| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > padicabv | Structured version Visualization version Unicode version | ||
| Description: The p-adic absolute value (with arbitrary base) is an absolute value. (Contributed by Mario Carneiro, 9-Sep-2014.) |
| Ref | Expression |
|---|---|
| qrng.q |
|
| qabsabv.a |
|
| padic.f |
|
| Ref | Expression |
|---|---|
| padicabv |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | qabsabv.a |
. . 3
| |
| 2 | 1 | a1i 11 |
. 2
|
| 3 | qrng.q |
. . . 4
| |
| 4 | 3 | qrngbas 25308 |
. . 3
|
| 5 | 4 | a1i 11 |
. 2
|
| 6 | qex 11800 |
. . 3
| |
| 7 | cnfldadd 19751 |
. . . 4
| |
| 8 | 3, 7 | ressplusg 15993 |
. . 3
|
| 9 | 6, 8 | mp1i 13 |
. 2
|
| 10 | cnfldmul 19752 |
. . . 4
| |
| 11 | 3, 10 | ressmulr 16006 |
. . 3
|
| 12 | 6, 11 | mp1i 13 |
. 2
|
| 13 | 3 | qrng0 25310 |
. . 3
|
| 14 | 13 | a1i 11 |
. 2
|
| 15 | 3 | qdrng 25309 |
. . 3
|
| 16 | drngring 18754 |
. . 3
| |
| 17 | 15, 16 | mp1i 13 |
. 2
|
| 18 | 0red 10041 |
. . . 4
| |
| 19 | ioossre 12235 |
. . . . . . 7
| |
| 20 | simpr 477 |
. . . . . . 7
| |
| 21 | 19, 20 | sseldi 3601 |
. . . . . 6
|
| 22 | 21 | ad2antrr 762 |
. . . . 5
|
| 23 | eliooord 12233 |
. . . . . . . . . 10
| |
| 24 | 23 | adantl 482 |
. . . . . . . . 9
|
| 25 | 24 | simpld 475 |
. . . . . . . 8
|
| 26 | 21, 25 | elrpd 11869 |
. . . . . . 7
|
| 27 | 26 | rpne0d 11877 |
. . . . . 6
|
| 28 | 27 | ad2antrr 762 |
. . . . 5
|
| 29 | df-ne 2795 |
. . . . . 6
| |
| 30 | pcqcl 15561 |
. . . . . . . 8
| |
| 31 | 30 | adantlr 751 |
. . . . . . 7
|
| 32 | 31 | anassrs 680 |
. . . . . 6
|
| 33 | 29, 32 | sylan2br 493 |
. . . . 5
|
| 34 | 22, 28, 33 | reexpclzd 13034 |
. . . 4
|
| 35 | 18, 34 | ifclda 4120 |
. . 3
|
| 36 | padic.f |
. . 3
| |
| 37 | 35, 36 | fmptd 6385 |
. 2
|
| 38 | 0z 11388 |
. . . 4
| |
| 39 | zq 11794 |
. . . 4
| |
| 40 | 38, 39 | ax-mp 5 |
. . 3
|
| 41 | iftrue 4092 |
. . . 4
| |
| 42 | c0ex 10034 |
. . . 4
| |
| 43 | 41, 36, 42 | fvmpt 6282 |
. . 3
|
| 44 | 40, 43 | mp1i 13 |
. 2
|
| 45 | 21 | 3ad2ant1 1082 |
. . . 4
|
| 46 | pcqcl 15561 |
. . . . . 6
| |
| 47 | 46 | adantlr 751 |
. . . . 5
|
| 48 | 47 | 3impb 1260 |
. . . 4
|
| 49 | 25 | 3ad2ant1 1082 |
. . . 4
|
| 50 | expgt0 12893 |
. . . 4
| |
| 51 | 45, 48, 49, 50 | syl3anc 1326 |
. . 3
|
| 52 | eqeq1 2626 |
. . . . . . 7
| |
| 53 | oveq2 6658 |
. . . . . . . 8
| |
| 54 | 53 | oveq2d 6666 |
. . . . . . 7
|
| 55 | 52, 54 | ifbieq2d 4111 |
. . . . . 6
|
| 56 | ovex 6678 |
. . . . . . 7
| |
| 57 | 42, 56 | ifex 4156 |
. . . . . 6
|
| 58 | 55, 36, 57 | fvmpt 6282 |
. . . . 5
|
| 59 | 58 | 3ad2ant2 1083 |
. . . 4
|
| 60 | simp3 1063 |
. . . . . 6
| |
| 61 | 60 | neneqd 2799 |
. . . . 5
|
| 62 | 61 | iffalsed 4097 |
. . . 4
|
| 63 | 59, 62 | eqtrd 2656 |
. . 3
|
| 64 | 51, 63 | breqtrrd 4681 |
. 2
|
| 65 | pcqmul 15558 |
. . . . . 6
| |
| 66 | 65 | 3adant1r 1319 |
. . . . 5
|
| 67 | 66 | oveq2d 6666 |
. . . 4
|
| 68 | 21 | recnd 10068 |
. . . . . 6
|
| 69 | 68 | 3ad2ant1 1082 |
. . . . 5
|
| 70 | 27 | 3ad2ant1 1082 |
. . . . 5
|
| 71 | 47 | 3adant3 1081 |
. . . . 5
|
| 72 | simp1l 1085 |
. . . . . 6
| |
| 73 | simp3l 1089 |
. . . . . 6
| |
| 74 | simp3r 1090 |
. . . . . 6
| |
| 75 | pcqcl 15561 |
. . . . . 6
| |
| 76 | 72, 73, 74, 75 | syl12anc 1324 |
. . . . 5
|
| 77 | expaddz 12904 |
. . . . 5
| |
| 78 | 69, 70, 71, 76, 77 | syl22anc 1327 |
. . . 4
|
| 79 | 67, 78 | eqtrd 2656 |
. . 3
|
| 80 | simp2l 1087 |
. . . . . 6
| |
| 81 | qmulcl 11806 |
. . . . . 6
| |
| 82 | 80, 73, 81 | syl2anc 693 |
. . . . 5
|
| 83 | eqeq1 2626 |
. . . . . . 7
| |
| 84 | oveq2 6658 |
. . . . . . . 8
| |
| 85 | 84 | oveq2d 6666 |
. . . . . . 7
|
| 86 | 83, 85 | ifbieq2d 4111 |
. . . . . 6
|
| 87 | ovex 6678 |
. . . . . . 7
| |
| 88 | 42, 87 | ifex 4156 |
. . . . . 6
|
| 89 | 86, 36, 88 | fvmpt 6282 |
. . . . 5
|
| 90 | 82, 89 | syl 17 |
. . . 4
|
| 91 | qcn 11802 |
. . . . . . . 8
| |
| 92 | 80, 91 | syl 17 |
. . . . . . 7
|
| 93 | qcn 11802 |
. . . . . . . 8
| |
| 94 | 73, 93 | syl 17 |
. . . . . . 7
|
| 95 | simp2r 1088 |
. . . . . . 7
| |
| 96 | 92, 94, 95, 74 | mulne0d 10679 |
. . . . . 6
|
| 97 | 96 | neneqd 2799 |
. . . . 5
|
| 98 | 97 | iffalsed 4097 |
. . . 4
|
| 99 | 90, 98 | eqtrd 2656 |
. . 3
|
| 100 | 63 | 3expb 1266 |
. . . . 5
|
| 101 | 100 | 3adant3 1081 |
. . . 4
|
| 102 | eqeq1 2626 |
. . . . . . . 8
| |
| 103 | oveq2 6658 |
. . . . . . . . 9
| |
| 104 | 103 | oveq2d 6666 |
. . . . . . . 8
|
| 105 | 102, 104 | ifbieq2d 4111 |
. . . . . . 7
|
| 106 | ovex 6678 |
. . . . . . . 8
| |
| 107 | 42, 106 | ifex 4156 |
. . . . . . 7
|
| 108 | 105, 36, 107 | fvmpt 6282 |
. . . . . 6
|
| 109 | 73, 108 | syl 17 |
. . . . 5
|
| 110 | 74 | neneqd 2799 |
. . . . . 6
|
| 111 | 110 | iffalsed 4097 |
. . . . 5
|
| 112 | 109, 111 | eqtrd 2656 |
. . . 4
|
| 113 | 101, 112 | oveq12d 6668 |
. . 3
|
| 114 | 79, 99, 113 | 3eqtr4d 2666 |
. 2
|
| 115 | iftrue 4092 |
. . . . 5
| |
| 116 | 115 | breq1d 4663 |
. . . 4
|
| 117 | ifnefalse 4098 |
. . . . . 6
| |
| 118 | 117 | adantl 482 |
. . . . 5
|
| 119 | 71 | adantr 481 |
. . . . . . 7
|
| 120 | 119 | zred 11482 |
. . . . . 6
|
| 121 | 76 | adantr 481 |
. . . . . . 7
|
| 122 | 121 | zred 11482 |
. . . . . 6
|
| 123 | 21 | 3ad2ant1 1082 |
. . . . . . . . 9
|
| 124 | 123 | ad2antrr 762 |
. . . . . . . 8
|
| 125 | 70 | ad2antrr 762 |
. . . . . . . 8
|
| 126 | 72 | adantr 481 |
. . . . . . . . . 10
|
| 127 | qaddcl 11804 |
. . . . . . . . . . . 12
| |
| 128 | 80, 73, 127 | syl2anc 693 |
. . . . . . . . . . 11
|
| 129 | 128 | adantr 481 |
. . . . . . . . . 10
|
| 130 | simpr 477 |
. . . . . . . . . 10
| |
| 131 | pcqcl 15561 |
. . . . . . . . . 10
| |
| 132 | 126, 129, 130, 131 | syl12anc 1324 |
. . . . . . . . 9
|
| 133 | 132 | adantr 481 |
. . . . . . . 8
|
| 134 | 124, 125, 133 | reexpclzd 13034 |
. . . . . . 7
|
| 135 | 119 | adantr 481 |
. . . . . . . 8
|
| 136 | 124, 125, 135 | reexpclzd 13034 |
. . . . . . 7
|
| 137 | simpl1 1064 |
. . . . . . . . . . 11
| |
| 138 | 137, 21 | syl 17 |
. . . . . . . . . 10
|
| 139 | 137, 27 | syl 17 |
. . . . . . . . . 10
|
| 140 | 138, 139, 119 | reexpclzd 13034 |
. . . . . . . . 9
|
| 141 | 138, 139, 121 | reexpclzd 13034 |
. . . . . . . . 9
|
| 142 | 140, 141 | readdcld 10069 |
. . . . . . . 8
|
| 143 | 142 | adantr 481 |
. . . . . . 7
|
| 144 | 126 | adantr 481 |
. . . . . . . . 9
|
| 145 | 80 | ad2antrr 762 |
. . . . . . . . 9
|
| 146 | 73 | ad2antrr 762 |
. . . . . . . . 9
|
| 147 | simpr 477 |
. . . . . . . . 9
| |
| 148 | 144, 145, 146, 147 | pcadd 15593 |
. . . . . . . 8
|
| 149 | 137, 26 | syl 17 |
. . . . . . . . . . . 12
|
| 150 | 24 | simprd 479 |
. . . . . . . . . . . . 13
|
| 151 | 137, 150 | syl 17 |
. . . . . . . . . . . 12
|
| 152 | 149, 119, 132, 151 | ltexp2rd 13033 |
. . . . . . . . . . 11
|
| 153 | 152 | notbid 308 |
. . . . . . . . . 10
|
| 154 | 132 | zred 11482 |
. . . . . . . . . . 11
|
| 155 | 120, 154 | lenltd 10183 |
. . . . . . . . . 10
|
| 156 | 138, 139, 132 | reexpclzd 13034 |
. . . . . . . . . . 11
|
| 157 | 156, 140 | lenltd 10183 |
. . . . . . . . . 10
|
| 158 | 153, 155, 157 | 3bitr4d 300 |
. . . . . . . . 9
|
| 159 | 158 | biimpa 501 |
. . . . . . . 8
|
| 160 | 148, 159 | syldan 487 |
. . . . . . 7
|
| 161 | 26 | 3ad2ant1 1082 |
. . . . . . . . . . . 12
|
| 162 | 161, 76 | rpexpcld 13032 |
. . . . . . . . . . 11
|
| 163 | 162 | adantr 481 |
. . . . . . . . . 10
|
| 164 | 163 | rpge0d 11876 |
. . . . . . . . 9
|
| 165 | 140, 141 | addge01d 10615 |
. . . . . . . . 9
|
| 166 | 164, 165 | mpbid 222 |
. . . . . . . 8
|
| 167 | 166 | adantr 481 |
. . . . . . 7
|
| 168 | 134, 136, 143, 160, 167 | letrd 10194 |
. . . . . 6
|
| 169 | 156 | adantr 481 |
. . . . . . 7
|
| 170 | 141 | adantr 481 |
. . . . . . 7
|
| 171 | 142 | adantr 481 |
. . . . . . 7
|
| 172 | 126 | adantr 481 |
. . . . . . . . . 10
|
| 173 | 73 | ad2antrr 762 |
. . . . . . . . . 10
|
| 174 | 80 | ad2antrr 762 |
. . . . . . . . . 10
|
| 175 | simpr 477 |
. . . . . . . . . 10
| |
| 176 | 172, 173, 174, 175 | pcadd 15593 |
. . . . . . . . 9
|
| 177 | 92, 94 | addcomd 10238 |
. . . . . . . . . . 11
|
| 178 | 177 | oveq2d 6666 |
. . . . . . . . . 10
|
| 179 | 178 | ad2antrr 762 |
. . . . . . . . 9
|
| 180 | 176, 179 | breqtrrd 4681 |
. . . . . . . 8
|
| 181 | 149, 121, 132, 151 | ltexp2rd 13033 |
. . . . . . . . . . 11
|
| 182 | 181 | notbid 308 |
. . . . . . . . . 10
|
| 183 | 122, 154 | lenltd 10183 |
. . . . . . . . . 10
|
| 184 | 156, 141 | lenltd 10183 |
. . . . . . . . . 10
|
| 185 | 182, 183, 184 | 3bitr4d 300 |
. . . . . . . . 9
|
| 186 | 185 | biimpa 501 |
. . . . . . . 8
|
| 187 | 180, 186 | syldan 487 |
. . . . . . 7
|
| 188 | 161, 71 | rpexpcld 13032 |
. . . . . . . . . . 11
|
| 189 | 188 | adantr 481 |
. . . . . . . . . 10
|
| 190 | 189 | rpge0d 11876 |
. . . . . . . . 9
|
| 191 | 141, 140 | addge02d 10616 |
. . . . . . . . 9
|
| 192 | 190, 191 | mpbid 222 |
. . . . . . . 8
|
| 193 | 192 | adantr 481 |
. . . . . . 7
|
| 194 | 169, 170, 171, 187, 193 | letrd 10194 |
. . . . . 6
|
| 195 | 120, 122, 168, 194 | lecasei 10143 |
. . . . 5
|
| 196 | 118, 195 | eqbrtrd 4675 |
. . . 4
|
| 197 | 188, 162 | rpaddcld 11887 |
. . . . 5
|
| 198 | 197 | rpge0d 11876 |
. . . 4
|
| 199 | 116, 196, 198 | pm2.61ne 2879 |
. . 3
|
| 200 | eqeq1 2626 |
. . . . . 6
| |
| 201 | oveq2 6658 |
. . . . . . 7
| |
| 202 | 201 | oveq2d 6666 |
. . . . . 6
|
| 203 | 200, 202 | ifbieq2d 4111 |
. . . . 5
|
| 204 | ovex 6678 |
. . . . . 6
| |
| 205 | 42, 204 | ifex 4156 |
. . . . 5
|
| 206 | 203, 36, 205 | fvmpt 6282 |
. . . 4
|
| 207 | 128, 206 | syl 17 |
. . 3
|
| 208 | 101, 112 | oveq12d 6668 |
. . 3
|
| 209 | 199, 207, 208 | 3brtr4d 4685 |
. 2
|
| 210 | 2, 5, 9, 12, 14, 17, 37, 44, 64, 114, 209 | isabvd 18820 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 ax-pre-sup 10014 ax-addf 10015 ax-mulf 10016 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-tpos 7352 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-1o 7560 df-2o 7561 df-oadd 7564 df-er 7742 df-map 7859 df-en 7956 df-dom 7957 df-sdom 7958 df-fin 7959 df-sup 8348 df-inf 8349 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-div 10685 df-nn 11021 df-2 11079 df-3 11080 df-4 11081 df-5 11082 df-6 11083 df-7 11084 df-8 11085 df-9 11086 df-n0 11293 df-z 11378 df-dec 11494 df-uz 11688 df-q 11789 df-rp 11833 df-ioo 12179 df-ico 12181 df-fz 12327 df-fl 12593 df-mod 12669 df-seq 12802 df-exp 12861 df-cj 13839 df-re 13840 df-im 13841 df-sqrt 13975 df-abs 13976 df-dvds 14984 df-gcd 15217 df-prm 15386 df-pc 15542 df-struct 15859 df-ndx 15860 df-slot 15861 df-base 15863 df-sets 15864 df-ress 15865 df-plusg 15954 df-mulr 15955 df-starv 15956 df-tset 15960 df-ple 15961 df-ds 15964 df-unif 15965 df-0g 16102 df-mgm 17242 df-sgrp 17284 df-mnd 17295 df-grp 17425 df-minusg 17426 df-subg 17591 df-cmn 18195 df-mgp 18490 df-ur 18502 df-ring 18549 df-cring 18550 df-oppr 18623 df-dvdsr 18641 df-unit 18642 df-invr 18672 df-dvr 18683 df-drng 18749 df-subrg 18778 df-abv 18817 df-cnfld 19747 |
| This theorem is referenced by: padicabvf 25320 padicabvcxp 25321 |
| Copyright terms: Public domain | W3C validator |