MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  limcfval Structured version   Visualization version   Unicode version

Theorem limcfval 23636
Description: Value and set bounds on the limit operator. (Contributed by Mario Carneiro, 25-Dec-2016.)
Hypotheses
Ref Expression
limcval.j  |-  J  =  ( Kt  ( A  u.  { B } ) )
limcval.k  |-  K  =  ( TopOpen ` fld )
Assertion
Ref Expression
limcfval  |-  ( ( F : A --> CC  /\  A  C_  CC  /\  B  e.  CC )  ->  (
( F lim CC  B
)  =  { y  |  ( z  e.  ( A  u.  { B } )  |->  if ( z  =  B , 
y ,  ( F `
 z ) ) )  e.  ( ( J  CnP  K ) `
 B ) }  /\  ( F lim CC  B )  C_  CC ) )
Distinct variable groups:    y, z, A    y, B, z    y, F, z    y, K, z   
y, J
Allowed substitution hint:    J( z)

Proof of Theorem limcfval
Dummy variables  f 
j  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-limc 23630 . . . 4  |- lim CC  =  ( f  e.  ( CC  ^pm  CC ) ,  x  e.  CC  |->  { y  |  [. ( TopOpen ` fld )  /  j ]. ( z  e.  ( dom  f  u.  {
x } )  |->  if ( z  =  x ,  y ,  ( f `  z ) ) )  e.  ( ( ( jt  ( dom  f  u.  { x } ) )  CnP  j ) `  x
) } )
21a1i 11 . . 3  |-  ( ( F : A --> CC  /\  A  C_  CC  /\  B  e.  CC )  -> lim CC  =  ( f  e.  ( CC  ^pm  CC ) ,  x  e.  CC  |->  { y  |  [. ( TopOpen ` fld )  /  j ]. ( z  e.  ( dom  f  u.  {
x } )  |->  if ( z  =  x ,  y ,  ( f `  z ) ) )  e.  ( ( ( jt  ( dom  f  u.  { x } ) )  CnP  j ) `  x
) } ) )
3 fvexd 6203 . . . . 5  |-  ( ( ( F : A --> CC  /\  A  C_  CC  /\  B  e.  CC )  /\  ( f  =  F  /\  x  =  B ) )  -> 
( TopOpen ` fld )  e.  _V )
4 simplrl 800 . . . . . . . . . 10  |-  ( ( ( ( F : A
--> CC  /\  A  C_  CC  /\  B  e.  CC )  /\  ( f  =  F  /\  x  =  B ) )  /\  j  =  ( TopOpen ` fld )
)  ->  f  =  F )
54dmeqd 5326 . . . . . . . . 9  |-  ( ( ( ( F : A
--> CC  /\  A  C_  CC  /\  B  e.  CC )  /\  ( f  =  F  /\  x  =  B ) )  /\  j  =  ( TopOpen ` fld )
)  ->  dom  f  =  dom  F )
6 simpll1 1100 . . . . . . . . . 10  |-  ( ( ( ( F : A
--> CC  /\  A  C_  CC  /\  B  e.  CC )  /\  ( f  =  F  /\  x  =  B ) )  /\  j  =  ( TopOpen ` fld )
)  ->  F : A
--> CC )
7 fdm 6051 . . . . . . . . . 10  |-  ( F : A --> CC  ->  dom 
F  =  A )
86, 7syl 17 . . . . . . . . 9  |-  ( ( ( ( F : A
--> CC  /\  A  C_  CC  /\  B  e.  CC )  /\  ( f  =  F  /\  x  =  B ) )  /\  j  =  ( TopOpen ` fld )
)  ->  dom  F  =  A )
95, 8eqtrd 2656 . . . . . . . 8  |-  ( ( ( ( F : A
--> CC  /\  A  C_  CC  /\  B  e.  CC )  /\  ( f  =  F  /\  x  =  B ) )  /\  j  =  ( TopOpen ` fld )
)  ->  dom  f  =  A )
10 simplrr 801 . . . . . . . . 9  |-  ( ( ( ( F : A
--> CC  /\  A  C_  CC  /\  B  e.  CC )  /\  ( f  =  F  /\  x  =  B ) )  /\  j  =  ( TopOpen ` fld )
)  ->  x  =  B )
1110sneqd 4189 . . . . . . . 8  |-  ( ( ( ( F : A
--> CC  /\  A  C_  CC  /\  B  e.  CC )  /\  ( f  =  F  /\  x  =  B ) )  /\  j  =  ( TopOpen ` fld )
)  ->  { x }  =  { B } )
129, 11uneq12d 3768 . . . . . . 7  |-  ( ( ( ( F : A
--> CC  /\  A  C_  CC  /\  B  e.  CC )  /\  ( f  =  F  /\  x  =  B ) )  /\  j  =  ( TopOpen ` fld )
)  ->  ( dom  f  u.  { x } )  =  ( A  u.  { B } ) )
1310eqeq2d 2632 . . . . . . . 8  |-  ( ( ( ( F : A
--> CC  /\  A  C_  CC  /\  B  e.  CC )  /\  ( f  =  F  /\  x  =  B ) )  /\  j  =  ( TopOpen ` fld )
)  ->  ( z  =  x  <->  z  =  B ) )
144fveq1d 6193 . . . . . . . 8  |-  ( ( ( ( F : A
--> CC  /\  A  C_  CC  /\  B  e.  CC )  /\  ( f  =  F  /\  x  =  B ) )  /\  j  =  ( TopOpen ` fld )
)  ->  ( f `  z )  =  ( F `  z ) )
1513, 14ifbieq2d 4111 . . . . . . 7  |-  ( ( ( ( F : A
--> CC  /\  A  C_  CC  /\  B  e.  CC )  /\  ( f  =  F  /\  x  =  B ) )  /\  j  =  ( TopOpen ` fld )
)  ->  if (
z  =  x ,  y ,  ( f `
 z ) )  =  if ( z  =  B ,  y ,  ( F `  z ) ) )
1612, 15mpteq12dv 4733 . . . . . 6  |-  ( ( ( ( F : A
--> CC  /\  A  C_  CC  /\  B  e.  CC )  /\  ( f  =  F  /\  x  =  B ) )  /\  j  =  ( TopOpen ` fld )
)  ->  ( z  e.  ( dom  f  u. 
{ x } ) 
|->  if ( z  =  x ,  y ,  ( f `  z
) ) )  =  ( z  e.  ( A  u.  { B } )  |->  if ( z  =  B , 
y ,  ( F `
 z ) ) ) )
17 simpr 477 . . . . . . . . . . 11  |-  ( ( ( ( F : A
--> CC  /\  A  C_  CC  /\  B  e.  CC )  /\  ( f  =  F  /\  x  =  B ) )  /\  j  =  ( TopOpen ` fld )
)  ->  j  =  ( TopOpen ` fld ) )
18 limcval.k . . . . . . . . . . 11  |-  K  =  ( TopOpen ` fld )
1917, 18syl6eqr 2674 . . . . . . . . . 10  |-  ( ( ( ( F : A
--> CC  /\  A  C_  CC  /\  B  e.  CC )  /\  ( f  =  F  /\  x  =  B ) )  /\  j  =  ( TopOpen ` fld )
)  ->  j  =  K )
2019, 12oveq12d 6668 . . . . . . . . 9  |-  ( ( ( ( F : A
--> CC  /\  A  C_  CC  /\  B  e.  CC )  /\  ( f  =  F  /\  x  =  B ) )  /\  j  =  ( TopOpen ` fld )
)  ->  ( jt  ( dom  f  u.  { x } ) )  =  ( Kt  ( A  u.  { B } ) ) )
21 limcval.j . . . . . . . . 9  |-  J  =  ( Kt  ( A  u.  { B } ) )
2220, 21syl6eqr 2674 . . . . . . . 8  |-  ( ( ( ( F : A
--> CC  /\  A  C_  CC  /\  B  e.  CC )  /\  ( f  =  F  /\  x  =  B ) )  /\  j  =  ( TopOpen ` fld )
)  ->  ( jt  ( dom  f  u.  { x } ) )  =  J )
2322, 19oveq12d 6668 . . . . . . 7  |-  ( ( ( ( F : A
--> CC  /\  A  C_  CC  /\  B  e.  CC )  /\  ( f  =  F  /\  x  =  B ) )  /\  j  =  ( TopOpen ` fld )
)  ->  ( (
jt  ( dom  f  u. 
{ x } ) )  CnP  j )  =  ( J  CnP  K ) )
2423, 10fveq12d 6197 . . . . . 6  |-  ( ( ( ( F : A
--> CC  /\  A  C_  CC  /\  B  e.  CC )  /\  ( f  =  F  /\  x  =  B ) )  /\  j  =  ( TopOpen ` fld )
)  ->  ( (
( jt  ( dom  f  u.  { x } ) )  CnP  j ) `
 x )  =  ( ( J  CnP  K ) `  B ) )
2516, 24eleq12d 2695 . . . . 5  |-  ( ( ( ( F : A
--> CC  /\  A  C_  CC  /\  B  e.  CC )  /\  ( f  =  F  /\  x  =  B ) )  /\  j  =  ( TopOpen ` fld )
)  ->  ( (
z  e.  ( dom  f  u.  { x } )  |->  if ( z  =  x ,  y ,  ( f `
 z ) ) )  e.  ( ( ( jt  ( dom  f  u.  { x } ) )  CnP  j ) `
 x )  <->  ( z  e.  ( A  u.  { B } )  |->  if ( z  =  B , 
y ,  ( F `
 z ) ) )  e.  ( ( J  CnP  K ) `
 B ) ) )
263, 25sbcied 3472 . . . 4  |-  ( ( ( F : A --> CC  /\  A  C_  CC  /\  B  e.  CC )  /\  ( f  =  F  /\  x  =  B ) )  -> 
( [. ( TopOpen ` fld )  /  j ]. ( z  e.  ( dom  f  u.  {
x } )  |->  if ( z  =  x ,  y ,  ( f `  z ) ) )  e.  ( ( ( jt  ( dom  f  u.  { x } ) )  CnP  j ) `  x
)  <->  ( z  e.  ( A  u.  { B } )  |->  if ( z  =  B , 
y ,  ( F `
 z ) ) )  e.  ( ( J  CnP  K ) `
 B ) ) )
2726abbidv 2741 . . 3  |-  ( ( ( F : A --> CC  /\  A  C_  CC  /\  B  e.  CC )  /\  ( f  =  F  /\  x  =  B ) )  ->  { y  |  [. ( TopOpen ` fld )  /  j ]. ( z  e.  ( dom  f  u.  {
x } )  |->  if ( z  =  x ,  y ,  ( f `  z ) ) )  e.  ( ( ( jt  ( dom  f  u.  { x } ) )  CnP  j ) `  x
) }  =  {
y  |  ( z  e.  ( A  u.  { B } )  |->  if ( z  =  B ,  y ,  ( F `  z ) ) )  e.  ( ( J  CnP  K
) `  B ) } )
28 cnex 10017 . . . . 5  |-  CC  e.  _V
29 elpm2r 7875 . . . . 5  |-  ( ( ( CC  e.  _V  /\  CC  e.  _V )  /\  ( F : A --> CC  /\  A  C_  CC ) )  ->  F  e.  ( CC  ^pm  CC ) )
3028, 28, 29mpanl12 718 . . . 4  |-  ( ( F : A --> CC  /\  A  C_  CC )  ->  F  e.  ( CC  ^pm 
CC ) )
31303adant3 1081 . . 3  |-  ( ( F : A --> CC  /\  A  C_  CC  /\  B  e.  CC )  ->  F  e.  ( CC  ^pm  CC ) )
32 simp3 1063 . . 3  |-  ( ( F : A --> CC  /\  A  C_  CC  /\  B  e.  CC )  ->  B  e.  CC )
33 eqid 2622 . . . . . 6  |-  ( z  e.  ( A  u.  { B } )  |->  if ( z  =  B ,  y ,  ( F `  z ) ) )  =  ( z  e.  ( A  u.  { B }
)  |->  if ( z  =  B ,  y ,  ( F `  z ) ) )
3421, 18, 33limcvallem 23635 . . . . 5  |-  ( ( F : A --> CC  /\  A  C_  CC  /\  B  e.  CC )  ->  (
( z  e.  ( A  u.  { B } )  |->  if ( z  =  B , 
y ,  ( F `
 z ) ) )  e.  ( ( J  CnP  K ) `
 B )  -> 
y  e.  CC ) )
3534abssdv 3676 . . . 4  |-  ( ( F : A --> CC  /\  A  C_  CC  /\  B  e.  CC )  ->  { y  |  ( z  e.  ( A  u.  { B } )  |->  if ( z  =  B , 
y ,  ( F `
 z ) ) )  e.  ( ( J  CnP  K ) `
 B ) } 
C_  CC )
3628ssex 4802 . . . 4  |-  ( { y  |  ( z  e.  ( A  u.  { B } )  |->  if ( z  =  B ,  y ,  ( F `  z ) ) )  e.  ( ( J  CnP  K
) `  B ) }  C_  CC  ->  { y  |  ( z  e.  ( A  u.  { B } )  |->  if ( z  =  B , 
y ,  ( F `
 z ) ) )  e.  ( ( J  CnP  K ) `
 B ) }  e.  _V )
3735, 36syl 17 . . 3  |-  ( ( F : A --> CC  /\  A  C_  CC  /\  B  e.  CC )  ->  { y  |  ( z  e.  ( A  u.  { B } )  |->  if ( z  =  B , 
y ,  ( F `
 z ) ) )  e.  ( ( J  CnP  K ) `
 B ) }  e.  _V )
382, 27, 31, 32, 37ovmpt2d 6788 . 2  |-  ( ( F : A --> CC  /\  A  C_  CC  /\  B  e.  CC )  ->  ( F lim CC  B )  =  { y  |  ( z  e.  ( A  u.  { B }
)  |->  if ( z  =  B ,  y ,  ( F `  z ) ) )  e.  ( ( J  CnP  K ) `  B ) } )
3938, 35eqsstrd 3639 . 2  |-  ( ( F : A --> CC  /\  A  C_  CC  /\  B  e.  CC )  ->  ( F lim CC  B )  C_  CC )
4038, 39jca 554 1  |-  ( ( F : A --> CC  /\  A  C_  CC  /\  B  e.  CC )  ->  (
( F lim CC  B
)  =  { y  |  ( z  e.  ( A  u.  { B } )  |->  if ( z  =  B , 
y ,  ( F `
 z ) ) )  e.  ( ( J  CnP  K ) `
 B ) }  /\  ( F lim CC  B )  C_  CC ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   {cab 2608   _Vcvv 3200   [.wsbc 3435    u. cun 3572    C_ wss 3574   ifcif 4086   {csn 4177    |-> cmpt 4729   dom cdm 5114   -->wf 5884   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652    ^pm cpm 7858   CCcc 9934   ↾t crest 16081   TopOpenctopn 16082  ℂfldccnfld 19746    CnP ccnp 21029   lim CC climc 23626
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fi 8317  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-fz 12327  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-plusg 15954  df-mulr 15955  df-starv 15956  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-rest 16083  df-topn 16084  df-topgen 16104  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cnp 21032  df-xms 22125  df-ms 22126  df-limc 23630
This theorem is referenced by:  ellimc  23637  limccl  23639
  Copyright terms: Public domain W3C validator