| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > incsmflem | Structured version Visualization version Unicode version | ||
| Description: A non decreasing function is Borel measurable. Proposition 121D (c) of [Fremlin1] p. 36 . (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| Ref | Expression |
|---|---|
| incsmflem.x |
|
| incsmflem.y |
|
| incsmflem.a |
|
| incsmflem.f |
|
| incsmflem.i |
|
| incsmflem.j |
|
| incsmflem.b |
|
| incsmflem.r |
|
| incsmflem.l |
|
| incsmflem.c |
|
| incsmflem.d |
|
| incsmflem.e |
|
| Ref | Expression |
|---|---|
| incsmflem |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | incsmflem.e |
. . . 4
| |
| 2 | mnfxr 10096 |
. . . . . 6
| |
| 3 | 2 | a1i 11 |
. . . . 5
|
| 4 | incsmflem.l |
. . . . . . . . 9
| |
| 5 | ssrab2 3687 |
. . . . . . . . 9
| |
| 6 | 4, 5 | eqsstri 3635 |
. . . . . . . 8
|
| 7 | 6 | a1i 11 |
. . . . . . 7
|
| 8 | incsmflem.a |
. . . . . . 7
| |
| 9 | 7, 8 | sstrd 3613 |
. . . . . 6
|
| 10 | 9 | sselda 3603 |
. . . . 5
|
| 11 | incsmflem.j |
. . . . 5
| |
| 12 | incsmflem.b |
. . . . 5
| |
| 13 | 3, 10, 11, 12 | iocborel 40574 |
. . . 4
|
| 14 | 1, 13 | syl5eqel 2705 |
. . 3
|
| 15 | incsmflem.x |
. . . . 5
| |
| 16 | nfcv 2764 |
. . . . . 6
| |
| 17 | nfrab1 3122 |
. . . . . . 7
| |
| 18 | 4, 17 | nfcxfr 2762 |
. . . . . 6
|
| 19 | 16, 18 | nfel 2777 |
. . . . 5
|
| 20 | 15, 19 | nfan 1828 |
. . . 4
|
| 21 | incsmflem.y |
. . . . 5
| |
| 22 | nfv 1843 |
. . . . 5
| |
| 23 | 21, 22 | nfan 1828 |
. . . 4
|
| 24 | 8 | adantr 481 |
. . . 4
|
| 25 | incsmflem.f |
. . . . 5
| |
| 26 | 25 | adantr 481 |
. . . 4
|
| 27 | incsmflem.i |
. . . . 5
| |
| 28 | 27 | adantr 481 |
. . . 4
|
| 29 | incsmflem.r |
. . . . 5
| |
| 30 | 29 | adantr 481 |
. . . 4
|
| 31 | incsmflem.c |
. . . 4
| |
| 32 | simpr 477 |
. . . 4
| |
| 33 | 20, 23, 24, 26, 28, 30, 4, 31, 32, 1 | pimincfltioc 40926 |
. . 3
|
| 34 | ineq1 3807 |
. . . . 5
| |
| 35 | 34 | eqeq2d 2632 |
. . . 4
|
| 36 | 35 | rspcev 3309 |
. . 3
|
| 37 | 14, 33, 36 | syl2anc 693 |
. 2
|
| 38 | incsmflem.d |
. . . . . 6
| |
| 39 | 11, 12 | iooborel 40569 |
. . . . . 6
|
| 40 | 38, 39 | eqeltri 2697 |
. . . . 5
|
| 41 | 40 | a1i 11 |
. . . 4
|
| 42 | 41 | adantr 481 |
. . 3
|
| 43 | 19 | nfn 1784 |
. . . . 5
|
| 44 | 15, 43 | nfan 1828 |
. . . 4
|
| 45 | nfv 1843 |
. . . . 5
| |
| 46 | 21, 45 | nfan 1828 |
. . . 4
|
| 47 | 8 | adantr 481 |
. . . 4
|
| 48 | 25 | adantr 481 |
. . . 4
|
| 49 | 27 | adantr 481 |
. . . 4
|
| 50 | 29 | adantr 481 |
. . . 4
|
| 51 | simpr 477 |
. . . 4
| |
| 52 | 44, 46, 47, 48, 49, 50, 4, 31, 51, 38 | pimincfltioo 40928 |
. . 3
|
| 53 | ineq1 3807 |
. . . . 5
| |
| 54 | 53 | eqeq2d 2632 |
. . . 4
|
| 55 | 54 | rspcev 3309 |
. . 3
|
| 56 | 42, 52, 55 | syl2anc 693 |
. 2
|
| 57 | 37, 56 | pm2.61dan 832 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-inf2 8538 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 ax-pre-sup 10014 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-iin 4523 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-se 5074 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-isom 5897 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-er 7742 df-map 7859 df-en 7956 df-dom 7957 df-sdom 7958 df-sup 8348 df-inf 8349 df-card 8765 df-acn 8768 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-div 10685 df-nn 11021 df-n0 11293 df-z 11378 df-uz 11688 df-q 11789 df-rp 11833 df-ioo 12179 df-ioc 12180 df-fl 12593 df-topgen 16104 df-top 20699 df-bases 20750 df-salg 40529 df-salgen 40533 |
| This theorem is referenced by: incsmf 40951 |
| Copyright terms: Public domain | W3C validator |