Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hdmapglem7 Structured version   Visualization version   Unicode version

Theorem hdmapglem7 37221
Description: Lemma for hdmapg 37222. Line 15 in [Baer] p. 111, f(x,y) alpha = f(y,x). In the proof, our  E,  ( O `  { E } )  X,  Y,  k,  u,  l,  v correspond to Baer's w, H, x, y, x', x'', y' , y'', and our  ( ( S `
 Y ) `  X ) corresponds to Baer's f(x,y). (Contributed by NM, 14-Jun-2015.)
Hypotheses
Ref Expression
hdmapglem7.h  |-  H  =  ( LHyp `  K
)
hdmapglem7.e  |-  E  = 
<. (  _I  |`  ( Base `  K ) ) ,  (  _I  |`  (
( LTrn `  K ) `  W ) ) >.
hdmapglem7.o  |-  O  =  ( ( ocH `  K
) `  W )
hdmapglem7.u  |-  U  =  ( ( DVecH `  K
) `  W )
hdmapglem7.v  |-  V  =  ( Base `  U
)
hdmapglem7.p  |-  .+  =  ( +g  `  U )
hdmapglem7.q  |-  .x.  =  ( .s `  U )
hdmapglem7.r  |-  R  =  (Scalar `  U )
hdmapglem7.b  |-  B  =  ( Base `  R
)
hdmapglem7.a  |-  .(+)  =  (
LSSum `  U )
hdmapglem7.n  |-  N  =  ( LSpan `  U )
hdmapglem7.k  |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )
hdmapglem7.x  |-  ( ph  ->  X  e.  V )
hdmapglem7.t  |-  .X.  =  ( .r `  R )
hdmapglem7.z  |-  .0.  =  ( 0g `  R )
hdmapglem7.c  |-  .+b  =  ( +g  `  R )
hdmapglem7.s  |-  S  =  ( (HDMap `  K
) `  W )
hdmapglem7.g  |-  G  =  ( (HGMap `  K
) `  W )
hdmapglem7.y  |-  ( ph  ->  Y  e.  V )
Assertion
Ref Expression
hdmapglem7  |-  ( ph  ->  ( G `  (
( S `  Y
) `  X )
)  =  ( ( S `  X ) `
 Y ) )

Proof of Theorem hdmapglem7
Dummy variables  k 
l  u  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hdmapglem7.h . . 3  |-  H  =  ( LHyp `  K
)
2 hdmapglem7.e . . 3  |-  E  = 
<. (  _I  |`  ( Base `  K ) ) ,  (  _I  |`  (
( LTrn `  K ) `  W ) ) >.
3 hdmapglem7.o . . 3  |-  O  =  ( ( ocH `  K
) `  W )
4 hdmapglem7.u . . 3  |-  U  =  ( ( DVecH `  K
) `  W )
5 hdmapglem7.v . . 3  |-  V  =  ( Base `  U
)
6 hdmapglem7.p . . 3  |-  .+  =  ( +g  `  U )
7 hdmapglem7.q . . 3  |-  .x.  =  ( .s `  U )
8 hdmapglem7.r . . 3  |-  R  =  (Scalar `  U )
9 hdmapglem7.b . . 3  |-  B  =  ( Base `  R
)
10 hdmapglem7.a . . 3  |-  .(+)  =  (
LSSum `  U )
11 hdmapglem7.n . . 3  |-  N  =  ( LSpan `  U )
12 hdmapglem7.k . . 3  |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )
13 hdmapglem7.x . . 3  |-  ( ph  ->  X  e.  V )
141, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13hdmapglem7a 37219 . 2  |-  ( ph  ->  E. u  e.  ( O `  { E } ) E. k  e.  B  X  =  ( ( k  .x.  E )  .+  u
) )
15 hdmapglem7.y . . 3  |-  ( ph  ->  Y  e.  V )
161, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 15hdmapglem7a 37219 . 2  |-  ( ph  ->  E. v  e.  ( O `  { E } ) E. l  e.  B  Y  =  ( ( l  .x.  E )  .+  v
) )
17 hdmapglem7.c . . . . . . . . . . . 12  |-  .+b  =  ( +g  `  R )
18 hdmapglem7.g . . . . . . . . . . . 12  |-  G  =  ( (HGMap `  K
) `  W )
1912ad2antrr 762 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
u  e.  ( O `
 { E }
)  /\  k  e.  B ) )  /\  ( v  e.  ( O `  { E } )  /\  l  e.  B ) )  -> 
( K  e.  HL  /\  W  e.  H ) )
201, 4, 12dvhlmod 36399 . . . . . . . . . . . . . . 15  |-  ( ph  ->  U  e.  LMod )
218lmodring 18871 . . . . . . . . . . . . . . 15  |-  ( U  e.  LMod  ->  R  e. 
Ring )
2220, 21syl 17 . . . . . . . . . . . . . 14  |-  ( ph  ->  R  e.  Ring )
2322ad2antrr 762 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
u  e.  ( O `
 { E }
)  /\  k  e.  B ) )  /\  ( v  e.  ( O `  { E } )  /\  l  e.  B ) )  ->  R  e.  Ring )
24 simplrr 801 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
u  e.  ( O `
 { E }
)  /\  k  e.  B ) )  /\  ( v  e.  ( O `  { E } )  /\  l  e.  B ) )  -> 
k  e.  B )
25 simprr 796 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
u  e.  ( O `
 { E }
)  /\  k  e.  B ) )  /\  ( v  e.  ( O `  { E } )  /\  l  e.  B ) )  -> 
l  e.  B )
261, 4, 8, 9, 18, 19, 25hgmapcl 37181 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
u  e.  ( O `
 { E }
)  /\  k  e.  B ) )  /\  ( v  e.  ( O `  { E } )  /\  l  e.  B ) )  -> 
( G `  l
)  e.  B )
27 hdmapglem7.t . . . . . . . . . . . . . 14  |-  .X.  =  ( .r `  R )
289, 27ringcl 18561 . . . . . . . . . . . . 13  |-  ( ( R  e.  Ring  /\  k  e.  B  /\  ( G `  l )  e.  B )  ->  (
k  .X.  ( G `  l ) )  e.  B )
2923, 24, 26, 28syl3anc 1326 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
u  e.  ( O `
 { E }
)  /\  k  e.  B ) )  /\  ( v  e.  ( O `  { E } )  /\  l  e.  B ) )  -> 
( k  .X.  ( G `  l )
)  e.  B )
30 hdmapglem7.s . . . . . . . . . . . . 13  |-  S  =  ( (HDMap `  K
) `  W )
31 eqid 2622 . . . . . . . . . . . . . . . . . . 19  |-  ( Base `  K )  =  (
Base `  K )
32 eqid 2622 . . . . . . . . . . . . . . . . . . 19  |-  ( (
LTrn `  K ) `  W )  =  ( ( LTrn `  K
) `  W )
33 eqid 2622 . . . . . . . . . . . . . . . . . . 19  |-  ( 0g
`  U )  =  ( 0g `  U
)
341, 31, 32, 4, 5, 33, 2, 12dvheveccl 36401 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  E  e.  ( V 
\  { ( 0g
`  U ) } ) )
3534eldifad 3586 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  E  e.  V )
3635snssd 4340 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  { E }  C_  V )
371, 4, 5, 3dochssv 36644 . . . . . . . . . . . . . . . 16  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  { E }  C_  V )  ->  ( O `  { E } )  C_  V
)
3812, 36, 37syl2anc 693 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( O `  { E } )  C_  V
)
3938ad2antrr 762 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
u  e.  ( O `
 { E }
)  /\  k  e.  B ) )  /\  ( v  e.  ( O `  { E } )  /\  l  e.  B ) )  -> 
( O `  { E } )  C_  V
)
40 simplrl 800 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
u  e.  ( O `
 { E }
)  /\  k  e.  B ) )  /\  ( v  e.  ( O `  { E } )  /\  l  e.  B ) )  ->  u  e.  ( O `  { E } ) )
4139, 40sseldd 3604 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
u  e.  ( O `
 { E }
)  /\  k  e.  B ) )  /\  ( v  e.  ( O `  { E } )  /\  l  e.  B ) )  ->  u  e.  V )
42 simprl 794 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
u  e.  ( O `
 { E }
)  /\  k  e.  B ) )  /\  ( v  e.  ( O `  { E } )  /\  l  e.  B ) )  -> 
v  e.  ( O `
 { E }
) )
4339, 42sseldd 3604 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
u  e.  ( O `
 { E }
)  /\  k  e.  B ) )  /\  ( v  e.  ( O `  { E } )  /\  l  e.  B ) )  -> 
v  e.  V )
441, 4, 5, 8, 9, 30, 19, 41, 43hdmapipcl 37197 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
u  e.  ( O `
 { E }
)  /\  k  e.  B ) )  /\  ( v  e.  ( O `  { E } )  /\  l  e.  B ) )  -> 
( ( S `  v ) `  u
)  e.  B )
451, 4, 8, 9, 17, 18, 19, 29, 44hgmapadd 37186 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
u  e.  ( O `
 { E }
)  /\  k  e.  B ) )  /\  ( v  e.  ( O `  { E } )  /\  l  e.  B ) )  -> 
( G `  (
( k  .X.  ( G `  l )
)  .+b  ( ( S `  v ) `  u ) ) )  =  ( ( G `
 ( k  .X.  ( G `  l ) ) )  .+b  ( G `  ( ( S `  v ) `  u ) ) ) )
461, 4, 8, 9, 27, 18, 19, 24, 26hgmapmul 37187 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
u  e.  ( O `
 { E }
)  /\  k  e.  B ) )  /\  ( v  e.  ( O `  { E } )  /\  l  e.  B ) )  -> 
( G `  (
k  .X.  ( G `  l ) ) )  =  ( ( G `
 ( G `  l ) )  .X.  ( G `  k ) ) )
471, 4, 8, 9, 18, 19, 25hgmapvv 37218 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
u  e.  ( O `
 { E }
)  /\  k  e.  B ) )  /\  ( v  e.  ( O `  { E } )  /\  l  e.  B ) )  -> 
( G `  ( G `  l )
)  =  l )
4847oveq1d 6665 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
u  e.  ( O `
 { E }
)  /\  k  e.  B ) )  /\  ( v  e.  ( O `  { E } )  /\  l  e.  B ) )  -> 
( ( G `  ( G `  l ) )  .X.  ( G `  k ) )  =  ( l  .X.  ( G `  k )
) )
4946, 48eqtrd 2656 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
u  e.  ( O `
 { E }
)  /\  k  e.  B ) )  /\  ( v  e.  ( O `  { E } )  /\  l  e.  B ) )  -> 
( G `  (
k  .X.  ( G `  l ) ) )  =  ( l  .X.  ( G `  k ) ) )
50 eqid 2622 . . . . . . . . . . . . 13  |-  ( -g `  U )  =  (
-g `  U )
51 hdmapglem7.z . . . . . . . . . . . . 13  |-  .0.  =  ( 0g `  R )
521, 2, 3, 4, 5, 6, 50, 7, 8, 9, 27, 51, 30, 18, 19, 40, 42, 24, 24hdmapglem5 37214 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
u  e.  ( O `
 { E }
)  /\  k  e.  B ) )  /\  ( v  e.  ( O `  { E } )  /\  l  e.  B ) )  -> 
( G `  (
( S `  v
) `  u )
)  =  ( ( S `  u ) `
 v ) )
5349, 52oveq12d 6668 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
u  e.  ( O `
 { E }
)  /\  k  e.  B ) )  /\  ( v  e.  ( O `  { E } )  /\  l  e.  B ) )  -> 
( ( G `  ( k  .X.  ( G `  l )
) )  .+b  ( G `  ( ( S `  v ) `  u ) ) )  =  ( ( l 
.X.  ( G `  k ) )  .+b  ( ( S `  u ) `  v
) ) )
5445, 53eqtrd 2656 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
u  e.  ( O `
 { E }
)  /\  k  e.  B ) )  /\  ( v  e.  ( O `  { E } )  /\  l  e.  B ) )  -> 
( G `  (
( k  .X.  ( G `  l )
)  .+b  ( ( S `  v ) `  u ) ) )  =  ( ( l 
.X.  ( G `  k ) )  .+b  ( ( S `  u ) `  v
) ) )
5513ad2antrr 762 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
u  e.  ( O `
 { E }
)  /\  k  e.  B ) )  /\  ( v  e.  ( O `  { E } )  /\  l  e.  B ) )  ->  X  e.  V )
561, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 19, 55, 27, 51, 17, 30, 18, 42, 40, 25, 24hdmapglem7b 37220 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
u  e.  ( O `
 { E }
)  /\  k  e.  B ) )  /\  ( v  e.  ( O `  { E } )  /\  l  e.  B ) )  -> 
( ( S `  ( ( l  .x.  E )  .+  v
) ) `  (
( k  .x.  E
)  .+  u )
)  =  ( ( k  .X.  ( G `  l ) )  .+b  ( ( S `  v ) `  u
) ) )
5756fveq2d 6195 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
u  e.  ( O `
 { E }
)  /\  k  e.  B ) )  /\  ( v  e.  ( O `  { E } )  /\  l  e.  B ) )  -> 
( G `  (
( S `  (
( l  .x.  E
)  .+  v )
) `  ( (
k  .x.  E )  .+  u ) ) )  =  ( G `  ( ( k  .X.  ( G `  l ) )  .+b  ( ( S `  v ) `  u ) ) ) )
581, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 19, 55, 27, 51, 17, 30, 18, 40, 42, 24, 25hdmapglem7b 37220 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
u  e.  ( O `
 { E }
)  /\  k  e.  B ) )  /\  ( v  e.  ( O `  { E } )  /\  l  e.  B ) )  -> 
( ( S `  ( ( k  .x.  E )  .+  u
) ) `  (
( l  .x.  E
)  .+  v )
)  =  ( ( l  .X.  ( G `  k ) )  .+b  ( ( S `  u ) `  v
) ) )
5954, 57, 583eqtr4d 2666 . . . . . . . . 9  |-  ( ( ( ph  /\  (
u  e.  ( O `
 { E }
)  /\  k  e.  B ) )  /\  ( v  e.  ( O `  { E } )  /\  l  e.  B ) )  -> 
( G `  (
( S `  (
( l  .x.  E
)  .+  v )
) `  ( (
k  .x.  E )  .+  u ) ) )  =  ( ( S `
 ( ( k 
.x.  E )  .+  u ) ) `  ( ( l  .x.  E )  .+  v
) ) )
60593adantl3 1219 . . . . . . . 8  |-  ( ( ( ph  /\  (
u  e.  ( O `
 { E }
)  /\  k  e.  B )  /\  X  =  ( ( k 
.x.  E )  .+  u ) )  /\  ( v  e.  ( O `  { E } )  /\  l  e.  B ) )  -> 
( G `  (
( S `  (
( l  .x.  E
)  .+  v )
) `  ( (
k  .x.  E )  .+  u ) ) )  =  ( ( S `
 ( ( k 
.x.  E )  .+  u ) ) `  ( ( l  .x.  E )  .+  v
) ) )
61603adant3 1081 . . . . . . 7  |-  ( ( ( ph  /\  (
u  e.  ( O `
 { E }
)  /\  k  e.  B )  /\  X  =  ( ( k 
.x.  E )  .+  u ) )  /\  ( v  e.  ( O `  { E } )  /\  l  e.  B )  /\  Y  =  ( ( l 
.x.  E )  .+  v ) )  -> 
( G `  (
( S `  (
( l  .x.  E
)  .+  v )
) `  ( (
k  .x.  E )  .+  u ) ) )  =  ( ( S `
 ( ( k 
.x.  E )  .+  u ) ) `  ( ( l  .x.  E )  .+  v
) ) )
62 simp3 1063 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
u  e.  ( O `
 { E }
)  /\  k  e.  B )  /\  X  =  ( ( k 
.x.  E )  .+  u ) )  /\  ( v  e.  ( O `  { E } )  /\  l  e.  B )  /\  Y  =  ( ( l 
.x.  E )  .+  v ) )  ->  Y  =  ( (
l  .x.  E )  .+  v ) )
6362fveq2d 6195 . . . . . . . . 9  |-  ( ( ( ph  /\  (
u  e.  ( O `
 { E }
)  /\  k  e.  B )  /\  X  =  ( ( k 
.x.  E )  .+  u ) )  /\  ( v  e.  ( O `  { E } )  /\  l  e.  B )  /\  Y  =  ( ( l 
.x.  E )  .+  v ) )  -> 
( S `  Y
)  =  ( S `
 ( ( l 
.x.  E )  .+  v ) ) )
64 simp13 1093 . . . . . . . . 9  |-  ( ( ( ph  /\  (
u  e.  ( O `
 { E }
)  /\  k  e.  B )  /\  X  =  ( ( k 
.x.  E )  .+  u ) )  /\  ( v  e.  ( O `  { E } )  /\  l  e.  B )  /\  Y  =  ( ( l 
.x.  E )  .+  v ) )  ->  X  =  ( (
k  .x.  E )  .+  u ) )
6563, 64fveq12d 6197 . . . . . . . 8  |-  ( ( ( ph  /\  (
u  e.  ( O `
 { E }
)  /\  k  e.  B )  /\  X  =  ( ( k 
.x.  E )  .+  u ) )  /\  ( v  e.  ( O `  { E } )  /\  l  e.  B )  /\  Y  =  ( ( l 
.x.  E )  .+  v ) )  -> 
( ( S `  Y ) `  X
)  =  ( ( S `  ( ( l  .x.  E ) 
.+  v ) ) `
 ( ( k 
.x.  E )  .+  u ) ) )
6665fveq2d 6195 . . . . . . 7  |-  ( ( ( ph  /\  (
u  e.  ( O `
 { E }
)  /\  k  e.  B )  /\  X  =  ( ( k 
.x.  E )  .+  u ) )  /\  ( v  e.  ( O `  { E } )  /\  l  e.  B )  /\  Y  =  ( ( l 
.x.  E )  .+  v ) )  -> 
( G `  (
( S `  Y
) `  X )
)  =  ( G `
 ( ( S `
 ( ( l 
.x.  E )  .+  v ) ) `  ( ( k  .x.  E )  .+  u
) ) ) )
6764fveq2d 6195 . . . . . . . 8  |-  ( ( ( ph  /\  (
u  e.  ( O `
 { E }
)  /\  k  e.  B )  /\  X  =  ( ( k 
.x.  E )  .+  u ) )  /\  ( v  e.  ( O `  { E } )  /\  l  e.  B )  /\  Y  =  ( ( l 
.x.  E )  .+  v ) )  -> 
( S `  X
)  =  ( S `
 ( ( k 
.x.  E )  .+  u ) ) )
6867, 62fveq12d 6197 . . . . . . 7  |-  ( ( ( ph  /\  (
u  e.  ( O `
 { E }
)  /\  k  e.  B )  /\  X  =  ( ( k 
.x.  E )  .+  u ) )  /\  ( v  e.  ( O `  { E } )  /\  l  e.  B )  /\  Y  =  ( ( l 
.x.  E )  .+  v ) )  -> 
( ( S `  X ) `  Y
)  =  ( ( S `  ( ( k  .x.  E ) 
.+  u ) ) `
 ( ( l 
.x.  E )  .+  v ) ) )
6961, 66, 683eqtr4d 2666 . . . . . 6  |-  ( ( ( ph  /\  (
u  e.  ( O `
 { E }
)  /\  k  e.  B )  /\  X  =  ( ( k 
.x.  E )  .+  u ) )  /\  ( v  e.  ( O `  { E } )  /\  l  e.  B )  /\  Y  =  ( ( l 
.x.  E )  .+  v ) )  -> 
( G `  (
( S `  Y
) `  X )
)  =  ( ( S `  X ) `
 Y ) )
70693exp 1264 . . . . 5  |-  ( (
ph  /\  ( u  e.  ( O `  { E } )  /\  k  e.  B )  /\  X  =  ( ( k 
.x.  E )  .+  u ) )  -> 
( ( v  e.  ( O `  { E } )  /\  l  e.  B )  ->  ( Y  =  ( (
l  .x.  E )  .+  v )  ->  ( G `  ( ( S `  Y ) `  X ) )  =  ( ( S `  X ) `  Y
) ) ) )
7170rexlimdvv 3037 . . . 4  |-  ( (
ph  /\  ( u  e.  ( O `  { E } )  /\  k  e.  B )  /\  X  =  ( ( k 
.x.  E )  .+  u ) )  -> 
( E. v  e.  ( O `  { E } ) E. l  e.  B  Y  =  ( ( l  .x.  E )  .+  v
)  ->  ( G `  ( ( S `  Y ) `  X
) )  =  ( ( S `  X
) `  Y )
) )
72713exp 1264 . . 3  |-  ( ph  ->  ( ( u  e.  ( O `  { E } )  /\  k  e.  B )  ->  ( X  =  ( (
k  .x.  E )  .+  u )  ->  ( E. v  e.  ( O `  { E } ) E. l  e.  B  Y  =  ( ( l  .x.  E )  .+  v
)  ->  ( G `  ( ( S `  Y ) `  X
) )  =  ( ( S `  X
) `  Y )
) ) ) )
7372rexlimdvv 3037 . 2  |-  ( ph  ->  ( E. u  e.  ( O `  { E } ) E. k  e.  B  X  =  ( ( k  .x.  E )  .+  u
)  ->  ( E. v  e.  ( O `  { E } ) E. l  e.  B  Y  =  ( (
l  .x.  E )  .+  v )  ->  ( G `  ( ( S `  Y ) `  X ) )  =  ( ( S `  X ) `  Y
) ) ) )
7414, 16, 73mp2d 49 1  |-  ( ph  ->  ( G `  (
( S `  Y
) `  X )
)  =  ( ( S `  X ) `
 Y ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   E.wrex 2913    C_ wss 3574   {csn 4177   <.cop 4183    _I cid 5023    |` cres 5116   ` cfv 5888  (class class class)co 6650   Basecbs 15857   +g cplusg 15941   .rcmulr 15942  Scalarcsca 15944   .scvsca 15945   0gc0g 16100   -gcsg 17424   LSSumclsm 18049   Ringcrg 18547   LModclmod 18863   LSpanclspn 18971   HLchlt 34637   LHypclh 35270   LTrncltrn 35387   DVecHcdvh 36367   ocHcoch 36636  HDMapchdma 37082  HGMapchg 37175
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-riotaBAD 34239
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-ot 4186  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-tpos 7352  df-undef 7399  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-sca 15957  df-vsca 15958  df-0g 16102  df-mre 16246  df-mrc 16247  df-acs 16249  df-preset 16928  df-poset 16946  df-plt 16958  df-lub 16974  df-glb 16975  df-join 16976  df-meet 16977  df-p0 17039  df-p1 17040  df-lat 17046  df-clat 17108  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-grp 17425  df-minusg 17426  df-sbg 17427  df-subg 17591  df-cntz 17750  df-oppg 17776  df-lsm 18051  df-cmn 18195  df-abl 18196  df-mgp 18490  df-ur 18502  df-ring 18549  df-oppr 18623  df-dvdsr 18641  df-unit 18642  df-invr 18672  df-dvr 18683  df-drng 18749  df-lmod 18865  df-lss 18933  df-lsp 18972  df-lvec 19103  df-lsatoms 34263  df-lshyp 34264  df-lcv 34306  df-lfl 34345  df-lkr 34373  df-ldual 34411  df-oposet 34463  df-ol 34465  df-oml 34466  df-covers 34553  df-ats 34554  df-atl 34585  df-cvlat 34609  df-hlat 34638  df-llines 34784  df-lplanes 34785  df-lvols 34786  df-lines 34787  df-psubsp 34789  df-pmap 34790  df-padd 35082  df-lhyp 35274  df-laut 35275  df-ldil 35390  df-ltrn 35391  df-trl 35446  df-tgrp 36031  df-tendo 36043  df-edring 36045  df-dveca 36291  df-disoa 36318  df-dvech 36368  df-dib 36428  df-dic 36462  df-dih 36518  df-doch 36637  df-djh 36684  df-lcdual 36876  df-mapd 36914  df-hvmap 37046  df-hdmap1 37083  df-hdmap 37084  df-hgmap 37176
This theorem is referenced by:  hdmapg  37222
  Copyright terms: Public domain W3C validator