Users' Mathboxes Mathbox for Asger C. Ipsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  knoppndvlem7 Structured version   Visualization version   Unicode version

Theorem knoppndvlem7 32509
Description: Lemma for knoppndv 32525. (Contributed by Asger C. Ipsen, 15-Jun-2021.) (Revised by Asger C. Ipsen, 5-Jul-2021.)
Hypotheses
Ref Expression
knoppndvlem7.t  |-  T  =  ( x  e.  RR  |->  ( abs `  ( ( |_ `  ( x  +  ( 1  / 
2 ) ) )  -  x ) ) )
knoppndvlem7.f  |-  F  =  ( y  e.  RR  |->  ( n  e.  NN0  |->  ( ( C ^
n )  x.  ( T `  ( (
( 2  x.  N
) ^ n )  x.  y ) ) ) ) )
knoppndvlem7.a  |-  A  =  ( ( ( ( 2  x.  N ) ^ -u J )  /  2 )  x.  M )
knoppndvlem7.j  |-  ( ph  ->  J  e.  NN0 )
knoppndvlem7.m  |-  ( ph  ->  M  e.  ZZ )
knoppndvlem7.n  |-  ( ph  ->  N  e.  NN )
Assertion
Ref Expression
knoppndvlem7  |-  ( ph  ->  ( ( F `  A ) `  J
)  =  ( ( C ^ J )  x.  ( T `  ( M  /  2
) ) ) )
Distinct variable groups:    A, n, y    C, n, y    n, J    n, N, y    T, n, y    ph, n, y
Allowed substitution hints:    ph( x)    A( x)    C( x)    T( x)    F( x, y, n)    J( x, y)    M( x, y, n)    N( x)

Proof of Theorem knoppndvlem7
StepHypRef Expression
1 knoppndvlem7.f . . 3  |-  F  =  ( y  e.  RR  |->  ( n  e.  NN0  |->  ( ( C ^
n )  x.  ( T `  ( (
( 2  x.  N
) ^ n )  x.  y ) ) ) ) )
2 knoppndvlem7.a . . . . 5  |-  A  =  ( ( ( ( 2  x.  N ) ^ -u J )  /  2 )  x.  M )
32a1i 11 . . . 4  |-  ( ph  ->  A  =  ( ( ( ( 2  x.  N ) ^ -u J
)  /  2 )  x.  M ) )
4 knoppndvlem7.n . . . . 5  |-  ( ph  ->  N  e.  NN )
5 knoppndvlem7.j . . . . . 6  |-  ( ph  ->  J  e.  NN0 )
65nn0zd 11480 . . . . 5  |-  ( ph  ->  J  e.  ZZ )
7 knoppndvlem7.m . . . . 5  |-  ( ph  ->  M  e.  ZZ )
84, 6, 7knoppndvlem1 32503 . . . 4  |-  ( ph  ->  ( ( ( ( 2  x.  N ) ^ -u J )  /  2 )  x.  M )  e.  RR )
93, 8eqeltrd 2701 . . 3  |-  ( ph  ->  A  e.  RR )
101, 9, 5knoppcnlem1 32483 . 2  |-  ( ph  ->  ( ( F `  A ) `  J
)  =  ( ( C ^ J )  x.  ( T `  ( ( ( 2  x.  N ) ^ J )  x.  A
) ) ) )
112oveq2i 6661 . . . . . 6  |-  ( ( ( 2  x.  N
) ^ J )  x.  A )  =  ( ( ( 2  x.  N ) ^ J )  x.  (
( ( ( 2  x.  N ) ^ -u J )  /  2
)  x.  M ) )
1211a1i 11 . . . . 5  |-  ( ph  ->  ( ( ( 2  x.  N ) ^ J )  x.  A
)  =  ( ( ( 2  x.  N
) ^ J )  x.  ( ( ( ( 2  x.  N
) ^ -u J
)  /  2 )  x.  M ) ) )
13 2cnd 11093 . . . . . . . . . 10  |-  ( ph  ->  2  e.  CC )
14 nnz 11399 . . . . . . . . . . . 12  |-  ( N  e.  NN  ->  N  e.  ZZ )
154, 14syl 17 . . . . . . . . . . 11  |-  ( ph  ->  N  e.  ZZ )
1615zcnd 11483 . . . . . . . . . 10  |-  ( ph  ->  N  e.  CC )
1713, 16mulcld 10060 . . . . . . . . 9  |-  ( ph  ->  ( 2  x.  N
)  e.  CC )
1817, 5expcld 13008 . . . . . . . 8  |-  ( ph  ->  ( ( 2  x.  N ) ^ J
)  e.  CC )
19 2ne0 11113 . . . . . . . . . . . 12  |-  2  =/=  0
2019a1i 11 . . . . . . . . . . 11  |-  ( ph  ->  2  =/=  0 )
21 0red 10041 . . . . . . . . . . . . 13  |-  ( ph  ->  0  e.  RR )
22 1red 10055 . . . . . . . . . . . . . 14  |-  ( ph  ->  1  e.  RR )
2315zred 11482 . . . . . . . . . . . . . 14  |-  ( ph  ->  N  e.  RR )
24 0lt1 10550 . . . . . . . . . . . . . . 15  |-  0  <  1
2524a1i 11 . . . . . . . . . . . . . 14  |-  ( ph  ->  0  <  1 )
26 nnge1 11046 . . . . . . . . . . . . . . 15  |-  ( N  e.  NN  ->  1  <_  N )
274, 26syl 17 . . . . . . . . . . . . . 14  |-  ( ph  ->  1  <_  N )
2821, 22, 23, 25, 27ltletrd 10197 . . . . . . . . . . . . 13  |-  ( ph  ->  0  <  N )
2921, 28ltned 10173 . . . . . . . . . . . 12  |-  ( ph  ->  0  =/=  N )
3029necomd 2849 . . . . . . . . . . 11  |-  ( ph  ->  N  =/=  0 )
3113, 16, 20, 30mulne0d 10679 . . . . . . . . . 10  |-  ( ph  ->  ( 2  x.  N
)  =/=  0 )
326znegcld 11484 . . . . . . . . . 10  |-  ( ph  -> 
-u J  e.  ZZ )
3317, 31, 32expclzd 13013 . . . . . . . . 9  |-  ( ph  ->  ( ( 2  x.  N ) ^ -u J
)  e.  CC )
3433, 13, 20divcld 10801 . . . . . . . 8  |-  ( ph  ->  ( ( ( 2  x.  N ) ^ -u J )  /  2
)  e.  CC )
357zcnd 11483 . . . . . . . 8  |-  ( ph  ->  M  e.  CC )
3618, 34, 35mulassd 10063 . . . . . . 7  |-  ( ph  ->  ( ( ( ( 2  x.  N ) ^ J )  x.  ( ( ( 2  x.  N ) ^ -u J )  /  2
) )  x.  M
)  =  ( ( ( 2  x.  N
) ^ J )  x.  ( ( ( ( 2  x.  N
) ^ -u J
)  /  2 )  x.  M ) ) )
3736eqcomd 2628 . . . . . 6  |-  ( ph  ->  ( ( ( 2  x.  N ) ^ J )  x.  (
( ( ( 2  x.  N ) ^ -u J )  /  2
)  x.  M ) )  =  ( ( ( ( 2  x.  N ) ^ J
)  x.  ( ( ( 2  x.  N
) ^ -u J
)  /  2 ) )  x.  M ) )
3818, 33, 13, 20divassd 10836 . . . . . . . . 9  |-  ( ph  ->  ( ( ( ( 2  x.  N ) ^ J )  x.  ( ( 2  x.  N ) ^ -u J
) )  /  2
)  =  ( ( ( 2  x.  N
) ^ J )  x.  ( ( ( 2  x.  N ) ^ -u J )  /  2 ) ) )
3938eqcomd 2628 . . . . . . . 8  |-  ( ph  ->  ( ( ( 2  x.  N ) ^ J )  x.  (
( ( 2  x.  N ) ^ -u J
)  /  2 ) )  =  ( ( ( ( 2  x.  N ) ^ J
)  x.  ( ( 2  x.  N ) ^ -u J ) )  /  2 ) )
4017, 31, 6expnegd 13015 . . . . . . . . . . 11  |-  ( ph  ->  ( ( 2  x.  N ) ^ -u J
)  =  ( 1  /  ( ( 2  x.  N ) ^ J ) ) )
4140oveq2d 6666 . . . . . . . . . 10  |-  ( ph  ->  ( ( ( 2  x.  N ) ^ J )  x.  (
( 2  x.  N
) ^ -u J
) )  =  ( ( ( 2  x.  N ) ^ J
)  x.  ( 1  /  ( ( 2  x.  N ) ^ J ) ) ) )
4217, 31, 6expne0d 13014 . . . . . . . . . . 11  |-  ( ph  ->  ( ( 2  x.  N ) ^ J
)  =/=  0 )
4318, 42recidd 10796 . . . . . . . . . 10  |-  ( ph  ->  ( ( ( 2  x.  N ) ^ J )  x.  (
1  /  ( ( 2  x.  N ) ^ J ) ) )  =  1 )
4441, 43eqtrd 2656 . . . . . . . . 9  |-  ( ph  ->  ( ( ( 2  x.  N ) ^ J )  x.  (
( 2  x.  N
) ^ -u J
) )  =  1 )
4544oveq1d 6665 . . . . . . . 8  |-  ( ph  ->  ( ( ( ( 2  x.  N ) ^ J )  x.  ( ( 2  x.  N ) ^ -u J
) )  /  2
)  =  ( 1  /  2 ) )
4639, 45eqtrd 2656 . . . . . . 7  |-  ( ph  ->  ( ( ( 2  x.  N ) ^ J )  x.  (
( ( 2  x.  N ) ^ -u J
)  /  2 ) )  =  ( 1  /  2 ) )
4746oveq1d 6665 . . . . . 6  |-  ( ph  ->  ( ( ( ( 2  x.  N ) ^ J )  x.  ( ( ( 2  x.  N ) ^ -u J )  /  2
) )  x.  M
)  =  ( ( 1  /  2 )  x.  M ) )
4835, 13, 20divrec2d 10805 . . . . . . 7  |-  ( ph  ->  ( M  /  2
)  =  ( ( 1  /  2 )  x.  M ) )
4948eqcomd 2628 . . . . . 6  |-  ( ph  ->  ( ( 1  / 
2 )  x.  M
)  =  ( M  /  2 ) )
5037, 47, 493eqtrd 2660 . . . . 5  |-  ( ph  ->  ( ( ( 2  x.  N ) ^ J )  x.  (
( ( ( 2  x.  N ) ^ -u J )  /  2
)  x.  M ) )  =  ( M  /  2 ) )
5112, 50eqtrd 2656 . . . 4  |-  ( ph  ->  ( ( ( 2  x.  N ) ^ J )  x.  A
)  =  ( M  /  2 ) )
5251fveq2d 6195 . . 3  |-  ( ph  ->  ( T `  (
( ( 2  x.  N ) ^ J
)  x.  A ) )  =  ( T `
 ( M  / 
2 ) ) )
5352oveq2d 6666 . 2  |-  ( ph  ->  ( ( C ^ J )  x.  ( T `  ( (
( 2  x.  N
) ^ J )  x.  A ) ) )  =  ( ( C ^ J )  x.  ( T `  ( M  /  2
) ) ) )
5410, 53eqtrd 2656 1  |-  ( ph  ->  ( ( F `  A ) `  J
)  =  ( ( C ^ J )  x.  ( T `  ( M  /  2
) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1483    e. wcel 1990    =/= wne 2794   class class class wbr 4653    |-> cmpt 4729   ` cfv 5888  (class class class)co 6650   RRcr 9935   0cc0 9936   1c1 9937    + caddc 9939    x. cmul 9941    < clt 10074    <_ cle 10075    - cmin 10266   -ucneg 10267    / cdiv 10684   NNcn 11020   2c2 11070   NN0cn0 11292   ZZcz 11377   |_cfl 12591   ^cexp 12860   abscabs 13974
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-n0 11293  df-z 11378  df-uz 11688  df-seq 12802  df-exp 12861
This theorem is referenced by:  knoppndvlem8  32510  knoppndvlem9  32511
  Copyright terms: Public domain W3C validator