Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  limsupvaluzmpt Structured version   Visualization version   Unicode version

Theorem limsupvaluzmpt 39949
Description: The superior limit, when the domain of the function is a set of upper integers (the first condition is needed, otherwise the l.h.s. would be -oo and the r.h.s. would be +oo). (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
limsupvaluzmpt.j  |-  F/ j
ph
limsupvaluzmpt.m  |-  ( ph  ->  M  e.  ZZ )
limsupvaluzmpt.z  |-  Z  =  ( ZZ>= `  M )
limsupvaluzmpt.b  |-  ( (
ph  /\  j  e.  Z )  ->  B  e.  RR* )
Assertion
Ref Expression
limsupvaluzmpt  |-  ( ph  ->  ( limsup `  ( j  e.  Z  |->  B ) )  = inf ( ran  ( k  e.  Z  |->  sup ( ran  (
j  e.  ( ZZ>= `  k )  |->  B ) ,  RR* ,  <  )
) ,  RR* ,  <  ) )
Distinct variable groups:    B, k    j, Z, k
Allowed substitution hints:    ph( j, k)    B( j)    M( j, k)

Proof of Theorem limsupvaluzmpt
StepHypRef Expression
1 limsupvaluzmpt.m . . 3  |-  ( ph  ->  M  e.  ZZ )
2 limsupvaluzmpt.z . . 3  |-  Z  =  ( ZZ>= `  M )
3 limsupvaluzmpt.j . . . 4  |-  F/ j
ph
4 limsupvaluzmpt.b . . . 4  |-  ( (
ph  /\  j  e.  Z )  ->  B  e.  RR* )
53, 4fmptd2f 39442 . . 3  |-  ( ph  ->  ( j  e.  Z  |->  B ) : Z --> RR* )
61, 2, 5limsupvaluz 39940 . 2  |-  ( ph  ->  ( limsup `  ( j  e.  Z  |->  B ) )  = inf ( ran  ( k  e.  Z  |->  sup ( ran  (
( j  e.  Z  |->  B )  |`  ( ZZ>=
`  k ) ) ,  RR* ,  <  )
) ,  RR* ,  <  ) )
72uzssd3 39653 . . . . . . . . 9  |-  ( k  e.  Z  ->  ( ZZ>=
`  k )  C_  Z )
87resmptd 5452 . . . . . . . 8  |-  ( k  e.  Z  ->  (
( j  e.  Z  |->  B )  |`  ( ZZ>=
`  k ) )  =  ( j  e.  ( ZZ>= `  k )  |->  B ) )
98rneqd 5353 . . . . . . 7  |-  ( k  e.  Z  ->  ran  ( ( j  e.  Z  |->  B )  |`  ( ZZ>= `  k )
)  =  ran  (
j  e.  ( ZZ>= `  k )  |->  B ) )
109supeq1d 8352 . . . . . 6  |-  ( k  e.  Z  ->  sup ( ran  ( ( j  e.  Z  |->  B )  |`  ( ZZ>= `  k )
) ,  RR* ,  <  )  =  sup ( ran  ( j  e.  (
ZZ>= `  k )  |->  B ) ,  RR* ,  <  ) )
1110mpteq2ia 4740 . . . . 5  |-  ( k  e.  Z  |->  sup ( ran  ( ( j  e.  Z  |->  B )  |`  ( ZZ>= `  k )
) ,  RR* ,  <  ) )  =  ( k  e.  Z  |->  sup ( ran  ( j  e.  (
ZZ>= `  k )  |->  B ) ,  RR* ,  <  ) )
1211a1i 11 . . . 4  |-  ( ph  ->  ( k  e.  Z  |->  sup ( ran  (
( j  e.  Z  |->  B )  |`  ( ZZ>=
`  k ) ) ,  RR* ,  <  )
)  =  ( k  e.  Z  |->  sup ( ran  ( j  e.  (
ZZ>= `  k )  |->  B ) ,  RR* ,  <  ) ) )
1312rneqd 5353 . . 3  |-  ( ph  ->  ran  ( k  e.  Z  |->  sup ( ran  (
( j  e.  Z  |->  B )  |`  ( ZZ>=
`  k ) ) ,  RR* ,  <  )
)  =  ran  (
k  e.  Z  |->  sup ( ran  ( j  e.  ( ZZ>= `  k
)  |->  B ) , 
RR* ,  <  ) ) )
1413infeq1d 8383 . 2  |-  ( ph  -> inf ( ran  ( k  e.  Z  |->  sup ( ran  ( ( j  e.  Z  |->  B )  |`  ( ZZ>= `  k )
) ,  RR* ,  <  ) ) ,  RR* ,  <  )  = inf ( ran  (
k  e.  Z  |->  sup ( ran  ( j  e.  ( ZZ>= `  k
)  |->  B ) , 
RR* ,  <  ) ) ,  RR* ,  <  )
)
156, 14eqtrd 2656 1  |-  ( ph  ->  ( limsup `  ( j  e.  Z  |->  B ) )  = inf ( ran  ( k  e.  Z  |->  sup ( ran  (
j  e.  ( ZZ>= `  k )  |->  B ) ,  RR* ,  <  )
) ,  RR* ,  <  ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483   F/wnf 1708    e. wcel 1990    |-> cmpt 4729   ran crn 5115    |` cres 5116   ` cfv 5888   supcsup 8346  infcinf 8347   RR*cxr 10073    < clt 10074   ZZcz 11377   ZZ>=cuz 11687   limsupclsp 14201
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-ico 12181  df-fl 12593  df-limsup 14202
This theorem is referenced by:  smflimsuplem4  41029
  Copyright terms: Public domain W3C validator