Users' Mathboxes Mathbox for Asger C. Ipsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  knoppndvlem6 Structured version   Visualization version   Unicode version

Theorem knoppndvlem6 32508
Description: Lemma for knoppndv 32525. (Contributed by Asger C. Ipsen, 15-Jun-2021.) (Revised by Asger C. Ipsen, 5-Jul-2021.)
Hypotheses
Ref Expression
knoppndvlem6.t  |-  T  =  ( x  e.  RR  |->  ( abs `  ( ( |_ `  ( x  +  ( 1  / 
2 ) ) )  -  x ) ) )
knoppndvlem6.f  |-  F  =  ( y  e.  RR  |->  ( n  e.  NN0  |->  ( ( C ^
n )  x.  ( T `  ( (
( 2  x.  N
) ^ n )  x.  y ) ) ) ) )
knoppndvlem6.w  |-  W  =  ( w  e.  RR  |->  sum_ i  e.  NN0  (
( F `  w
) `  i )
)
knoppndvlem6.a  |-  A  =  ( ( ( ( 2  x.  N ) ^ -u J )  /  2 )  x.  M )
knoppndvlem6.c  |-  ( ph  ->  C  e.  ( -u
1 (,) 1 ) )
knoppndvlem6.j  |-  ( ph  ->  J  e.  NN0 )
knoppndvlem6.m  |-  ( ph  ->  M  e.  ZZ )
knoppndvlem6.n  |-  ( ph  ->  N  e.  NN )
Assertion
Ref Expression
knoppndvlem6  |-  ( ph  ->  ( W `  A
)  =  sum_ i  e.  ( 0 ... J
) ( ( F `
 A ) `  i ) )
Distinct variable groups:    A, i, n, w, y    x, A, i, w    C, n, y    i, F, w   
i, J, n, y   
n, N, y    x, N    T, n, y    ph, i, n, w, y
Allowed substitution hints:    ph( x)    C( x, w, i)    T( x, w, i)    F( x, y, n)    J( x, w)    M( x, y, w, i, n)    N( w, i)    W( x, y, w, i, n)

Proof of Theorem knoppndvlem6
StepHypRef Expression
1 knoppndvlem6.w . . . . 5  |-  W  =  ( w  e.  RR  |->  sum_ i  e.  NN0  (
( F `  w
) `  i )
)
21a1i 11 . . . 4  |-  ( ph  ->  W  =  ( w  e.  RR  |->  sum_ i  e.  NN0  ( ( F `
 w ) `  i ) ) )
3 fveq2 6191 . . . . . . 7  |-  ( w  =  A  ->  ( F `  w )  =  ( F `  A ) )
43fveq1d 6193 . . . . . 6  |-  ( w  =  A  ->  (
( F `  w
) `  i )  =  ( ( F `
 A ) `  i ) )
54sumeq2sdv 14435 . . . . 5  |-  ( w  =  A  ->  sum_ i  e.  NN0  ( ( F `
 w ) `  i )  =  sum_ i  e.  NN0  ( ( F `  A ) `
 i ) )
65adantl 482 . . . 4  |-  ( (
ph  /\  w  =  A )  ->  sum_ i  e.  NN0  ( ( F `
 w ) `  i )  =  sum_ i  e.  NN0  ( ( F `  A ) `
 i ) )
7 knoppndvlem6.a . . . . . 6  |-  A  =  ( ( ( ( 2  x.  N ) ^ -u J )  /  2 )  x.  M )
87a1i 11 . . . . 5  |-  ( ph  ->  A  =  ( ( ( ( 2  x.  N ) ^ -u J
)  /  2 )  x.  M ) )
9 knoppndvlem6.n . . . . . 6  |-  ( ph  ->  N  e.  NN )
10 knoppndvlem6.j . . . . . . 7  |-  ( ph  ->  J  e.  NN0 )
1110nn0zd 11480 . . . . . 6  |-  ( ph  ->  J  e.  ZZ )
12 knoppndvlem6.m . . . . . 6  |-  ( ph  ->  M  e.  ZZ )
139, 11, 12knoppndvlem1 32503 . . . . 5  |-  ( ph  ->  ( ( ( ( 2  x.  N ) ^ -u J )  /  2 )  x.  M )  e.  RR )
148, 13eqeltrd 2701 . . . 4  |-  ( ph  ->  A  e.  RR )
15 sumex 14418 . . . . 5  |-  sum_ i  e.  NN0  ( ( F `
 A ) `  i )  e.  _V
1615a1i 11 . . . 4  |-  ( ph  -> 
sum_ i  e.  NN0  ( ( F `  A ) `  i
)  e.  _V )
172, 6, 14, 16fvmptd 6288 . . 3  |-  ( ph  ->  ( W `  A
)  =  sum_ i  e.  NN0  ( ( F `
 A ) `  i ) )
18 nn0uz 11722 . . . 4  |-  NN0  =  ( ZZ>= `  0 )
19 eqid 2622 . . . 4  |-  ( ZZ>= `  ( J  +  1
) )  =  (
ZZ>= `  ( J  + 
1 ) )
20 peano2nn0 11333 . . . . 5  |-  ( J  e.  NN0  ->  ( J  +  1 )  e. 
NN0 )
2110, 20syl 17 . . . 4  |-  ( ph  ->  ( J  +  1 )  e.  NN0 )
22 eqidd 2623 . . . 4  |-  ( (
ph  /\  i  e.  NN0 )  ->  ( ( F `  A ) `  i )  =  ( ( F `  A
) `  i )
)
23 knoppndvlem6.t . . . . . 6  |-  T  =  ( x  e.  RR  |->  ( abs `  ( ( |_ `  ( x  +  ( 1  / 
2 ) ) )  -  x ) ) )
24 knoppndvlem6.f . . . . . 6  |-  F  =  ( y  e.  RR  |->  ( n  e.  NN0  |->  ( ( C ^
n )  x.  ( T `  ( (
( 2  x.  N
) ^ n )  x.  y ) ) ) ) )
259adantr 481 . . . . . 6  |-  ( (
ph  /\  i  e.  NN0 )  ->  N  e.  NN )
26 knoppndvlem6.c . . . . . . . . 9  |-  ( ph  ->  C  e.  ( -u
1 (,) 1 ) )
2726knoppndvlem3 32505 . . . . . . . 8  |-  ( ph  ->  ( C  e.  RR  /\  ( abs `  C
)  <  1 ) )
2827simpld 475 . . . . . . 7  |-  ( ph  ->  C  e.  RR )
2928adantr 481 . . . . . 6  |-  ( (
ph  /\  i  e.  NN0 )  ->  C  e.  RR )
3014adantr 481 . . . . . 6  |-  ( (
ph  /\  i  e.  NN0 )  ->  A  e.  RR )
31 simpr 477 . . . . . 6  |-  ( (
ph  /\  i  e.  NN0 )  ->  i  e.  NN0 )
3223, 24, 25, 29, 30, 31knoppcnlem3 32485 . . . . 5  |-  ( (
ph  /\  i  e.  NN0 )  ->  ( ( F `  A ) `  i )  e.  RR )
3332recnd 10068 . . . 4  |-  ( (
ph  /\  i  e.  NN0 )  ->  ( ( F `  A ) `  i )  e.  CC )
3423, 24, 1, 14, 26, 9knoppndvlem4 32506 . . . . 5  |-  ( ph  ->  seq 0 (  +  ,  ( F `  A ) )  ~~>  ( W `
 A ) )
35 seqex 12803 . . . . . 6  |-  seq 0
(  +  ,  ( F `  A ) )  e.  _V
36 fvex 6201 . . . . . 6  |-  ( W `
 A )  e. 
_V
3735, 36breldm 5329 . . . . 5  |-  (  seq 0 (  +  , 
( F `  A
) )  ~~>  ( W `
 A )  ->  seq 0 (  +  , 
( F `  A
) )  e.  dom  ~~>  )
3834, 37syl 17 . . . 4  |-  ( ph  ->  seq 0 (  +  ,  ( F `  A ) )  e. 
dom 
~~>  )
3918, 19, 21, 22, 33, 38isumsplit 14572 . . 3  |-  ( ph  -> 
sum_ i  e.  NN0  ( ( F `  A ) `  i
)  =  ( sum_ i  e.  ( 0 ... ( ( J  +  1 )  - 
1 ) ) ( ( F `  A
) `  i )  +  sum_ i  e.  (
ZZ>= `  ( J  + 
1 ) ) ( ( F `  A
) `  i )
) )
4010nn0cnd 11353 . . . . . . 7  |-  ( ph  ->  J  e.  CC )
41 1cnd 10056 . . . . . . 7  |-  ( ph  ->  1  e.  CC )
4240, 41pncand 10393 . . . . . 6  |-  ( ph  ->  ( ( J  + 
1 )  -  1 )  =  J )
4342oveq2d 6666 . . . . 5  |-  ( ph  ->  ( 0 ... (
( J  +  1 )  -  1 ) )  =  ( 0 ... J ) )
4443sumeq1d 14431 . . . 4  |-  ( ph  -> 
sum_ i  e.  ( 0 ... ( ( J  +  1 )  -  1 ) ) ( ( F `  A ) `  i
)  =  sum_ i  e.  ( 0 ... J
) ( ( F `
 A ) `  i ) )
4544oveq1d 6665 . . 3  |-  ( ph  ->  ( sum_ i  e.  ( 0 ... ( ( J  +  1 )  -  1 ) ) ( ( F `  A ) `  i
)  +  sum_ i  e.  ( ZZ>= `  ( J  +  1 ) ) ( ( F `  A ) `  i
) )  =  (
sum_ i  e.  ( 0 ... J ) ( ( F `  A ) `  i
)  +  sum_ i  e.  ( ZZ>= `  ( J  +  1 ) ) ( ( F `  A ) `  i
) ) )
4617, 39, 453eqtrd 2660 . 2  |-  ( ph  ->  ( W `  A
)  =  ( sum_ i  e.  ( 0 ... J ) ( ( F `  A
) `  i )  +  sum_ i  e.  (
ZZ>= `  ( J  + 
1 ) ) ( ( F `  A
) `  i )
) )
4714adantr 481 . . . . . . . 8  |-  ( (
ph  /\  i  e.  ( ZZ>= `  ( J  +  1 ) ) )  ->  A  e.  RR )
48 eluznn0 11757 . . . . . . . . 9  |-  ( ( ( J  +  1 )  e.  NN0  /\  i  e.  ( ZZ>= `  ( J  +  1
) ) )  -> 
i  e.  NN0 )
4921, 48sylan 488 . . . . . . . 8  |-  ( (
ph  /\  i  e.  ( ZZ>= `  ( J  +  1 ) ) )  ->  i  e.  NN0 )
5024, 47, 49knoppcnlem1 32483 . . . . . . 7  |-  ( (
ph  /\  i  e.  ( ZZ>= `  ( J  +  1 ) ) )  ->  ( ( F `  A ) `  i )  =  ( ( C ^ i
)  x.  ( T `
 ( ( ( 2  x.  N ) ^ i )  x.  A ) ) ) )
517a1i 11 . . . . . . . . . . 11  |-  ( (
ph  /\  i  e.  ( ZZ>= `  ( J  +  1 ) ) )  ->  A  =  ( ( ( ( 2  x.  N ) ^ -u J )  /  2 )  x.  M ) )
5251oveq2d 6666 . . . . . . . . . 10  |-  ( (
ph  /\  i  e.  ( ZZ>= `  ( J  +  1 ) ) )  ->  ( (
( 2  x.  N
) ^ i )  x.  A )  =  ( ( ( 2  x.  N ) ^
i )  x.  (
( ( ( 2  x.  N ) ^ -u J )  /  2
)  x.  M ) ) )
539adantr 481 . . . . . . . . . . 11  |-  ( (
ph  /\  i  e.  ( ZZ>= `  ( J  +  1 ) ) )  ->  N  e.  NN )
5449nn0zd 11480 . . . . . . . . . . 11  |-  ( (
ph  /\  i  e.  ( ZZ>= `  ( J  +  1 ) ) )  ->  i  e.  ZZ )
5511adantr 481 . . . . . . . . . . 11  |-  ( (
ph  /\  i  e.  ( ZZ>= `  ( J  +  1 ) ) )  ->  J  e.  ZZ )
5612adantr 481 . . . . . . . . . . 11  |-  ( (
ph  /\  i  e.  ( ZZ>= `  ( J  +  1 ) ) )  ->  M  e.  ZZ )
57 eluzle 11700 . . . . . . . . . . . . 13  |-  ( i  e.  ( ZZ>= `  ( J  +  1 ) )  ->  ( J  +  1 )  <_ 
i )
5857adantl 482 . . . . . . . . . . . 12  |-  ( (
ph  /\  i  e.  ( ZZ>= `  ( J  +  1 ) ) )  ->  ( J  +  1 )  <_ 
i )
5955, 54jca 554 . . . . . . . . . . . . 13  |-  ( (
ph  /\  i  e.  ( ZZ>= `  ( J  +  1 ) ) )  ->  ( J  e.  ZZ  /\  i  e.  ZZ ) )
60 zltp1le 11427 . . . . . . . . . . . . 13  |-  ( ( J  e.  ZZ  /\  i  e.  ZZ )  ->  ( J  <  i  <->  ( J  +  1 )  <_  i ) )
6159, 60syl 17 . . . . . . . . . . . 12  |-  ( (
ph  /\  i  e.  ( ZZ>= `  ( J  +  1 ) ) )  ->  ( J  <  i  <->  ( J  + 
1 )  <_  i
) )
6258, 61mpbird 247 . . . . . . . . . . 11  |-  ( (
ph  /\  i  e.  ( ZZ>= `  ( J  +  1 ) ) )  ->  J  <  i )
6353, 54, 55, 56, 62knoppndvlem2 32504 . . . . . . . . . 10  |-  ( (
ph  /\  i  e.  ( ZZ>= `  ( J  +  1 ) ) )  ->  ( (
( 2  x.  N
) ^ i )  x.  ( ( ( ( 2  x.  N
) ^ -u J
)  /  2 )  x.  M ) )  e.  ZZ )
6452, 63eqeltrd 2701 . . . . . . . . 9  |-  ( (
ph  /\  i  e.  ( ZZ>= `  ( J  +  1 ) ) )  ->  ( (
( 2  x.  N
) ^ i )  x.  A )  e.  ZZ )
6523, 64dnizeq0 32465 . . . . . . . 8  |-  ( (
ph  /\  i  e.  ( ZZ>= `  ( J  +  1 ) ) )  ->  ( T `  ( ( ( 2  x.  N ) ^
i )  x.  A
) )  =  0 )
6665oveq2d 6666 . . . . . . 7  |-  ( (
ph  /\  i  e.  ( ZZ>= `  ( J  +  1 ) ) )  ->  ( ( C ^ i )  x.  ( T `  (
( ( 2  x.  N ) ^ i
)  x.  A ) ) )  =  ( ( C ^ i
)  x.  0 ) )
6728recnd 10068 . . . . . . . . . 10  |-  ( ph  ->  C  e.  CC )
6867adantr 481 . . . . . . . . 9  |-  ( (
ph  /\  i  e.  ( ZZ>= `  ( J  +  1 ) ) )  ->  C  e.  CC )
6968, 49expcld 13008 . . . . . . . 8  |-  ( (
ph  /\  i  e.  ( ZZ>= `  ( J  +  1 ) ) )  ->  ( C ^ i )  e.  CC )
7069mul01d 10235 . . . . . . 7  |-  ( (
ph  /\  i  e.  ( ZZ>= `  ( J  +  1 ) ) )  ->  ( ( C ^ i )  x.  0 )  =  0 )
7150, 66, 703eqtrd 2660 . . . . . 6  |-  ( (
ph  /\  i  e.  ( ZZ>= `  ( J  +  1 ) ) )  ->  ( ( F `  A ) `  i )  =  0 )
7271sumeq2dv 14433 . . . . 5  |-  ( ph  -> 
sum_ i  e.  (
ZZ>= `  ( J  + 
1 ) ) ( ( F `  A
) `  i )  =  sum_ i  e.  (
ZZ>= `  ( J  + 
1 ) ) 0 )
73 ssid 3624 . . . . . . . 8  |-  ( ZZ>= `  ( J  +  1
) )  C_  ( ZZ>=
`  ( J  + 
1 ) )
7473a1i 11 . . . . . . 7  |-  ( ph  ->  ( ZZ>= `  ( J  +  1 ) ) 
C_  ( ZZ>= `  ( J  +  1 ) ) )
7574orcd 407 . . . . . 6  |-  ( ph  ->  ( ( ZZ>= `  ( J  +  1 ) )  C_  ( ZZ>= `  ( J  +  1
) )  \/  ( ZZ>=
`  ( J  + 
1 ) )  e. 
Fin ) )
76 sumz 14453 . . . . . 6  |-  ( ( ( ZZ>= `  ( J  +  1 ) ) 
C_  ( ZZ>= `  ( J  +  1 ) )  \/  ( ZZ>= `  ( J  +  1
) )  e.  Fin )  ->  sum_ i  e.  (
ZZ>= `  ( J  + 
1 ) ) 0  =  0 )
7775, 76syl 17 . . . . 5  |-  ( ph  -> 
sum_ i  e.  (
ZZ>= `  ( J  + 
1 ) ) 0  =  0 )
7872, 77eqtrd 2656 . . . 4  |-  ( ph  -> 
sum_ i  e.  (
ZZ>= `  ( J  + 
1 ) ) ( ( F `  A
) `  i )  =  0 )
7978oveq2d 6666 . . 3  |-  ( ph  ->  ( sum_ i  e.  ( 0 ... J ) ( ( F `  A ) `  i
)  +  sum_ i  e.  ( ZZ>= `  ( J  +  1 ) ) ( ( F `  A ) `  i
) )  =  (
sum_ i  e.  ( 0 ... J ) ( ( F `  A ) `  i
)  +  0 ) )
8023, 24, 14, 28, 9knoppndvlem5 32507 . . . . 5  |-  ( ph  -> 
sum_ i  e.  ( 0 ... J ) ( ( F `  A ) `  i
)  e.  RR )
8180recnd 10068 . . . 4  |-  ( ph  -> 
sum_ i  e.  ( 0 ... J ) ( ( F `  A ) `  i
)  e.  CC )
8281addid1d 10236 . . 3  |-  ( ph  ->  ( sum_ i  e.  ( 0 ... J ) ( ( F `  A ) `  i
)  +  0 )  =  sum_ i  e.  ( 0 ... J ) ( ( F `  A ) `  i
) )
8379, 82eqtrd 2656 . 2  |-  ( ph  ->  ( sum_ i  e.  ( 0 ... J ) ( ( F `  A ) `  i
)  +  sum_ i  e.  ( ZZ>= `  ( J  +  1 ) ) ( ( F `  A ) `  i
) )  =  sum_ i  e.  ( 0 ... J ) ( ( F `  A
) `  i )
)
8446, 83eqtrd 2656 1  |-  ( ph  ->  ( W `  A
)  =  sum_ i  e.  ( 0 ... J
) ( ( F `
 A ) `  i ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    = wceq 1483    e. wcel 1990   _Vcvv 3200    C_ wss 3574   class class class wbr 4653    |-> cmpt 4729   dom cdm 5114   ` cfv 5888  (class class class)co 6650   Fincfn 7955   CCcc 9934   RRcr 9935   0cc0 9936   1c1 9937    + caddc 9939    x. cmul 9941    < clt 10074    <_ cle 10075    - cmin 10266   -ucneg 10267    / cdiv 10684   NNcn 11020   2c2 11070   NN0cn0 11292   ZZcz 11377   ZZ>=cuz 11687   (,)cioo 12175   ...cfz 12326   |_cfl 12591    seqcseq 12801   ^cexp 12860   abscabs 13974    ~~> cli 14215   sum_csu 14416
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-ioo 12179  df-ico 12181  df-fz 12327  df-fzo 12466  df-fl 12593  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-limsup 14202  df-clim 14219  df-rlim 14220  df-sum 14417  df-ulm 24131
This theorem is referenced by:  knoppndvlem15  32517
  Copyright terms: Public domain W3C validator