Users' Mathboxes Mathbox for Steve Rodriguez < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hashnzfz Structured version   Visualization version   Unicode version

Theorem hashnzfz 38519
Description: Special case of hashdvds 15480: the count of multiples in nℤ restricted to an interval. (Contributed by Steve Rodriguez, 20-Jan-2020.)
Hypotheses
Ref Expression
hashnzfz.n  |-  ( ph  ->  N  e.  NN )
hashnzfz.j  |-  ( ph  ->  J  e.  ZZ )
hashnzfz.k  |-  ( ph  ->  K  e.  ( ZZ>= `  ( J  -  1
) ) )
Assertion
Ref Expression
hashnzfz  |-  ( ph  ->  ( # `  (
(  ||  " { N } )  i^i  ( J ... K ) ) )  =  ( ( |_ `  ( K  /  N ) )  -  ( |_ `  ( ( J  - 
1 )  /  N
) ) ) )

Proof of Theorem hashnzfz
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 hashnzfz.n . . 3  |-  ( ph  ->  N  e.  NN )
2 hashnzfz.j . . 3  |-  ( ph  ->  J  e.  ZZ )
3 hashnzfz.k . . 3  |-  ( ph  ->  K  e.  ( ZZ>= `  ( J  -  1
) ) )
4 0zd 11389 . . 3  |-  ( ph  ->  0  e.  ZZ )
51, 2, 3, 4hashdvds 15480 . 2  |-  ( ph  ->  ( # `  {
x  e.  ( J ... K )  |  N  ||  ( x  -  0 ) } )  =  ( ( |_ `  ( ( K  -  0 )  /  N ) )  -  ( |_ `  ( ( ( J  -  1 )  - 
0 )  /  N
) ) ) )
6 elfzelz 12342 . . . . . . . . 9  |-  ( x  e.  ( J ... K )  ->  x  e.  ZZ )
76zcnd 11483 . . . . . . . 8  |-  ( x  e.  ( J ... K )  ->  x  e.  CC )
87subid1d 10381 . . . . . . 7  |-  ( x  e.  ( J ... K )  ->  (
x  -  0 )  =  x )
98breq2d 4665 . . . . . 6  |-  ( x  e.  ( J ... K )  ->  ( N  ||  ( x  - 
0 )  <->  N  ||  x
) )
109rabbiia 3185 . . . . 5  |-  { x  e.  ( J ... K
)  |  N  ||  ( x  -  0
) }  =  {
x  e.  ( J ... K )  |  N  ||  x }
11 dfrab3 3902 . . . . 5  |-  { x  e.  ( J ... K
)  |  N  ||  x }  =  (
( J ... K
)  i^i  { x  |  N  ||  x }
)
12 reldvds 38514 . . . . . . . 8  |-  Rel  ||
13 relimasn 5488 . . . . . . . 8  |-  ( Rel  ||  ->  (  ||  " { N } )  =  {
x  |  N  ||  x } )
1412, 13ax-mp 5 . . . . . . 7  |-  (  ||  " { N } )  =  { x  |  N  ||  x }
1514ineq2i 3811 . . . . . 6  |-  ( ( J ... K )  i^i  (  ||  " { N } ) )  =  ( ( J ... K )  i^i  {
x  |  N  ||  x } )
16 incom 3805 . . . . . 6  |-  ( ( J ... K )  i^i  (  ||  " { N } ) )  =  ( (  ||  " { N } )  i^i  ( J ... K ) )
1715, 16eqtr3i 2646 . . . . 5  |-  ( ( J ... K )  i^i  { x  |  N  ||  x }
)  =  ( ( 
||  " { N }
)  i^i  ( J ... K ) )
1810, 11, 173eqtri 2648 . . . 4  |-  { x  e.  ( J ... K
)  |  N  ||  ( x  -  0
) }  =  ( (  ||  " { N } )  i^i  ( J ... K ) )
1918fveq2i 6194 . . 3  |-  ( # `  { x  e.  ( J ... K )  |  N  ||  (
x  -  0 ) } )  =  (
# `  ( (  ||  " { N }
)  i^i  ( J ... K ) ) )
2019a1i 11 . 2  |-  ( ph  ->  ( # `  {
x  e.  ( J ... K )  |  N  ||  ( x  -  0 ) } )  =  ( # `  ( (  ||  " { N } )  i^i  ( J ... K ) ) ) )
21 eluzelz 11697 . . . . . . . 8  |-  ( K  e.  ( ZZ>= `  ( J  -  1 ) )  ->  K  e.  ZZ )
223, 21syl 17 . . . . . . 7  |-  ( ph  ->  K  e.  ZZ )
2322zcnd 11483 . . . . . 6  |-  ( ph  ->  K  e.  CC )
2423subid1d 10381 . . . . 5  |-  ( ph  ->  ( K  -  0 )  =  K )
2524oveq1d 6665 . . . 4  |-  ( ph  ->  ( ( K  - 
0 )  /  N
)  =  ( K  /  N ) )
2625fveq2d 6195 . . 3  |-  ( ph  ->  ( |_ `  (
( K  -  0 )  /  N ) )  =  ( |_
`  ( K  /  N ) ) )
27 peano2zm 11420 . . . . . . . 8  |-  ( J  e.  ZZ  ->  ( J  -  1 )  e.  ZZ )
282, 27syl 17 . . . . . . 7  |-  ( ph  ->  ( J  -  1 )  e.  ZZ )
2928zcnd 11483 . . . . . 6  |-  ( ph  ->  ( J  -  1 )  e.  CC )
3029subid1d 10381 . . . . 5  |-  ( ph  ->  ( ( J  - 
1 )  -  0 )  =  ( J  -  1 ) )
3130oveq1d 6665 . . . 4  |-  ( ph  ->  ( ( ( J  -  1 )  - 
0 )  /  N
)  =  ( ( J  -  1 )  /  N ) )
3231fveq2d 6195 . . 3  |-  ( ph  ->  ( |_ `  (
( ( J  - 
1 )  -  0 )  /  N ) )  =  ( |_
`  ( ( J  -  1 )  /  N ) ) )
3326, 32oveq12d 6668 . 2  |-  ( ph  ->  ( ( |_ `  ( ( K  - 
0 )  /  N
) )  -  ( |_ `  ( ( ( J  -  1 )  -  0 )  /  N ) ) )  =  ( ( |_
`  ( K  /  N ) )  -  ( |_ `  ( ( J  -  1 )  /  N ) ) ) )
345, 20, 333eqtr3d 2664 1  |-  ( ph  ->  ( # `  (
(  ||  " { N } )  i^i  ( J ... K ) ) )  =  ( ( |_ `  ( K  /  N ) )  -  ( |_ `  ( ( J  - 
1 )  /  N
) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1483    e. wcel 1990   {cab 2608   {crab 2916    i^i cin 3573   {csn 4177   class class class wbr 4653   "cima 5117   Rel wrel 5119   ` cfv 5888  (class class class)co 6650   0cc0 9936   1c1 9937    - cmin 10266    / cdiv 10684   NNcn 11020   ZZcz 11377   ZZ>=cuz 11687   ...cfz 12326   |_cfl 12591   #chash 13117    || cdvds 14983
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-fl 12593  df-hash 13118  df-dvds 14984
This theorem is referenced by:  hashnzfz2  38520  hashnzfzclim  38521
  Copyright terms: Public domain W3C validator