| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lmatcl | Structured version Visualization version Unicode version | ||
| Description: Closure of the literal matrix. (Contributed by Thierry Arnoux, 12-Sep-2020.) |
| Ref | Expression |
|---|---|
| lmatfval.m |
|
| lmatfval.n |
|
| lmatfval.w |
|
| lmatfval.1 |
|
| lmatfval.2 |
|
| lmatcl.b |
|
| lmatcl.1 |
|
| lmatcl.2 |
|
| lmatcl.r |
|
| Ref | Expression |
|---|---|
| lmatcl |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lmatfval.m |
. . . 4
| |
| 2 | lmatfval.w |
. . . . 5
| |
| 3 | lmatval 29879 |
. . . . 5
| |
| 4 | 2, 3 | syl 17 |
. . . 4
|
| 5 | 1, 4 | syl5eq 2668 |
. . 3
|
| 6 | lmatfval.1 |
. . . . 5
| |
| 7 | 6 | oveq2d 6666 |
. . . 4
|
| 8 | lmatfval.n |
. . . . . . 7
| |
| 9 | lbfzo0 12507 |
. . . . . . 7
| |
| 10 | 8, 9 | sylibr 224 |
. . . . . 6
|
| 11 | 0nn0 11307 |
. . . . . . . 8
| |
| 12 | 11 | a1i 11 |
. . . . . . 7
|
| 13 | simpr 477 |
. . . . . . . . 9
| |
| 14 | 13 | eleq1d 2686 |
. . . . . . . 8
|
| 15 | 13 | fveq2d 6195 |
. . . . . . . . . 10
|
| 16 | 15 | fveq2d 6195 |
. . . . . . . . 9
|
| 17 | 16 | eqeq1d 2624 |
. . . . . . . 8
|
| 18 | 14, 17 | imbi12d 334 |
. . . . . . 7
|
| 19 | lmatfval.2 |
. . . . . . . 8
| |
| 20 | 19 | ex 450 |
. . . . . . 7
|
| 21 | 12, 18, 20 | vtocld 3257 |
. . . . . 6
|
| 22 | 10, 21 | mpd 15 |
. . . . 5
|
| 23 | 22 | oveq2d 6666 |
. . . 4
|
| 24 | eqidd 2623 |
. . . 4
| |
| 25 | 7, 23, 24 | mpt2eq123dv 6717 |
. . 3
|
| 26 | 5, 25 | eqtrd 2656 |
. 2
|
| 27 | lmatcl.1 |
. . 3
| |
| 28 | lmatcl.b |
. . 3
| |
| 29 | lmatcl.2 |
. . 3
| |
| 30 | fzfid 12772 |
. . 3
| |
| 31 | lmatcl.r |
. . 3
| |
| 32 | 2 | 3ad2ant1 1082 |
. . . . 5
|
| 33 | simp2 1062 |
. . . . . . 7
| |
| 34 | fz1fzo0m1 12515 |
. . . . . . 7
| |
| 35 | 33, 34 | syl 17 |
. . . . . 6
|
| 36 | 6 | 3ad2ant1 1082 |
. . . . . . 7
|
| 37 | 36 | oveq2d 6666 |
. . . . . 6
|
| 38 | 35, 37 | eleqtrrd 2704 |
. . . . 5
|
| 39 | wrdsymbcl 13318 |
. . . . 5
| |
| 40 | 32, 38, 39 | syl2anc 693 |
. . . 4
|
| 41 | simp3 1063 |
. . . . . 6
| |
| 42 | fz1fzo0m1 12515 |
. . . . . 6
| |
| 43 | 41, 42 | syl 17 |
. . . . 5
|
| 44 | ovexd 6680 |
. . . . . . . . . 10
| |
| 45 | simpr 477 |
. . . . . . . . . . . 12
| |
| 46 | eqidd 2623 |
. . . . . . . . . . . 12
| |
| 47 | 45, 46 | eleq12d 2695 |
. . . . . . . . . . 11
|
| 48 | 45 | fveq2d 6195 |
. . . . . . . . . . . . 13
|
| 49 | 48 | fveq2d 6195 |
. . . . . . . . . . . 12
|
| 50 | 49 | eqeq1d 2624 |
. . . . . . . . . . 11
|
| 51 | 47, 50 | imbi12d 334 |
. . . . . . . . . 10
|
| 52 | 44, 51, 20 | vtocld 3257 |
. . . . . . . . 9
|
| 53 | 52 | imp 445 |
. . . . . . . 8
|
| 54 | 34, 53 | sylan2 491 |
. . . . . . 7
|
| 55 | 54 | 3adant3 1081 |
. . . . . 6
|
| 56 | 55 | oveq2d 6666 |
. . . . 5
|
| 57 | 43, 56 | eleqtrrd 2704 |
. . . 4
|
| 58 | wrdsymbcl 13318 |
. . . 4
| |
| 59 | 40, 57, 58 | syl2anc 693 |
. . 3
|
| 60 | 27, 28, 29, 30, 31, 59 | matbas2d 20229 |
. 2
|
| 61 | 26, 60 | eqeltrd 2701 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-ot 4186 df-uni 4437 df-int 4476 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-supp 7296 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-1o 7560 df-oadd 7564 df-er 7742 df-map 7859 df-ixp 7909 df-en 7956 df-dom 7957 df-sdom 7958 df-fin 7959 df-fsupp 8276 df-sup 8348 df-card 8765 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-nn 11021 df-2 11079 df-3 11080 df-4 11081 df-5 11082 df-6 11083 df-7 11084 df-8 11085 df-9 11086 df-n0 11293 df-z 11378 df-dec 11494 df-uz 11688 df-fz 12327 df-fzo 12466 df-hash 13118 df-word 13299 df-struct 15859 df-ndx 15860 df-slot 15861 df-base 15863 df-sets 15864 df-ress 15865 df-plusg 15954 df-mulr 15955 df-sca 15957 df-vsca 15958 df-ip 15959 df-tset 15960 df-ple 15961 df-ds 15964 df-hom 15966 df-cco 15967 df-0g 16102 df-prds 16108 df-pws 16110 df-sra 19172 df-rgmod 19173 df-dsmm 20076 df-frlm 20091 df-mat 20214 df-lmat 29878 |
| This theorem is referenced by: lmat22det 29888 |
| Copyright terms: Public domain | W3C validator |