsumress 17276 . 2  |-  ( ( A  e.  V  /\  F : A --> ( 0 [,) +oo ) )  ->  (fld 
gsumg  F )  =  ( (flds  ( 0 [,) +oo )
)  gsumg  F ) )
62 xrge0base 29685 . . 3  |-  ( 0 [,] +oo )  =  ( Base `  ( RR*ss  ( 0 [,] +oo ) ) )
63 xrge0plusg 29687 . . 3  |-  +e 
=  ( +g  `  ( RR*ss  ( 0 [,] +oo ) ) )
64 ovex 6678 . . . . 5  |-  ( 0 [,] +oo )  e. 
_V
65 ressress 15938 . . . . 5  |-  ( ( ( 0 [,] +oo )  e.  _V  /\  (
0 [,) +oo )  e.  _V )  ->  (
( RR*ss  ( 0 [,] +oo ) )s  ( 0 [,) +oo ) )  =  (
RR*ss  ( ( 0 [,] +oo )  i^i  ( 0 [,) +oo ) ) ) )
6664, 24, 65mp2an 708 . . . 4  |-  ( (
RR*ss  ( 0 [,] +oo ) )s  ( 0 [,) +oo ) )  =  (
RR*ss  ( ( 0 [,] +oo )  i^i  ( 0 [,) +oo ) ) )
67 incom 3805 . . . . . 6  |-  ( ( 0 [,] +oo )  i^i  ( 0 [,) +oo ) )  =  ( ( 0 [,) +oo )  i^i  ( 0 [,] +oo ) )
68 icossicc 12260 . . . . . . 7  |-  ( 0 [,) +oo )  C_  ( 0 [,] +oo )
69 dfss 3589 . . . . . . 7  |-  ( ( 0 [,) +oo )  C_  ( 0 [,] +oo ) 
<->  ( 0 [,) +oo )  =  ( (
0 [,) +oo )  i^i  ( 0 [,] +oo ) ) )
7068, 69mpbi 220 . . . . . 6  |-  ( 0 [,) +oo )  =  ( ( 0 [,) +oo )  i^i  (
0 [,] +oo )
)
7167, 70eqtr4i 2647 . . . . 5  |-  ( ( 0 [,] +oo )  i^i  ( 0 [,) +oo ) )  =  ( 0 [,) +oo )
7271oveq2i 6661 . . . 4  |-  ( RR*ss  ( ( 0 [,] +oo )  i^i  (
0 [,) +oo )
) )  =  (
RR*ss  ( 0 [,) +oo ) )
7366, 72eqtr2i 2645 . . 3  |-  ( RR*ss  ( 0 [,) +oo ) )  =  ( ( RR*ss  ( 0 [,] +oo ) )s  ( 0 [,) +oo )
)
74 ovexd 6680 . . 3  |-  ( ( A  e.  V  /\  F : A --> ( 0 [,) +oo ) )  ->  ( RR*ss  (
0 [,] +oo )
)  e.  _V )
7568a1i 11 . . 3  |-  ( ( A  e.  V  /\  F : A --> ( 0 [,) +oo ) )  ->  ( 0 [,) +oo )  C_  ( 0 [,] +oo ) )
76 iccssxr 12256 . . . . . 6  |-  ( 0 [,] +oo )  C_  RR*
77 simpr 477 . . . . . 6  |-  ( ( ( A  e.  V  /\  F : A --> ( 0 [,) +oo ) )  /\  x  e.  ( 0 [,] +oo )
)  ->  x  e.  ( 0 [,] +oo ) )
7876, 77sseldi 3601 . . . . 5  |-  ( ( ( A  e.  V  /\  F : A --> ( 0 [,) +oo ) )  /\  x  e.  ( 0 [,] +oo )
)  ->  x  e.  RR* )
79 xaddid2 12073 . . . . 5  |-  ( x  e.  RR*  ->  ( 0 +e x )  =  x )
8078, 79syl 17 . . . 4  |-  ( ( ( A  e.  V  /\  F : A --> ( 0 [,) +oo ) )  /\  x  e.  ( 0 [,] +oo )
)  ->  ( 0 +e x )  =  x )
81 xaddid1 12072 . . . . 5  |-  ( x  e.  RR*  ->  ( x +e 0 )  =  x )
8278, 81syl 17 . . . 4  |-  ( ( ( A  e.  V  /\  F : A --> ( 0 [,) +oo ) )  /\  x  e.  ( 0 [,] +oo )
)  ->  ( x +e 0 )  =  x )
8380, 82jca 554 . . 3  |-  ( ( ( A  e.  V  /\  F : A --> ( 0 [,) +oo ) )  /\  x  e.  ( 0 [,] +oo )
)  ->  ( (
0 +e x )  =  x  /\  ( x +e 0 )  =  x ) )
8462, 63, 73, 74, 53, 75, 44, 56, 83gsumress 17276 . 2  |-  ( ( A  e.  V  /\  F : A --> ( 0 [,) +oo ) )  ->  ( ( RR*ss  ( 0 [,] +oo ) )  gsumg  F )  =  ( ( RR*ss  ( 0 [,) +oo ) ) 
gsumg  F ) )
8550, 61, 843eqtr4d 2666 1  |-  ( ( A  e.  V  /\  F : A --> ( 0 [,) +oo ) )  ->  (fld 
gsumg  F )  =  ( ( RR*ss  ( 0 [,] +oo ) ) 
gsumg  F ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   _Vcvv 3200    i^i cin 3573    C_ wss 3574   ran crn 5115   Fun wfun 5882   -->wf 5884   ` cfv 5888  (class class class)co 6650   CCcc 9934   RRcr 9935   0cc0 9936    + caddc 9939   +oocpnf 10071   RR*cxr 10073   +ecxad 11944   [,)cico 12177   [,]cicc 12178   Basecbs 15857   ↾s cress 15858   +g cplusg 15941    gsumg cgsu 16101   RR*scxrs 16160  ℂfldccnfld 19746
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-addf 10015
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-xadd 11947  df-ico 12181  df-icc 12182  df-fz 12327  df-seq 12802  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-0g 16102  df-gsum 16103  df-xrs 16162  df-cnfld 19747
This theorem is referenced by:  esumpfinval  30137  esumpfinvalf  30138  esumpcvgval  30140  esumcvg  30148
  Copyright terms: Public domain W3C validator