MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  voliunlem2 Structured version   Visualization version   Unicode version

Theorem voliunlem2 23319
Description: Lemma for voliun 23322. (Contributed by Mario Carneiro, 20-Mar-2014.)
Hypotheses
Ref Expression
voliunlem.3  |-  ( ph  ->  F : NN --> dom  vol )
voliunlem.5  |-  ( ph  -> Disj  i  e.  NN  ( F `  i )
)
voliunlem.6  |-  H  =  ( n  e.  NN  |->  ( vol* `  (
x  i^i  ( F `  n ) ) ) )
Assertion
Ref Expression
voliunlem2  |-  ( ph  ->  U. ran  F  e. 
dom  vol )
Distinct variable groups:    i, n, x, F    ph, n, x
Allowed substitution hints:    ph( i)    H( x, i, n)

Proof of Theorem voliunlem2
Dummy variables  k 
z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 voliunlem.3 . . . . 5  |-  ( ph  ->  F : NN --> dom  vol )
2 frn 6053 . . . . 5  |-  ( F : NN --> dom  vol  ->  ran  F  C_  dom  vol )
31, 2syl 17 . . . 4  |-  ( ph  ->  ran  F  C_  dom  vol )
4 mblss 23299 . . . . . 6  |-  ( x  e.  dom  vol  ->  x 
C_  RR )
5 selpw 4165 . . . . . 6  |-  ( x  e.  ~P RR  <->  x  C_  RR )
64, 5sylibr 224 . . . . 5  |-  ( x  e.  dom  vol  ->  x  e.  ~P RR )
76ssriv 3607 . . . 4  |-  dom  vol  C_ 
~P RR
83, 7syl6ss 3615 . . 3  |-  ( ph  ->  ran  F  C_  ~P RR )
9 sspwuni 4611 . . 3  |-  ( ran 
F  C_  ~P RR  <->  U.
ran  F  C_  RR )
108, 9sylib 208 . 2  |-  ( ph  ->  U. ran  F  C_  RR )
11 elpwi 4168 . . . 4  |-  ( x  e.  ~P RR  ->  x 
C_  RR )
12 inundif 4046 . . . . . . . 8  |-  ( ( x  i^i  U. ran  F )  u.  ( x 
\  U. ran  F ) )  =  x
1312fveq2i 6194 . . . . . . 7  |-  ( vol* `  ( (
x  i^i  U. ran  F
)  u.  ( x 
\  U. ran  F ) ) )  =  ( vol* `  x
)
14 inss1 3833 . . . . . . . . 9  |-  ( x  i^i  U. ran  F
)  C_  x
15 simp2 1062 . . . . . . . . 9  |-  ( (
ph  /\  x  C_  RR  /\  ( vol* `  x )  e.  RR )  ->  x  C_  RR )
1614, 15syl5ss 3614 . . . . . . . 8  |-  ( (
ph  /\  x  C_  RR  /\  ( vol* `  x )  e.  RR )  ->  ( x  i^i  U. ran  F )  C_  RR )
17 ovolsscl 23254 . . . . . . . . . 10  |-  ( ( ( x  i^i  U. ran  F )  C_  x  /\  x  C_  RR  /\  ( vol* `  x
)  e.  RR )  ->  ( vol* `  ( x  i^i  U. ran  F ) )  e.  RR )
1814, 17mp3an1 1411 . . . . . . . . 9  |-  ( ( x  C_  RR  /\  ( vol* `  x )  e.  RR )  -> 
( vol* `  ( x  i^i  U. ran  F ) )  e.  RR )
19183adant1 1079 . . . . . . . 8  |-  ( (
ph  /\  x  C_  RR  /\  ( vol* `  x )  e.  RR )  ->  ( vol* `  ( x  i^i  U. ran  F ) )  e.  RR )
20 difss 3737 . . . . . . . . 9  |-  ( x 
\  U. ran  F ) 
C_  x
2120, 15syl5ss 3614 . . . . . . . 8  |-  ( (
ph  /\  x  C_  RR  /\  ( vol* `  x )  e.  RR )  ->  ( x  \  U. ran  F )  C_  RR )
22 ovolsscl 23254 . . . . . . . . . 10  |-  ( ( ( x  \  U. ran  F )  C_  x  /\  x  C_  RR  /\  ( vol* `  x
)  e.  RR )  ->  ( vol* `  ( x  \  U. ran  F ) )  e.  RR )
2320, 22mp3an1 1411 . . . . . . . . 9  |-  ( ( x  C_  RR  /\  ( vol* `  x )  e.  RR )  -> 
( vol* `  ( x  \  U. ran  F ) )  e.  RR )
24233adant1 1079 . . . . . . . 8  |-  ( (
ph  /\  x  C_  RR  /\  ( vol* `  x )  e.  RR )  ->  ( vol* `  ( x  \  U. ran  F ) )  e.  RR )
25 ovolun 23267 . . . . . . . 8  |-  ( ( ( ( x  i^i  U. ran  F )  C_  RR  /\  ( vol* `  ( x  i^i  U. ran  F ) )  e.  RR )  /\  (
( x  \  U. ran  F )  C_  RR  /\  ( vol* `  ( x  \  U. ran  F ) )  e.  RR ) )  ->  ( vol* `  ( ( x  i^i  U. ran  F )  u.  ( x 
\  U. ran  F ) ) )  <_  (
( vol* `  ( x  i^i  U. ran  F ) )  +  ( vol* `  (
x  \  U. ran  F
) ) ) )
2616, 19, 21, 24, 25syl22anc 1327 . . . . . . 7  |-  ( (
ph  /\  x  C_  RR  /\  ( vol* `  x )  e.  RR )  ->  ( vol* `  ( ( x  i^i  U. ran  F )  u.  ( x  \  U. ran  F ) ) )  <_  ( ( vol* `  ( x  i^i  U. ran  F ) )  +  ( vol* `  ( x  \ 
U. ran  F )
) ) )
2713, 26syl5eqbrr 4689 . . . . . 6  |-  ( (
ph  /\  x  C_  RR  /\  ( vol* `  x )  e.  RR )  ->  ( vol* `  x )  <_  (
( vol* `  ( x  i^i  U. ran  F ) )  +  ( vol* `  (
x  \  U. ran  F
) ) ) )
2819rexrd 10089 . . . . . . . 8  |-  ( (
ph  /\  x  C_  RR  /\  ( vol* `  x )  e.  RR )  ->  ( vol* `  ( x  i^i  U. ran  F ) )  e. 
RR* )
29 nnuz 11723 . . . . . . . . . . . 12  |-  NN  =  ( ZZ>= `  1 )
30 1zzd 11408 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  C_  RR  /\  ( vol* `  x )  e.  RR )  ->  1  e.  ZZ )
31 fveq2 6191 . . . . . . . . . . . . . . . . 17  |-  ( n  =  k  ->  ( F `  n )  =  ( F `  k ) )
3231ineq2d 3814 . . . . . . . . . . . . . . . 16  |-  ( n  =  k  ->  (
x  i^i  ( F `  n ) )  =  ( x  i^i  ( F `  k )
) )
3332fveq2d 6195 . . . . . . . . . . . . . . 15  |-  ( n  =  k  ->  ( vol* `  ( x  i^i  ( F `  n ) ) )  =  ( vol* `  ( x  i^i  ( F `  k )
) ) )
34 voliunlem.6 . . . . . . . . . . . . . . 15  |-  H  =  ( n  e.  NN  |->  ( vol* `  (
x  i^i  ( F `  n ) ) ) )
35 fvex 6201 . . . . . . . . . . . . . . 15  |-  ( vol* `  ( x  i^i  ( F `  k
) ) )  e. 
_V
3633, 34, 35fvmpt 6282 . . . . . . . . . . . . . 14  |-  ( k  e.  NN  ->  ( H `  k )  =  ( vol* `  ( x  i^i  ( F `  k )
) ) )
3736adantl 482 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  C_  RR  /\  ( vol* `  x )  e.  RR )  /\  k  e.  NN )  ->  ( H `  k )  =  ( vol* `  ( x  i^i  ( F `  k )
) ) )
38 inss1 3833 . . . . . . . . . . . . . . . 16  |-  ( x  i^i  ( F `  k ) )  C_  x
39 ovolsscl 23254 . . . . . . . . . . . . . . . 16  |-  ( ( ( x  i^i  ( F `  k )
)  C_  x  /\  x  C_  RR  /\  ( vol* `  x )  e.  RR )  -> 
( vol* `  ( x  i^i  ( F `  k )
) )  e.  RR )
4038, 39mp3an1 1411 . . . . . . . . . . . . . . 15  |-  ( ( x  C_  RR  /\  ( vol* `  x )  e.  RR )  -> 
( vol* `  ( x  i^i  ( F `  k )
) )  e.  RR )
41403adant1 1079 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  C_  RR  /\  ( vol* `  x )  e.  RR )  ->  ( vol* `  ( x  i^i  ( F `  k )
) )  e.  RR )
4241adantr 481 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  C_  RR  /\  ( vol* `  x )  e.  RR )  /\  k  e.  NN )  ->  ( vol* `  ( x  i^i  ( F `  k ) ) )  e.  RR )
4337, 42eqeltrd 2701 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  C_  RR  /\  ( vol* `  x )  e.  RR )  /\  k  e.  NN )  ->  ( H `  k )  e.  RR )
4429, 30, 43serfre 12830 . . . . . . . . . . 11  |-  ( (
ph  /\  x  C_  RR  /\  ( vol* `  x )  e.  RR )  ->  seq 1 (  +  ,  H ) : NN --> RR )
45 frn 6053 . . . . . . . . . . 11  |-  (  seq 1 (  +  ,  H ) : NN --> RR  ->  ran  seq 1
(  +  ,  H
)  C_  RR )
4644, 45syl 17 . . . . . . . . . 10  |-  ( (
ph  /\  x  C_  RR  /\  ( vol* `  x )  e.  RR )  ->  ran  seq 1
(  +  ,  H
)  C_  RR )
47 ressxr 10083 . . . . . . . . . 10  |-  RR  C_  RR*
4846, 47syl6ss 3615 . . . . . . . . 9  |-  ( (
ph  /\  x  C_  RR  /\  ( vol* `  x )  e.  RR )  ->  ran  seq 1
(  +  ,  H
)  C_  RR* )
49 supxrcl 12145 . . . . . . . . 9  |-  ( ran 
seq 1 (  +  ,  H )  C_  RR* 
->  sup ( ran  seq 1 (  +  ,  H ) ,  RR* ,  <  )  e.  RR* )
5048, 49syl 17 . . . . . . . 8  |-  ( (
ph  /\  x  C_  RR  /\  ( vol* `  x )  e.  RR )  ->  sup ( ran  seq 1 (  +  ,  H ) ,  RR* ,  <  )  e.  RR* )
51 simp3 1063 . . . . . . . . . 10  |-  ( (
ph  /\  x  C_  RR  /\  ( vol* `  x )  e.  RR )  ->  ( vol* `  x )  e.  RR )
5251, 24resubcld 10458 . . . . . . . . 9  |-  ( (
ph  /\  x  C_  RR  /\  ( vol* `  x )  e.  RR )  ->  ( ( vol* `  x )  -  ( vol* `  ( x  \  U. ran  F ) ) )  e.  RR )
5352rexrd 10089 . . . . . . . 8  |-  ( (
ph  /\  x  C_  RR  /\  ( vol* `  x )  e.  RR )  ->  ( ( vol* `  x )  -  ( vol* `  ( x  \  U. ran  F ) ) )  e.  RR* )
54 iunin2 4584 . . . . . . . . . . 11  |-  U_ n  e.  NN  ( x  i^i  ( F `  n
) )  =  ( x  i^i  U_ n  e.  NN  ( F `  n ) )
55 ffn 6045 . . . . . . . . . . . . . 14  |-  ( F : NN --> dom  vol  ->  F  Fn  NN )
56 fniunfv 6505 . . . . . . . . . . . . . 14  |-  ( F  Fn  NN  ->  U_ n  e.  NN  ( F `  n )  =  U. ran  F )
571, 55, 563syl 18 . . . . . . . . . . . . 13  |-  ( ph  ->  U_ n  e.  NN  ( F `  n )  =  U. ran  F
)
58573ad2ant1 1082 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  C_  RR  /\  ( vol* `  x )  e.  RR )  ->  U_ n  e.  NN  ( F `  n )  =  U. ran  F
)
5958ineq2d 3814 . . . . . . . . . . 11  |-  ( (
ph  /\  x  C_  RR  /\  ( vol* `  x )  e.  RR )  ->  ( x  i^i  U_ n  e.  NN  ( F `  n ) )  =  ( x  i^i  U. ran  F
) )
6054, 59syl5eq 2668 . . . . . . . . . 10  |-  ( (
ph  /\  x  C_  RR  /\  ( vol* `  x )  e.  RR )  ->  U_ n  e.  NN  ( x  i^i  ( F `  n )
)  =  ( x  i^i  U. ran  F
) )
6160fveq2d 6195 . . . . . . . . 9  |-  ( (
ph  /\  x  C_  RR  /\  ( vol* `  x )  e.  RR )  ->  ( vol* `  U_ n  e.  NN  ( x  i^i  ( F `  n )
) )  =  ( vol* `  (
x  i^i  U. ran  F
) ) )
62 eqid 2622 . . . . . . . . . 10  |-  seq 1
(  +  ,  H
)  =  seq 1
(  +  ,  H
)
63 inss1 3833 . . . . . . . . . . . 12  |-  ( x  i^i  ( F `  n ) )  C_  x
6463, 15syl5ss 3614 . . . . . . . . . . 11  |-  ( (
ph  /\  x  C_  RR  /\  ( vol* `  x )  e.  RR )  ->  ( x  i^i  ( F `  n
) )  C_  RR )
6564adantr 481 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  C_  RR  /\  ( vol* `  x )  e.  RR )  /\  n  e.  NN )  ->  (
x  i^i  ( F `  n ) )  C_  RR )
66 ovolsscl 23254 . . . . . . . . . . . . 13  |-  ( ( ( x  i^i  ( F `  n )
)  C_  x  /\  x  C_  RR  /\  ( vol* `  x )  e.  RR )  -> 
( vol* `  ( x  i^i  ( F `  n )
) )  e.  RR )
6763, 66mp3an1 1411 . . . . . . . . . . . 12  |-  ( ( x  C_  RR  /\  ( vol* `  x )  e.  RR )  -> 
( vol* `  ( x  i^i  ( F `  n )
) )  e.  RR )
68673adant1 1079 . . . . . . . . . . 11  |-  ( (
ph  /\  x  C_  RR  /\  ( vol* `  x )  e.  RR )  ->  ( vol* `  ( x  i^i  ( F `  n )
) )  e.  RR )
6968adantr 481 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  C_  RR  /\  ( vol* `  x )  e.  RR )  /\  n  e.  NN )  ->  ( vol* `  ( x  i^i  ( F `  n ) ) )  e.  RR )
7062, 34, 65, 69ovoliun 23273 . . . . . . . . 9  |-  ( (
ph  /\  x  C_  RR  /\  ( vol* `  x )  e.  RR )  ->  ( vol* `  U_ n  e.  NN  ( x  i^i  ( F `  n )
) )  <_  sup ( ran  seq 1 (  +  ,  H ) ,  RR* ,  <  )
)
7161, 70eqbrtrrd 4677 . . . . . . . 8  |-  ( (
ph  /\  x  C_  RR  /\  ( vol* `  x )  e.  RR )  ->  ( vol* `  ( x  i^i  U. ran  F ) )  <_  sup ( ran  seq 1
(  +  ,  H
) ,  RR* ,  <  ) )
7213ad2ant1 1082 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  C_  RR  /\  ( vol* `  x )  e.  RR )  ->  F : NN --> dom  vol )
73 voliunlem.5 . . . . . . . . . . . . . 14  |-  ( ph  -> Disj  i  e.  NN  ( F `  i )
)
74733ad2ant1 1082 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  C_  RR  /\  ( vol* `  x )  e.  RR )  -> Disj  i  e.  NN  ( F `  i )
)
7572, 74, 34, 15, 51voliunlem1 23318 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  C_  RR  /\  ( vol* `  x )  e.  RR )  /\  k  e.  NN )  ->  (
(  seq 1 (  +  ,  H ) `  k )  +  ( vol* `  (
x  \  U. ran  F
) ) )  <_ 
( vol* `  x ) )
7644ffvelrnda 6359 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  C_  RR  /\  ( vol* `  x )  e.  RR )  /\  k  e.  NN )  ->  (  seq 1 (  +  ,  H ) `  k
)  e.  RR )
7724adantr 481 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  C_  RR  /\  ( vol* `  x )  e.  RR )  /\  k  e.  NN )  ->  ( vol* `  ( x 
\  U. ran  F ) )  e.  RR )
78 simpl3 1066 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  C_  RR  /\  ( vol* `  x )  e.  RR )  /\  k  e.  NN )  ->  ( vol* `  x )  e.  RR )
79 leaddsub 10504 . . . . . . . . . . . . 13  |-  ( ( (  seq 1 (  +  ,  H ) `
 k )  e.  RR  /\  ( vol* `  ( x  \ 
U. ran  F )
)  e.  RR  /\  ( vol* `  x
)  e.  RR )  ->  ( ( (  seq 1 (  +  ,  H ) `  k )  +  ( vol* `  (
x  \  U. ran  F
) ) )  <_ 
( vol* `  x )  <->  (  seq 1 (  +  ,  H ) `  k
)  <_  ( ( vol* `  x )  -  ( vol* `  ( x  \  U. ran  F ) ) ) ) )
8076, 77, 78, 79syl3anc 1326 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  C_  RR  /\  ( vol* `  x )  e.  RR )  /\  k  e.  NN )  ->  (
( (  seq 1
(  +  ,  H
) `  k )  +  ( vol* `  ( x  \  U. ran  F ) ) )  <_  ( vol* `  x )  <->  (  seq 1 (  +  ,  H ) `  k
)  <_  ( ( vol* `  x )  -  ( vol* `  ( x  \  U. ran  F ) ) ) ) )
8175, 80mpbid 222 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  C_  RR  /\  ( vol* `  x )  e.  RR )  /\  k  e.  NN )  ->  (  seq 1 (  +  ,  H ) `  k
)  <_  ( ( vol* `  x )  -  ( vol* `  ( x  \  U. ran  F ) ) ) )
8281ralrimiva 2966 . . . . . . . . . 10  |-  ( (
ph  /\  x  C_  RR  /\  ( vol* `  x )  e.  RR )  ->  A. k  e.  NN  (  seq 1 (  +  ,  H ) `  k )  <_  (
( vol* `  x )  -  ( vol* `  ( x 
\  U. ran  F ) ) ) )
83 ffn 6045 . . . . . . . . . . 11  |-  (  seq 1 (  +  ,  H ) : NN --> RR  ->  seq 1 (  +  ,  H )  Fn  NN )
84 breq1 4656 . . . . . . . . . . . 12  |-  ( z  =  (  seq 1
(  +  ,  H
) `  k )  ->  ( z  <_  (
( vol* `  x )  -  ( vol* `  ( x 
\  U. ran  F ) ) )  <->  (  seq 1 (  +  ,  H ) `  k
)  <_  ( ( vol* `  x )  -  ( vol* `  ( x  \  U. ran  F ) ) ) ) )
8584ralrn 6362 . . . . . . . . . . 11  |-  (  seq 1 (  +  ,  H )  Fn  NN  ->  ( A. z  e. 
ran  seq 1 (  +  ,  H ) z  <_  ( ( vol* `  x )  -  ( vol* `  ( x  \  U. ran  F ) ) )  <->  A. k  e.  NN  (  seq 1 (  +  ,  H ) `  k )  <_  (
( vol* `  x )  -  ( vol* `  ( x 
\  U. ran  F ) ) ) ) )
8644, 83, 853syl 18 . . . . . . . . . 10  |-  ( (
ph  /\  x  C_  RR  /\  ( vol* `  x )  e.  RR )  ->  ( A. z  e.  ran  seq 1 (  +  ,  H ) z  <_  ( ( vol* `  x )  -  ( vol* `  ( x  \  U. ran  F ) ) )  <->  A. k  e.  NN  (  seq 1 (  +  ,  H ) `  k )  <_  (
( vol* `  x )  -  ( vol* `  ( x 
\  U. ran  F ) ) ) ) )
8782, 86mpbird 247 . . . . . . . . 9  |-  ( (
ph  /\  x  C_  RR  /\  ( vol* `  x )  e.  RR )  ->  A. z  e.  ran  seq 1 (  +  ,  H ) z  <_ 
( ( vol* `  x )  -  ( vol* `  ( x 
\  U. ran  F ) ) ) )
88 supxrleub 12156 . . . . . . . . . 10  |-  ( ( ran  seq 1 (  +  ,  H ) 
C_  RR*  /\  ( ( vol* `  x
)  -  ( vol* `  ( x  \ 
U. ran  F )
) )  e.  RR* )  ->  ( sup ( ran  seq 1 (  +  ,  H ) , 
RR* ,  <  )  <_ 
( ( vol* `  x )  -  ( vol* `  ( x 
\  U. ran  F ) ) )  <->  A. z  e.  ran  seq 1 (  +  ,  H ) z  <_  ( ( vol* `  x )  -  ( vol* `  ( x  \  U. ran  F ) ) ) ) )
8948, 53, 88syl2anc 693 . . . . . . . . 9  |-  ( (
ph  /\  x  C_  RR  /\  ( vol* `  x )  e.  RR )  ->  ( sup ( ran  seq 1 (  +  ,  H ) , 
RR* ,  <  )  <_ 
( ( vol* `  x )  -  ( vol* `  ( x 
\  U. ran  F ) ) )  <->  A. z  e.  ran  seq 1 (  +  ,  H ) z  <_  ( ( vol* `  x )  -  ( vol* `  ( x  \  U. ran  F ) ) ) ) )
9087, 89mpbird 247 . . . . . . . 8  |-  ( (
ph  /\  x  C_  RR  /\  ( vol* `  x )  e.  RR )  ->  sup ( ran  seq 1 (  +  ,  H ) ,  RR* ,  <  )  <_  (
( vol* `  x )  -  ( vol* `  ( x 
\  U. ran  F ) ) ) )
9128, 50, 53, 71, 90xrletrd 11993 . . . . . . 7  |-  ( (
ph  /\  x  C_  RR  /\  ( vol* `  x )  e.  RR )  ->  ( vol* `  ( x  i^i  U. ran  F ) )  <_ 
( ( vol* `  x )  -  ( vol* `  ( x 
\  U. ran  F ) ) ) )
92 leaddsub 10504 . . . . . . . 8  |-  ( ( ( vol* `  ( x  i^i  U. ran  F ) )  e.  RR  /\  ( vol* `  ( x  \  U. ran  F ) )  e.  RR  /\  ( vol* `  x )  e.  RR )  ->  ( ( ( vol* `  (
x  i^i  U. ran  F
) )  +  ( vol* `  (
x  \  U. ran  F
) ) )  <_ 
( vol* `  x )  <->  ( vol* `  ( x  i^i  U. ran  F ) )  <_  ( ( vol* `  x )  -  ( vol* `  ( x  \  U. ran  F ) ) ) ) )
9319, 24, 51, 92syl3anc 1326 . . . . . . 7  |-  ( (
ph  /\  x  C_  RR  /\  ( vol* `  x )  e.  RR )  ->  ( ( ( vol* `  (
x  i^i  U. ran  F
) )  +  ( vol* `  (
x  \  U. ran  F
) ) )  <_ 
( vol* `  x )  <->  ( vol* `  ( x  i^i  U. ran  F ) )  <_  ( ( vol* `  x )  -  ( vol* `  ( x  \  U. ran  F ) ) ) ) )
9491, 93mpbird 247 . . . . . 6  |-  ( (
ph  /\  x  C_  RR  /\  ( vol* `  x )  e.  RR )  ->  ( ( vol* `  ( x  i^i  U. ran  F ) )  +  ( vol* `  ( x  \ 
U. ran  F )
) )  <_  ( vol* `  x ) )
9519, 24readdcld 10069 . . . . . . 7  |-  ( (
ph  /\  x  C_  RR  /\  ( vol* `  x )  e.  RR )  ->  ( ( vol* `  ( x  i^i  U. ran  F ) )  +  ( vol* `  ( x  \ 
U. ran  F )
) )  e.  RR )
9651, 95letri3d 10179 . . . . . 6  |-  ( (
ph  /\  x  C_  RR  /\  ( vol* `  x )  e.  RR )  ->  ( ( vol* `  x )  =  ( ( vol* `  ( x  i^i  U. ran  F ) )  +  ( vol* `  ( x  \ 
U. ran  F )
) )  <->  ( ( vol* `  x )  <_  ( ( vol* `  ( x  i^i  U. ran  F ) )  +  ( vol* `  ( x  \ 
U. ran  F )
) )  /\  (
( vol* `  ( x  i^i  U. ran  F ) )  +  ( vol* `  (
x  \  U. ran  F
) ) )  <_ 
( vol* `  x ) ) ) )
9727, 94, 96mpbir2and 957 . . . . 5  |-  ( (
ph  /\  x  C_  RR  /\  ( vol* `  x )  e.  RR )  ->  ( vol* `  x )  =  ( ( vol* `  ( x  i^i  U. ran  F ) )  +  ( vol* `  (
x  \  U. ran  F
) ) ) )
98973expia 1267 . . . 4  |-  ( (
ph  /\  x  C_  RR )  ->  ( ( vol* `  x )  e.  RR  ->  ( vol* `  x )  =  ( ( vol* `  ( x  i^i  U. ran  F ) )  +  ( vol* `  ( x  \  U. ran  F ) ) ) ) )
9911, 98sylan2 491 . . 3  |-  ( (
ph  /\  x  e.  ~P RR )  ->  (
( vol* `  x )  e.  RR  ->  ( vol* `  x )  =  ( ( vol* `  ( x  i^i  U. ran  F ) )  +  ( vol* `  (
x  \  U. ran  F
) ) ) ) )
10099ralrimiva 2966 . 2  |-  ( ph  ->  A. x  e.  ~P  RR ( ( vol* `  x )  e.  RR  ->  ( vol* `  x )  =  ( ( vol* `  ( x  i^i  U. ran  F ) )  +  ( vol* `  (
x  \  U. ran  F
) ) ) ) )
101 ismbl 23294 . 2  |-  ( U. ran  F  e.  dom  vol  <->  ( U. ran  F  C_  RR  /\ 
A. x  e.  ~P  RR ( ( vol* `  x )  e.  RR  ->  ( vol* `  x )  =  ( ( vol* `  ( x  i^i  U. ran  F ) )  +  ( vol* `  (
x  \  U. ran  F
) ) ) ) ) )
10210, 100, 101sylanbrc 698 1  |-  ( ph  ->  U. ran  F  e. 
dom  vol )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912    \ cdif 3571    u. cun 3572    i^i cin 3573    C_ wss 3574   ~Pcpw 4158   U.cuni 4436   U_ciun 4520  Disj wdisj 4620   class class class wbr 4653    |-> cmpt 4729   dom cdm 5114   ran crn 5115    Fn wfn 5883   -->wf 5884   ` cfv 5888  (class class class)co 6650   supcsup 8346   RRcr 9935   1c1 9937    + caddc 9939   RR*cxr 10073    < clt 10074    <_ cle 10075    - cmin 10266   NNcn 11020    seqcseq 12801   vol*covol 23231   volcvol 23232
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cc 9257  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-disj 4621  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-q 11789  df-rp 11833  df-ioo 12179  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-rlim 14220  df-sum 14417  df-ovol 23233  df-vol 23234
This theorem is referenced by:  voliunlem3  23320  iunmbl  23321
  Copyright terms: Public domain W3C validator