Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  linecgr Structured version   Visualization version   Unicode version

Theorem linecgr 32188
Description: Congruence rule for lines. Theorem 4.17 of [Schwabhauser] p. 37. (Contributed by Scott Fenton, 6-Oct-2013.)
Assertion
Ref Expression
linecgr  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
) ) )  -> 
( ( ( A  =/=  B  /\  A  Colinear  <. B ,  C >. )  /\  ( <. A ,  P >.Cgr <. A ,  Q >.  /\  <. B ,  P >.Cgr
<. B ,  Q >. ) )  ->  <. C ,  P >.Cgr <. C ,  Q >. ) )

Proof of Theorem linecgr
StepHypRef Expression
1 simprlr 803 . . . . 5  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
) ) )  /\  ( ( A  =/= 
B  /\  A  Colinear  <. B ,  C >. )  /\  ( <. A ,  P >.Cgr <. A ,  Q >.  /\ 
<. B ,  P >.Cgr <. B ,  Q >. ) ) )  ->  A  Colinear  <. B ,  C >. )
2 cgr3rflx 32161 . . . . . . 7  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) ) )  ->  <. A ,  <. B ,  C >. >.Cgr3 <. A ,  <. B ,  C >. >. )
323adant3 1081 . . . . . 6  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
) ) )  ->  <. A ,  <. B ,  C >. >.Cgr3 <. A ,  <. B ,  C >. >. )
43adantr 481 . . . . 5  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
) ) )  /\  ( ( A  =/= 
B  /\  A  Colinear  <. B ,  C >. )  /\  ( <. A ,  P >.Cgr <. A ,  Q >.  /\ 
<. B ,  P >.Cgr <. B ,  Q >. ) ) )  ->  <. A ,  <. B ,  C >. >.Cgr3 <. A ,  <. B ,  C >. >. )
5 simprr 796 . . . . 5  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
) ) )  /\  ( ( A  =/= 
B  /\  A  Colinear  <. B ,  C >. )  /\  ( <. A ,  P >.Cgr <. A ,  Q >.  /\ 
<. B ,  P >.Cgr <. B ,  Q >. ) ) )  ->  ( <. A ,  P >.Cgr <. A ,  Q >.  /\ 
<. B ,  P >.Cgr <. B ,  Q >. ) )
61, 4, 53jca 1242 . . . 4  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
) ) )  /\  ( ( A  =/= 
B  /\  A  Colinear  <. B ,  C >. )  /\  ( <. A ,  P >.Cgr <. A ,  Q >.  /\ 
<. B ,  P >.Cgr <. B ,  Q >. ) ) )  ->  ( A  Colinear  <. B ,  C >.  /\  <. A ,  <. B ,  C >. >.Cgr3 <. A ,  <. B ,  C >. >.  /\  ( <. A ,  P >.Cgr
<. A ,  Q >.  /\ 
<. B ,  P >.Cgr <. B ,  Q >. ) ) )
7 simprll 802 . . . 4  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
) ) )  /\  ( ( A  =/= 
B  /\  A  Colinear  <. B ,  C >. )  /\  ( <. A ,  P >.Cgr <. A ,  Q >.  /\ 
<. B ,  P >.Cgr <. B ,  Q >. ) ) )  ->  A  =/=  B )
86, 7jca 554 . . 3  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
) ) )  /\  ( ( A  =/= 
B  /\  A  Colinear  <. B ,  C >. )  /\  ( <. A ,  P >.Cgr <. A ,  Q >.  /\ 
<. B ,  P >.Cgr <. B ,  Q >. ) ) )  ->  (
( A  Colinear  <. B ,  C >.  /\  <. A ,  <. B ,  C >. >.Cgr3 <. A ,  <. B ,  C >. >.  /\  ( <. A ,  P >.Cgr <. A ,  Q >.  /\  <. B ,  P >.Cgr <. B ,  Q >. ) )  /\  A  =/=  B ) )
98ex 450 . 2  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
) ) )  -> 
( ( ( A  =/=  B  /\  A  Colinear  <. B ,  C >. )  /\  ( <. A ,  P >.Cgr <. A ,  Q >.  /\  <. B ,  P >.Cgr
<. B ,  Q >. ) )  ->  ( ( A  Colinear  <. B ,  C >.  /\  <. A ,  <. B ,  C >. >.Cgr3 <. A ,  <. B ,  C >. >.  /\  ( <. A ,  P >.Cgr
<. A ,  Q >.  /\ 
<. B ,  P >.Cgr <. B ,  Q >. ) )  /\  A  =/= 
B ) ) )
10 simp1 1061 . . 3  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
) ) )  ->  N  e.  NN )
11 simp21 1094 . . 3  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
) ) )  ->  A  e.  ( EE `  N ) )
12 simp22 1095 . . 3  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
) ) )  ->  B  e.  ( EE `  N ) )
13 simp23 1096 . . 3  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
) ) )  ->  C  e.  ( EE `  N ) )
14 simp3l 1089 . . 3  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
) ) )  ->  P  e.  ( EE `  N ) )
15 simp3r 1090 . . 3  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
) ) )  ->  Q  e.  ( EE `  N ) )
16 brfs 32186 . . . . 5  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  P  e.  ( EE `  N )  /\  A  e.  ( EE `  N
) )  /\  ( B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
)  /\  Q  e.  ( EE `  N ) ) )  ->  ( <. <. A ,  B >. ,  <. C ,  P >. >.  FiveSeg  <. <. A ,  B >. ,  <. C ,  Q >. >. 
<->  ( A  Colinear  <. B ,  C >.  /\  <. A ,  <. B ,  C >. >.Cgr3 <. A ,  <. B ,  C >. >.  /\  ( <. A ,  P >.Cgr <. A ,  Q >.  /\  <. B ,  P >.Cgr <. B ,  Q >. ) ) ) )
1716anbi1d 741 . . . 4  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  P  e.  ( EE `  N )  /\  A  e.  ( EE `  N
) )  /\  ( B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
)  /\  Q  e.  ( EE `  N ) ) )  ->  (
( <. <. A ,  B >. ,  <. C ,  P >. >.  FiveSeg  <. <. A ,  B >. ,  <. C ,  Q >. >.  /\  A  =/=  B )  <->  ( ( A 
Colinear 
<. B ,  C >.  /\ 
<. A ,  <. B ,  C >. >.Cgr3 <. A ,  <. B ,  C >. >.  /\  ( <. A ,  P >.Cgr <. A ,  Q >.  /\ 
<. B ,  P >.Cgr <. B ,  Q >. ) )  /\  A  =/= 
B ) ) )
18 fscgr 32187 . . . 4  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  P  e.  ( EE `  N )  /\  A  e.  ( EE `  N
) )  /\  ( B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
)  /\  Q  e.  ( EE `  N ) ) )  ->  (
( <. <. A ,  B >. ,  <. C ,  P >. >.  FiveSeg  <. <. A ,  B >. ,  <. C ,  Q >. >.  /\  A  =/=  B )  ->  <. C ,  P >.Cgr <. C ,  Q >. ) )
1917, 18sylbird 250 . . 3  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  P  e.  ( EE `  N )  /\  A  e.  ( EE `  N
) )  /\  ( B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
)  /\  Q  e.  ( EE `  N ) ) )  ->  (
( ( A  Colinear  <. B ,  C >.  /\  <. A ,  <. B ,  C >. >.Cgr3 <. A ,  <. B ,  C >. >.  /\  ( <. A ,  P >.Cgr <. A ,  Q >.  /\ 
<. B ,  P >.Cgr <. B ,  Q >. ) )  /\  A  =/= 
B )  ->  <. C ,  P >.Cgr <. C ,  Q >. ) )
2010, 11, 12, 13, 14, 11, 12, 13, 15, 19syl333anc 1358 . 2  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
) ) )  -> 
( ( ( A 
Colinear 
<. B ,  C >.  /\ 
<. A ,  <. B ,  C >. >.Cgr3 <. A ,  <. B ,  C >. >.  /\  ( <. A ,  P >.Cgr <. A ,  Q >.  /\ 
<. B ,  P >.Cgr <. B ,  Q >. ) )  /\  A  =/= 
B )  ->  <. C ,  P >.Cgr <. C ,  Q >. ) )
219, 20syld 47 1  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
) ) )  -> 
( ( ( A  =/=  B  /\  A  Colinear  <. B ,  C >. )  /\  ( <. A ,  P >.Cgr <. A ,  Q >.  /\  <. B ,  P >.Cgr
<. B ,  Q >. ) )  ->  <. C ,  P >.Cgr <. C ,  Q >. ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    e. wcel 1990    =/= wne 2794   <.cop 4183   class class class wbr 4653   ` cfv 5888   NNcn 11020   EEcee 25768  Cgrccgr 25770  Cgr3ccgr3 32143    Colinear ccolin 32144    FiveSeg cfs 32145
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-sum 14417  df-ee 25771  df-btwn 25772  df-cgr 25773  df-ofs 32090  df-colinear 32146  df-ifs 32147  df-cgr3 32148  df-fs 32149
This theorem is referenced by:  linecgrand  32189  lineid  32190
  Copyright terms: Public domain W3C validator