Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  kercvrlsm Structured version   Visualization version   Unicode version

Theorem kercvrlsm 37653
Description: The domain of a linear function is the subspace sum of the kernel and any subspace which covers the range. (Contributed by Stefan O'Rear, 24-Jan-2015.) (Revised by Stefan O'Rear, 6-May-2015.)
Hypotheses
Ref Expression
kercvrlsm.u  |-  U  =  ( LSubSp `  S )
kercvrlsm.p  |-  .(+)  =  (
LSSum `  S )
kercvrlsm.z  |-  .0.  =  ( 0g `  T )
kercvrlsm.k  |-  K  =  ( `' F " {  .0.  } )
kercvrlsm.b  |-  B  =  ( Base `  S
)
kercvrlsm.f  |-  ( ph  ->  F  e.  ( S LMHom 
T ) )
kercvrlsm.d  |-  ( ph  ->  D  e.  U )
kercvrlsm.cv  |-  ( ph  ->  ( F " D
)  =  ran  F
)
Assertion
Ref Expression
kercvrlsm  |-  ( ph  ->  ( K  .(+)  D )  =  B )

Proof of Theorem kercvrlsm
Dummy variables  a 
b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 kercvrlsm.f . . . . 5  |-  ( ph  ->  F  e.  ( S LMHom 
T ) )
2 lmhmlmod1 19033 . . . . 5  |-  ( F  e.  ( S LMHom  T
)  ->  S  e.  LMod )
31, 2syl 17 . . . 4  |-  ( ph  ->  S  e.  LMod )
4 kercvrlsm.k . . . . . 6  |-  K  =  ( `' F " {  .0.  } )
5 kercvrlsm.z . . . . . 6  |-  .0.  =  ( 0g `  T )
6 kercvrlsm.u . . . . . 6  |-  U  =  ( LSubSp `  S )
74, 5, 6lmhmkerlss 19051 . . . . 5  |-  ( F  e.  ( S LMHom  T
)  ->  K  e.  U )
81, 7syl 17 . . . 4  |-  ( ph  ->  K  e.  U )
9 kercvrlsm.d . . . 4  |-  ( ph  ->  D  e.  U )
10 kercvrlsm.p . . . . 5  |-  .(+)  =  (
LSSum `  S )
116, 10lsmcl 19083 . . . 4  |-  ( ( S  e.  LMod  /\  K  e.  U  /\  D  e.  U )  ->  ( K  .(+)  D )  e.  U )
123, 8, 9, 11syl3anc 1326 . . 3  |-  ( ph  ->  ( K  .(+)  D )  e.  U )
13 kercvrlsm.b . . . 4  |-  B  =  ( Base `  S
)
1413, 6lssss 18937 . . 3  |-  ( ( K  .(+)  D )  e.  U  ->  ( K 
.(+)  D )  C_  B
)
1512, 14syl 17 . 2  |-  ( ph  ->  ( K  .(+)  D ) 
C_  B )
16 eqid 2622 . . . . . . . . . . 11  |-  ( Base `  T )  =  (
Base `  T )
1713, 16lmhmf 19034 . . . . . . . . . 10  |-  ( F  e.  ( S LMHom  T
)  ->  F : B
--> ( Base `  T
) )
181, 17syl 17 . . . . . . . . 9  |-  ( ph  ->  F : B --> ( Base `  T ) )
19 ffn 6045 . . . . . . . . 9  |-  ( F : B --> ( Base `  T )  ->  F  Fn  B )
2018, 19syl 17 . . . . . . . 8  |-  ( ph  ->  F  Fn  B )
21 fnfvelrn 6356 . . . . . . . 8  |-  ( ( F  Fn  B  /\  a  e.  B )  ->  ( F `  a
)  e.  ran  F
)
2220, 21sylan 488 . . . . . . 7  |-  ( (
ph  /\  a  e.  B )  ->  ( F `  a )  e.  ran  F )
23 kercvrlsm.cv . . . . . . . 8  |-  ( ph  ->  ( F " D
)  =  ran  F
)
2423adantr 481 . . . . . . 7  |-  ( (
ph  /\  a  e.  B )  ->  ( F " D )  =  ran  F )
2522, 24eleqtrrd 2704 . . . . . 6  |-  ( (
ph  /\  a  e.  B )  ->  ( F `  a )  e.  ( F " D
) )
2620adantr 481 . . . . . . 7  |-  ( (
ph  /\  a  e.  B )  ->  F  Fn  B )
2713, 6lssss 18937 . . . . . . . . 9  |-  ( D  e.  U  ->  D  C_  B )
289, 27syl 17 . . . . . . . 8  |-  ( ph  ->  D  C_  B )
2928adantr 481 . . . . . . 7  |-  ( (
ph  /\  a  e.  B )  ->  D  C_  B )
30 fvelimab 6253 . . . . . . 7  |-  ( ( F  Fn  B  /\  D  C_  B )  -> 
( ( F `  a )  e.  ( F " D )  <->  E. b  e.  D  ( F `  b )  =  ( F `  a ) ) )
3126, 29, 30syl2anc 693 . . . . . 6  |-  ( (
ph  /\  a  e.  B )  ->  (
( F `  a
)  e.  ( F
" D )  <->  E. b  e.  D  ( F `  b )  =  ( F `  a ) ) )
3225, 31mpbid 222 . . . . 5  |-  ( (
ph  /\  a  e.  B )  ->  E. b  e.  D  ( F `  b )  =  ( F `  a ) )
33 lmodgrp 18870 . . . . . . . . . . . . 13  |-  ( S  e.  LMod  ->  S  e. 
Grp )
343, 33syl 17 . . . . . . . . . . . 12  |-  ( ph  ->  S  e.  Grp )
3534adantr 481 . . . . . . . . . . 11  |-  ( (
ph  /\  ( a  e.  B  /\  b  e.  D ) )  ->  S  e.  Grp )
36 simprl 794 . . . . . . . . . . 11  |-  ( (
ph  /\  ( a  e.  B  /\  b  e.  D ) )  -> 
a  e.  B )
3728sselda 3603 . . . . . . . . . . . 12  |-  ( (
ph  /\  b  e.  D )  ->  b  e.  B )
3837adantrl 752 . . . . . . . . . . 11  |-  ( (
ph  /\  ( a  e.  B  /\  b  e.  D ) )  -> 
b  e.  B )
39 eqid 2622 . . . . . . . . . . . 12  |-  ( +g  `  S )  =  ( +g  `  S )
40 eqid 2622 . . . . . . . . . . . 12  |-  ( -g `  S )  =  (
-g `  S )
4113, 39, 40grpnpcan 17507 . . . . . . . . . . 11  |-  ( ( S  e.  Grp  /\  a  e.  B  /\  b  e.  B )  ->  ( ( a (
-g `  S )
b ) ( +g  `  S ) b )  =  a )
4235, 36, 38, 41syl3anc 1326 . . . . . . . . . 10  |-  ( (
ph  /\  ( a  e.  B  /\  b  e.  D ) )  -> 
( ( a (
-g `  S )
b ) ( +g  `  S ) b )  =  a )
4342adantr 481 . . . . . . . . 9  |-  ( ( ( ph  /\  (
a  e.  B  /\  b  e.  D )
)  /\  ( F `  b )  =  ( F `  a ) )  ->  ( (
a ( -g `  S
) b ) ( +g  `  S ) b )  =  a )
443ad2antrr 762 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
a  e.  B  /\  b  e.  D )
)  /\  ( F `  b )  =  ( F `  a ) )  ->  S  e.  LMod )
4513, 6lssss 18937 . . . . . . . . . . . 12  |-  ( K  e.  U  ->  K  C_  B )
468, 45syl 17 . . . . . . . . . . 11  |-  ( ph  ->  K  C_  B )
4746ad2antrr 762 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
a  e.  B  /\  b  e.  D )
)  /\  ( F `  b )  =  ( F `  a ) )  ->  K  C_  B
)
4828ad2antrr 762 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
a  e.  B  /\  b  e.  D )
)  /\  ( F `  b )  =  ( F `  a ) )  ->  D  C_  B
)
49 eqcom 2629 . . . . . . . . . . . 12  |-  ( ( F `  b )  =  ( F `  a )  <->  ( F `  a )  =  ( F `  b ) )
50 lmghm 19031 . . . . . . . . . . . . . . 15  |-  ( F  e.  ( S LMHom  T
)  ->  F  e.  ( S  GrpHom  T ) )
511, 50syl 17 . . . . . . . . . . . . . 14  |-  ( ph  ->  F  e.  ( S 
GrpHom  T ) )
5251adantr 481 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( a  e.  B  /\  b  e.  D ) )  ->  F  e.  ( S  GrpHom  T ) )
5313, 5, 4, 40ghmeqker 17687 . . . . . . . . . . . . 13  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  a  e.  B  /\  b  e.  B )  ->  (
( F `  a
)  =  ( F `
 b )  <->  ( a
( -g `  S ) b )  e.  K
) )
5452, 36, 38, 53syl3anc 1326 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( a  e.  B  /\  b  e.  D ) )  -> 
( ( F `  a )  =  ( F `  b )  <-> 
( a ( -g `  S ) b )  e.  K ) )
5549, 54syl5bb 272 . . . . . . . . . . 11  |-  ( (
ph  /\  ( a  e.  B  /\  b  e.  D ) )  -> 
( ( F `  b )  =  ( F `  a )  <-> 
( a ( -g `  S ) b )  e.  K ) )
5655biimpa 501 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
a  e.  B  /\  b  e.  D )
)  /\  ( F `  b )  =  ( F `  a ) )  ->  ( a
( -g `  S ) b )  e.  K
)
57 simplrr 801 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
a  e.  B  /\  b  e.  D )
)  /\  ( F `  b )  =  ( F `  a ) )  ->  b  e.  D )
5813, 39, 10lsmelvalix 18056 . . . . . . . . . 10  |-  ( ( ( S  e.  LMod  /\  K  C_  B  /\  D  C_  B )  /\  ( ( a (
-g `  S )
b )  e.  K  /\  b  e.  D
) )  ->  (
( a ( -g `  S ) b ) ( +g  `  S
) b )  e.  ( K  .(+)  D ) )
5944, 47, 48, 56, 57, 58syl32anc 1334 . . . . . . . . 9  |-  ( ( ( ph  /\  (
a  e.  B  /\  b  e.  D )
)  /\  ( F `  b )  =  ( F `  a ) )  ->  ( (
a ( -g `  S
) b ) ( +g  `  S ) b )  e.  ( K  .(+)  D )
)
6043, 59eqeltrrd 2702 . . . . . . . 8  |-  ( ( ( ph  /\  (
a  e.  B  /\  b  e.  D )
)  /\  ( F `  b )  =  ( F `  a ) )  ->  a  e.  ( K  .(+)  D ) )
6160ex 450 . . . . . . 7  |-  ( (
ph  /\  ( a  e.  B  /\  b  e.  D ) )  -> 
( ( F `  b )  =  ( F `  a )  ->  a  e.  ( K  .(+)  D )
) )
6261anassrs 680 . . . . . 6  |-  ( ( ( ph  /\  a  e.  B )  /\  b  e.  D )  ->  (
( F `  b
)  =  ( F `
 a )  -> 
a  e.  ( K 
.(+)  D ) ) )
6362rexlimdva 3031 . . . . 5  |-  ( (
ph  /\  a  e.  B )  ->  ( E. b  e.  D  ( F `  b )  =  ( F `  a )  ->  a  e.  ( K  .(+)  D ) ) )
6432, 63mpd 15 . . . 4  |-  ( (
ph  /\  a  e.  B )  ->  a  e.  ( K  .(+)  D ) )
6564ex 450 . . 3  |-  ( ph  ->  ( a  e.  B  ->  a  e.  ( K 
.(+)  D ) ) )
6665ssrdv 3609 . 2  |-  ( ph  ->  B  C_  ( K  .(+) 
D ) )
6715, 66eqssd 3620 1  |-  ( ph  ->  ( K  .(+)  D )  =  B )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   E.wrex 2913    C_ wss 3574   {csn 4177   `'ccnv 5113   ran crn 5115   "cima 5117    Fn wfn 5883   -->wf 5884   ` cfv 5888  (class class class)co 6650   Basecbs 15857   +g cplusg 15941   0gc0g 16100   Grpcgrp 17422   -gcsg 17424    GrpHom cghm 17657   LSSumclsm 18049   LModclmod 18863   LSubSpclss 18932   LMHom clmhm 19019
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-0g 16102  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-grp 17425  df-minusg 17426  df-sbg 17427  df-subg 17591  df-ghm 17658  df-cntz 17750  df-lsm 18051  df-cmn 18195  df-abl 18196  df-mgp 18490  df-ur 18502  df-ring 18549  df-lmod 18865  df-lss 18933  df-lmhm 19022
This theorem is referenced by:  lmhmfgsplit  37656
  Copyright terms: Public domain W3C validator