MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iprodmul Structured version   Visualization version   Unicode version

Theorem iprodmul 14734
Description: Multiplication of infinite sums. (Contributed by Scott Fenton, 18-Dec-2017.)
Hypotheses
Ref Expression
iprodmul.1  |-  Z  =  ( ZZ>= `  M )
iprodmul.2  |-  ( ph  ->  M  e.  ZZ )
iprodmul.3  |-  ( ph  ->  E. n  e.  Z  E. y ( y  =/=  0  /\  seq n
(  x.  ,  F
)  ~~>  y ) )
iprodmul.4  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  =  A )
iprodmul.5  |-  ( (
ph  /\  k  e.  Z )  ->  A  e.  CC )
iprodmul.6  |-  ( ph  ->  E. m  e.  Z  E. z ( z  =/=  0  /\  seq m
(  x.  ,  G
)  ~~>  z ) )
iprodmul.7  |-  ( (
ph  /\  k  e.  Z )  ->  ( G `  k )  =  B )
iprodmul.8  |-  ( (
ph  /\  k  e.  Z )  ->  B  e.  CC )
Assertion
Ref Expression
iprodmul  |-  ( ph  ->  prod_ k  e.  Z  ( A  x.  B
)  =  ( prod_
k  e.  Z  A  x.  prod_ k  e.  Z  B ) )
Distinct variable groups:    A, n, y    B, m, z    k, F, m, n, y, z   
k, G, m, n, y, z    ph, k,
y, z    k, M, m, n    ph, m, y   
y, M    z, m, M    ph, n, y, z   
k, Z, m, n, y, z
Allowed substitution hints:    A( z, k, m)    B( y, k, n)

Proof of Theorem iprodmul
Dummy variables  j 
a  p  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iprodmul.1 . 2  |-  Z  =  ( ZZ>= `  M )
2 iprodmul.2 . 2  |-  ( ph  ->  M  e.  ZZ )
3 iprodmul.3 . . . 4  |-  ( ph  ->  E. n  e.  Z  E. y ( y  =/=  0  /\  seq n
(  x.  ,  F
)  ~~>  y ) )
4 iprodmul.4 . . . . 5  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  =  A )
5 iprodmul.5 . . . . 5  |-  ( (
ph  /\  k  e.  Z )  ->  A  e.  CC )
64, 5eqeltrd 2701 . . . 4  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  e.  CC )
7 iprodmul.6 . . . 4  |-  ( ph  ->  E. m  e.  Z  E. z ( z  =/=  0  /\  seq m
(  x.  ,  G
)  ~~>  z ) )
8 iprodmul.7 . . . . 5  |-  ( (
ph  /\  k  e.  Z )  ->  ( G `  k )  =  B )
9 iprodmul.8 . . . . 5  |-  ( (
ph  /\  k  e.  Z )  ->  B  e.  CC )
108, 9eqeltrd 2701 . . . 4  |-  ( (
ph  /\  k  e.  Z )  ->  ( G `  k )  e.  CC )
11 fveq2 6191 . . . . . . 7  |-  ( a  =  k  ->  ( F `  a )  =  ( F `  k ) )
12 fveq2 6191 . . . . . . 7  |-  ( a  =  k  ->  ( G `  a )  =  ( G `  k ) )
1311, 12oveq12d 6668 . . . . . 6  |-  ( a  =  k  ->  (
( F `  a
)  x.  ( G `
 a ) )  =  ( ( F `
 k )  x.  ( G `  k
) ) )
14 eqid 2622 . . . . . 6  |-  ( a  e.  Z  |->  ( ( F `  a )  x.  ( G `  a ) ) )  =  ( a  e.  Z  |->  ( ( F `
 a )  x.  ( G `  a
) ) )
15 ovex 6678 . . . . . 6  |-  ( ( F `  k )  x.  ( G `  k ) )  e. 
_V
1613, 14, 15fvmpt 6282 . . . . 5  |-  ( k  e.  Z  ->  (
( a  e.  Z  |->  ( ( F `  a )  x.  ( G `  a )
) ) `  k
)  =  ( ( F `  k )  x.  ( G `  k ) ) )
1716adantl 482 . . . 4  |-  ( (
ph  /\  k  e.  Z )  ->  (
( a  e.  Z  |->  ( ( F `  a )  x.  ( G `  a )
) ) `  k
)  =  ( ( F `  k )  x.  ( G `  k ) ) )
181, 3, 6, 7, 10, 17ntrivcvgmul 14634 . . 3  |-  ( ph  ->  E. p  e.  Z  E. w ( w  =/=  0  /\  seq p
(  x.  ,  ( a  e.  Z  |->  ( ( F `  a
)  x.  ( G `
 a ) ) ) )  ~~>  w ) )
19 fveq2 6191 . . . . . . . . . 10  |-  ( m  =  a  ->  ( F `  m )  =  ( F `  a ) )
20 fveq2 6191 . . . . . . . . . 10  |-  ( m  =  a  ->  ( G `  m )  =  ( G `  a ) )
2119, 20oveq12d 6668 . . . . . . . . 9  |-  ( m  =  a  ->  (
( F `  m
)  x.  ( G `
 m ) )  =  ( ( F `
 a )  x.  ( G `  a
) ) )
2221cbvmptv 4750 . . . . . . . 8  |-  ( m  e.  Z  |->  ( ( F `  m )  x.  ( G `  m ) ) )  =  ( a  e.  Z  |->  ( ( F `
 a )  x.  ( G `  a
) ) )
23 seqeq3 12806 . . . . . . . 8  |-  ( ( m  e.  Z  |->  ( ( F `  m
)  x.  ( G `
 m ) ) )  =  ( a  e.  Z  |->  ( ( F `  a )  x.  ( G `  a ) ) )  ->  seq p (  x.  ,  ( m  e.  Z  |->  ( ( F `
 m )  x.  ( G `  m
) ) ) )  =  seq p (  x.  ,  ( a  e.  Z  |->  ( ( F `  a )  x.  ( G `  a ) ) ) ) )
2422, 23ax-mp 5 . . . . . . 7  |-  seq p
(  x.  ,  ( m  e.  Z  |->  ( ( F `  m
)  x.  ( G `
 m ) ) ) )  =  seq p (  x.  , 
( a  e.  Z  |->  ( ( F `  a )  x.  ( G `  a )
) ) )
2524breq1i 4660 . . . . . 6  |-  (  seq p (  x.  , 
( m  e.  Z  |->  ( ( F `  m )  x.  ( G `  m )
) ) )  ~~>  w  <->  seq p
(  x.  ,  ( a  e.  Z  |->  ( ( F `  a
)  x.  ( G `
 a ) ) ) )  ~~>  w )
2625anbi2i 730 . . . . 5  |-  ( ( w  =/=  0  /\ 
seq p (  x.  ,  ( m  e.  Z  |->  ( ( F `
 m )  x.  ( G `  m
) ) ) )  ~~>  w )  <->  ( w  =/=  0  /\  seq p
(  x.  ,  ( a  e.  Z  |->  ( ( F `  a
)  x.  ( G `
 a ) ) ) )  ~~>  w ) )
2726exbii 1774 . . . 4  |-  ( E. w ( w  =/=  0  /\  seq p
(  x.  ,  ( m  e.  Z  |->  ( ( F `  m
)  x.  ( G `
 m ) ) ) )  ~~>  w )  <->  E. w ( w  =/=  0  /\  seq p
(  x.  ,  ( a  e.  Z  |->  ( ( F `  a
)  x.  ( G `
 a ) ) ) )  ~~>  w ) )
2827rexbii 3041 . . 3  |-  ( E. p  e.  Z  E. w ( w  =/=  0  /\  seq p
(  x.  ,  ( m  e.  Z  |->  ( ( F `  m
)  x.  ( G `
 m ) ) ) )  ~~>  w )  <->  E. p  e.  Z  E. w ( w  =/=  0  /\  seq p
(  x.  ,  ( a  e.  Z  |->  ( ( F `  a
)  x.  ( G `
 a ) ) ) )  ~~>  w ) )
2918, 28sylibr 224 . 2  |-  ( ph  ->  E. p  e.  Z  E. w ( w  =/=  0  /\  seq p
(  x.  ,  ( m  e.  Z  |->  ( ( F `  m
)  x.  ( G `
 m ) ) ) )  ~~>  w ) )
30 simpr 477 . . . 4  |-  ( (
ph  /\  k  e.  Z )  ->  k  e.  Z )
316, 10mulcld 10060 . . . 4  |-  ( (
ph  /\  k  e.  Z )  ->  (
( F `  k
)  x.  ( G `
 k ) )  e.  CC )
32 fveq2 6191 . . . . . 6  |-  ( m  =  k  ->  ( F `  m )  =  ( F `  k ) )
33 fveq2 6191 . . . . . 6  |-  ( m  =  k  ->  ( G `  m )  =  ( G `  k ) )
3432, 33oveq12d 6668 . . . . 5  |-  ( m  =  k  ->  (
( F `  m
)  x.  ( G `
 m ) )  =  ( ( F `
 k )  x.  ( G `  k
) ) )
35 eqid 2622 . . . . 5  |-  ( m  e.  Z  |->  ( ( F `  m )  x.  ( G `  m ) ) )  =  ( m  e.  Z  |->  ( ( F `
 m )  x.  ( G `  m
) ) )
3634, 35fvmptg 6280 . . . 4  |-  ( ( k  e.  Z  /\  ( ( F `  k )  x.  ( G `  k )
)  e.  CC )  ->  ( ( m  e.  Z  |->  ( ( F `  m )  x.  ( G `  m ) ) ) `
 k )  =  ( ( F `  k )  x.  ( G `  k )
) )
3730, 31, 36syl2anc 693 . . 3  |-  ( (
ph  /\  k  e.  Z )  ->  (
( m  e.  Z  |->  ( ( F `  m )  x.  ( G `  m )
) ) `  k
)  =  ( ( F `  k )  x.  ( G `  k ) ) )
384, 8oveq12d 6668 . . 3  |-  ( (
ph  /\  k  e.  Z )  ->  (
( F `  k
)  x.  ( G `
 k ) )  =  ( A  x.  B ) )
3937, 38eqtrd 2656 . 2  |-  ( (
ph  /\  k  e.  Z )  ->  (
( m  e.  Z  |->  ( ( F `  m )  x.  ( G `  m )
) ) `  k
)  =  ( A  x.  B ) )
405, 9mulcld 10060 . 2  |-  ( (
ph  /\  k  e.  Z )  ->  ( A  x.  B )  e.  CC )
411, 2, 3, 4, 5iprodclim2 14730 . . 3  |-  ( ph  ->  seq M (  x.  ,  F )  ~~>  prod_ k  e.  Z  A )
42 seqex 12803 . . . 4  |-  seq M
(  x.  ,  ( m  e.  Z  |->  ( ( F `  m
)  x.  ( G `
 m ) ) ) )  e.  _V
4342a1i 11 . . 3  |-  ( ph  ->  seq M (  x.  ,  ( m  e.  Z  |->  ( ( F `
 m )  x.  ( G `  m
) ) ) )  e.  _V )
441, 2, 7, 8, 9iprodclim2 14730 . . 3  |-  ( ph  ->  seq M (  x.  ,  G )  ~~>  prod_ k  e.  Z  B )
451, 2, 6prodf 14619 . . . 4  |-  ( ph  ->  seq M (  x.  ,  F ) : Z --> CC )
4645ffvelrnda 6359 . . 3  |-  ( (
ph  /\  j  e.  Z )  ->  (  seq M (  x.  ,  F ) `  j
)  e.  CC )
471, 2, 10prodf 14619 . . . 4  |-  ( ph  ->  seq M (  x.  ,  G ) : Z --> CC )
4847ffvelrnda 6359 . . 3  |-  ( (
ph  /\  j  e.  Z )  ->  (  seq M (  x.  ,  G ) `  j
)  e.  CC )
49 simpr 477 . . . . 5  |-  ( (
ph  /\  j  e.  Z )  ->  j  e.  Z )
5049, 1syl6eleq 2711 . . . 4  |-  ( (
ph  /\  j  e.  Z )  ->  j  e.  ( ZZ>= `  M )
)
51 elfzuz 12338 . . . . . . 7  |-  ( k  e.  ( M ... j )  ->  k  e.  ( ZZ>= `  M )
)
5251, 1syl6eleqr 2712 . . . . . 6  |-  ( k  e.  ( M ... j )  ->  k  e.  Z )
5352, 6sylan2 491 . . . . 5  |-  ( (
ph  /\  k  e.  ( M ... j ) )  ->  ( F `  k )  e.  CC )
5453adantlr 751 . . . 4  |-  ( ( ( ph  /\  j  e.  Z )  /\  k  e.  ( M ... j
) )  ->  ( F `  k )  e.  CC )
5552, 10sylan2 491 . . . . 5  |-  ( (
ph  /\  k  e.  ( M ... j ) )  ->  ( G `  k )  e.  CC )
5655adantlr 751 . . . 4  |-  ( ( ( ph  /\  j  e.  Z )  /\  k  e.  ( M ... j
) )  ->  ( G `  k )  e.  CC )
5737adantlr 751 . . . . 5  |-  ( ( ( ph  /\  j  e.  Z )  /\  k  e.  Z )  ->  (
( m  e.  Z  |->  ( ( F `  m )  x.  ( G `  m )
) ) `  k
)  =  ( ( F `  k )  x.  ( G `  k ) ) )
5852, 57sylan2 491 . . . 4  |-  ( ( ( ph  /\  j  e.  Z )  /\  k  e.  ( M ... j
) )  ->  (
( m  e.  Z  |->  ( ( F `  m )  x.  ( G `  m )
) ) `  k
)  =  ( ( F `  k )  x.  ( G `  k ) ) )
5950, 54, 56, 58prodfmul 14622 . . 3  |-  ( (
ph  /\  j  e.  Z )  ->  (  seq M (  x.  , 
( m  e.  Z  |->  ( ( F `  m )  x.  ( G `  m )
) ) ) `  j )  =  ( (  seq M (  x.  ,  F ) `
 j )  x.  (  seq M (  x.  ,  G ) `
 j ) ) )
601, 2, 41, 43, 44, 46, 48, 59climmul 14363 . 2  |-  ( ph  ->  seq M (  x.  ,  ( m  e.  Z  |->  ( ( F `
 m )  x.  ( G `  m
) ) ) )  ~~>  ( prod_ k  e.  Z  A  x.  prod_ k  e.  Z  B ) )
611, 2, 29, 39, 40, 60iprodclim 14729 1  |-  ( ph  ->  prod_ k  e.  Z  ( A  x.  B
)  =  ( prod_
k  e.  Z  A  x.  prod_ k  e.  Z  B ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483   E.wex 1704    e. wcel 1990    =/= wne 2794   E.wrex 2913   _Vcvv 3200   class class class wbr 4653    |-> cmpt 4729   ` cfv 5888  (class class class)co 6650   CCcc 9934   0cc0 9936    x. cmul 9941   ZZcz 11377   ZZ>=cuz 11687   ...cfz 12326    seqcseq 12801    ~~> cli 14215   prod_cprod 14635
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-fz 12327  df-fzo 12466  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-prod 14636
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator