Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lmatcl Structured version   Visualization version   Unicode version

Theorem lmatcl 29882
Description: Closure of the literal matrix. (Contributed by Thierry Arnoux, 12-Sep-2020.)
Hypotheses
Ref Expression
lmatfval.m  |-  M  =  (litMat `  W )
lmatfval.n  |-  ( ph  ->  N  e.  NN )
lmatfval.w  |-  ( ph  ->  W  e. Word Word  V )
lmatfval.1  |-  ( ph  ->  ( # `  W
)  =  N )
lmatfval.2  |-  ( (
ph  /\  i  e.  ( 0..^ N ) )  ->  ( # `  ( W `  i )
)  =  N )
lmatcl.b  |-  V  =  ( Base `  R
)
lmatcl.1  |-  O  =  ( ( 1 ... N ) Mat  R )
lmatcl.2  |-  P  =  ( Base `  O
)
lmatcl.r  |-  ( ph  ->  R  e.  X )
Assertion
Ref Expression
lmatcl  |-  ( ph  ->  M  e.  P )
Distinct variable groups:    i, M    i, N    i, W    ph, i
Allowed substitution hints:    P( i)    R( i)    O( i)    V( i)    X( i)

Proof of Theorem lmatcl
Dummy variables  j 
k are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lmatfval.m . . . 4  |-  M  =  (litMat `  W )
2 lmatfval.w . . . . 5  |-  ( ph  ->  W  e. Word Word  V )
3 lmatval 29879 . . . . 5  |-  ( W  e. Word Word  V  ->  (litMat `  W )  =  ( k  e.  ( 1 ... ( # `  W
) ) ,  j  e.  ( 1 ... ( # `  ( W `  0 )
) )  |->  ( ( W `  ( k  -  1 ) ) `
 ( j  - 
1 ) ) ) )
42, 3syl 17 . . . 4  |-  ( ph  ->  (litMat `  W )  =  ( k  e.  ( 1 ... ( # `
 W ) ) ,  j  e.  ( 1 ... ( # `  ( W `  0
) ) )  |->  ( ( W `  (
k  -  1 ) ) `  ( j  -  1 ) ) ) )
51, 4syl5eq 2668 . . 3  |-  ( ph  ->  M  =  ( k  e.  ( 1 ... ( # `  W
) ) ,  j  e.  ( 1 ... ( # `  ( W `  0 )
) )  |->  ( ( W `  ( k  -  1 ) ) `
 ( j  - 
1 ) ) ) )
6 lmatfval.1 . . . . 5  |-  ( ph  ->  ( # `  W
)  =  N )
76oveq2d 6666 . . . 4  |-  ( ph  ->  ( 1 ... ( # `
 W ) )  =  ( 1 ... N ) )
8 lmatfval.n . . . . . . 7  |-  ( ph  ->  N  e.  NN )
9 lbfzo0 12507 . . . . . . 7  |-  ( 0  e.  ( 0..^ N )  <->  N  e.  NN )
108, 9sylibr 224 . . . . . 6  |-  ( ph  ->  0  e.  ( 0..^ N ) )
11 0nn0 11307 . . . . . . . 8  |-  0  e.  NN0
1211a1i 11 . . . . . . 7  |-  ( ph  ->  0  e.  NN0 )
13 simpr 477 . . . . . . . . 9  |-  ( (
ph  /\  i  = 
0 )  ->  i  =  0 )
1413eleq1d 2686 . . . . . . . 8  |-  ( (
ph  /\  i  = 
0 )  ->  (
i  e.  ( 0..^ N )  <->  0  e.  ( 0..^ N ) ) )
1513fveq2d 6195 . . . . . . . . . 10  |-  ( (
ph  /\  i  = 
0 )  ->  ( W `  i )  =  ( W ` 
0 ) )
1615fveq2d 6195 . . . . . . . . 9  |-  ( (
ph  /\  i  = 
0 )  ->  ( # `
 ( W `  i ) )  =  ( # `  ( W `  0 )
) )
1716eqeq1d 2624 . . . . . . . 8  |-  ( (
ph  /\  i  = 
0 )  ->  (
( # `  ( W `
 i ) )  =  N  <->  ( # `  ( W `  0 )
)  =  N ) )
1814, 17imbi12d 334 . . . . . . 7  |-  ( (
ph  /\  i  = 
0 )  ->  (
( i  e.  ( 0..^ N )  -> 
( # `  ( W `
 i ) )  =  N )  <->  ( 0  e.  ( 0..^ N )  ->  ( # `  ( W `  0 )
)  =  N ) ) )
19 lmatfval.2 . . . . . . . 8  |-  ( (
ph  /\  i  e.  ( 0..^ N ) )  ->  ( # `  ( W `  i )
)  =  N )
2019ex 450 . . . . . . 7  |-  ( ph  ->  ( i  e.  ( 0..^ N )  -> 
( # `  ( W `
 i ) )  =  N ) )
2112, 18, 20vtocld 3257 . . . . . 6  |-  ( ph  ->  ( 0  e.  ( 0..^ N )  -> 
( # `  ( W `
 0 ) )  =  N ) )
2210, 21mpd 15 . . . . 5  |-  ( ph  ->  ( # `  ( W `  0 )
)  =  N )
2322oveq2d 6666 . . . 4  |-  ( ph  ->  ( 1 ... ( # `
 ( W ` 
0 ) ) )  =  ( 1 ... N ) )
24 eqidd 2623 . . . 4  |-  ( ph  ->  ( ( W `  ( k  -  1 ) ) `  (
j  -  1 ) )  =  ( ( W `  ( k  -  1 ) ) `
 ( j  - 
1 ) ) )
257, 23, 24mpt2eq123dv 6717 . . 3  |-  ( ph  ->  ( k  e.  ( 1 ... ( # `  W ) ) ,  j  e.  ( 1 ... ( # `  ( W `  0 )
) )  |->  ( ( W `  ( k  -  1 ) ) `
 ( j  - 
1 ) ) )  =  ( k  e.  ( 1 ... N
) ,  j  e.  ( 1 ... N
)  |->  ( ( W `
 ( k  - 
1 ) ) `  ( j  -  1 ) ) ) )
265, 25eqtrd 2656 . 2  |-  ( ph  ->  M  =  ( k  e.  ( 1 ... N ) ,  j  e.  ( 1 ... N )  |->  ( ( W `  ( k  -  1 ) ) `
 ( j  - 
1 ) ) ) )
27 lmatcl.1 . . 3  |-  O  =  ( ( 1 ... N ) Mat  R )
28 lmatcl.b . . 3  |-  V  =  ( Base `  R
)
29 lmatcl.2 . . 3  |-  P  =  ( Base `  O
)
30 fzfid 12772 . . 3  |-  ( ph  ->  ( 1 ... N
)  e.  Fin )
31 lmatcl.r . . 3  |-  ( ph  ->  R  e.  X )
3223ad2ant1 1082 . . . . 5  |-  ( (
ph  /\  k  e.  ( 1 ... N
)  /\  j  e.  ( 1 ... N
) )  ->  W  e. Word Word  V )
33 simp2 1062 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( 1 ... N
)  /\  j  e.  ( 1 ... N
) )  ->  k  e.  ( 1 ... N
) )
34 fz1fzo0m1 12515 . . . . . . 7  |-  ( k  e.  ( 1 ... N )  ->  (
k  -  1 )  e.  ( 0..^ N ) )
3533, 34syl 17 . . . . . 6  |-  ( (
ph  /\  k  e.  ( 1 ... N
)  /\  j  e.  ( 1 ... N
) )  ->  (
k  -  1 )  e.  ( 0..^ N ) )
3663ad2ant1 1082 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( 1 ... N
)  /\  j  e.  ( 1 ... N
) )  ->  ( # `
 W )  =  N )
3736oveq2d 6666 . . . . . 6  |-  ( (
ph  /\  k  e.  ( 1 ... N
)  /\  j  e.  ( 1 ... N
) )  ->  (
0..^ ( # `  W
) )  =  ( 0..^ N ) )
3835, 37eleqtrrd 2704 . . . . 5  |-  ( (
ph  /\  k  e.  ( 1 ... N
)  /\  j  e.  ( 1 ... N
) )  ->  (
k  -  1 )  e.  ( 0..^ (
# `  W )
) )
39 wrdsymbcl 13318 . . . . 5  |-  ( ( W  e. Word Word  V  /\  ( k  -  1 )  e.  ( 0..^ ( # `  W
) ) )  -> 
( W `  (
k  -  1 ) )  e. Word  V )
4032, 38, 39syl2anc 693 . . . 4  |-  ( (
ph  /\  k  e.  ( 1 ... N
)  /\  j  e.  ( 1 ... N
) )  ->  ( W `  ( k  -  1 ) )  e. Word  V )
41 simp3 1063 . . . . . 6  |-  ( (
ph  /\  k  e.  ( 1 ... N
)  /\  j  e.  ( 1 ... N
) )  ->  j  e.  ( 1 ... N
) )
42 fz1fzo0m1 12515 . . . . . 6  |-  ( j  e.  ( 1 ... N )  ->  (
j  -  1 )  e.  ( 0..^ N ) )
4341, 42syl 17 . . . . 5  |-  ( (
ph  /\  k  e.  ( 1 ... N
)  /\  j  e.  ( 1 ... N
) )  ->  (
j  -  1 )  e.  ( 0..^ N ) )
44 ovexd 6680 . . . . . . . . . 10  |-  ( ph  ->  ( k  -  1 )  e.  _V )
45 simpr 477 . . . . . . . . . . . 12  |-  ( (
ph  /\  i  =  ( k  -  1 ) )  ->  i  =  ( k  - 
1 ) )
46 eqidd 2623 . . . . . . . . . . . 12  |-  ( (
ph  /\  i  =  ( k  -  1 ) )  ->  (
0..^ N )  =  ( 0..^ N ) )
4745, 46eleq12d 2695 . . . . . . . . . . 11  |-  ( (
ph  /\  i  =  ( k  -  1 ) )  ->  (
i  e.  ( 0..^ N )  <->  ( k  -  1 )  e.  ( 0..^ N ) ) )
4845fveq2d 6195 . . . . . . . . . . . . 13  |-  ( (
ph  /\  i  =  ( k  -  1 ) )  ->  ( W `  i )  =  ( W `  ( k  -  1 ) ) )
4948fveq2d 6195 . . . . . . . . . . . 12  |-  ( (
ph  /\  i  =  ( k  -  1 ) )  ->  ( # `
 ( W `  i ) )  =  ( # `  ( W `  ( k  -  1 ) ) ) )
5049eqeq1d 2624 . . . . . . . . . . 11  |-  ( (
ph  /\  i  =  ( k  -  1 ) )  ->  (
( # `  ( W `
 i ) )  =  N  <->  ( # `  ( W `  ( k  -  1 ) ) )  =  N ) )
5147, 50imbi12d 334 . . . . . . . . . 10  |-  ( (
ph  /\  i  =  ( k  -  1 ) )  ->  (
( i  e.  ( 0..^ N )  -> 
( # `  ( W `
 i ) )  =  N )  <->  ( (
k  -  1 )  e.  ( 0..^ N )  ->  ( # `  ( W `  ( k  -  1 ) ) )  =  N ) ) )
5244, 51, 20vtocld 3257 . . . . . . . . 9  |-  ( ph  ->  ( ( k  - 
1 )  e.  ( 0..^ N )  -> 
( # `  ( W `
 ( k  - 
1 ) ) )  =  N ) )
5352imp 445 . . . . . . . 8  |-  ( (
ph  /\  ( k  -  1 )  e.  ( 0..^ N ) )  ->  ( # `  ( W `  ( k  -  1 ) ) )  =  N )
5434, 53sylan2 491 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( 1 ... N
) )  ->  ( # `
 ( W `  ( k  -  1 ) ) )  =  N )
55543adant3 1081 . . . . . 6  |-  ( (
ph  /\  k  e.  ( 1 ... N
)  /\  j  e.  ( 1 ... N
) )  ->  ( # `
 ( W `  ( k  -  1 ) ) )  =  N )
5655oveq2d 6666 . . . . 5  |-  ( (
ph  /\  k  e.  ( 1 ... N
)  /\  j  e.  ( 1 ... N
) )  ->  (
0..^ ( # `  ( W `  ( k  -  1 ) ) ) )  =  ( 0..^ N ) )
5743, 56eleqtrrd 2704 . . . 4  |-  ( (
ph  /\  k  e.  ( 1 ... N
)  /\  j  e.  ( 1 ... N
) )  ->  (
j  -  1 )  e.  ( 0..^ (
# `  ( W `  ( k  -  1 ) ) ) ) )
58 wrdsymbcl 13318 . . . 4  |-  ( ( ( W `  (
k  -  1 ) )  e. Word  V  /\  ( j  -  1 )  e.  ( 0..^ ( # `  ( W `  ( k  -  1 ) ) ) ) )  -> 
( ( W `  ( k  -  1 ) ) `  (
j  -  1 ) )  e.  V )
5940, 57, 58syl2anc 693 . . 3  |-  ( (
ph  /\  k  e.  ( 1 ... N
)  /\  j  e.  ( 1 ... N
) )  ->  (
( W `  (
k  -  1 ) ) `  ( j  -  1 ) )  e.  V )
6027, 28, 29, 30, 31, 59matbas2d 20229 . 2  |-  ( ph  ->  ( k  e.  ( 1 ... N ) ,  j  e.  ( 1 ... N ) 
|->  ( ( W `  ( k  -  1 ) ) `  (
j  -  1 ) ) )  e.  P
)
6126, 60eqeltrd 2701 1  |-  ( ph  ->  M  e.  P )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   _Vcvv 3200   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652   0cc0 9936   1c1 9937    - cmin 10266   NNcn 11020   NN0cn0 11292   ...cfz 12326  ..^cfzo 12465   #chash 13117  Word cword 13291   Basecbs 15857   Mat cmat 20213  litMatclmat 29877
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-ot 4186  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-sup 8348  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-fz 12327  df-fzo 12466  df-hash 13118  df-word 13299  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-hom 15966  df-cco 15967  df-0g 16102  df-prds 16108  df-pws 16110  df-sra 19172  df-rgmod 19173  df-dsmm 20076  df-frlm 20091  df-mat 20214  df-lmat 29878
This theorem is referenced by:  lmat22det  29888
  Copyright terms: Public domain W3C validator