MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lspfixed Structured version   Visualization version   Unicode version

Theorem lspfixed 19128
Description: Show membership in the span of the sum of two vectors, one of which ( Y) is fixed in advance. (Contributed by NM, 27-May-2015.)
Hypotheses
Ref Expression
lspfixed.v  |-  V  =  ( Base `  W
)
lspfixed.p  |-  .+  =  ( +g  `  W )
lspfixed.o  |-  .0.  =  ( 0g `  W )
lspfixed.n  |-  N  =  ( LSpan `  W )
lspfixed.w  |-  ( ph  ->  W  e.  LVec )
lspfixed.x  |-  ( ph  ->  X  e.  V )
lspfixed.y  |-  ( ph  ->  Y  e.  V )
lspfixed.z  |-  ( ph  ->  Z  e.  V )
lspfixed.e  |-  ( ph  ->  -.  X  e.  ( N `  { Y } ) )
lspfixed.f  |-  ( ph  ->  -.  X  e.  ( N `  { Z } ) )
lspfixed.g  |-  ( ph  ->  X  e.  ( N `
 { Y ,  Z } ) )
Assertion
Ref Expression
lspfixed  |-  ( ph  ->  E. z  e.  ( ( N `  { Z } )  \  {  .0.  } ) X  e.  ( N `  {
( Y  .+  z
) } ) )
Distinct variable groups:    z, N    z,  .0.    z,  .+    z, W   
z, X    z, Y    z, Z
Allowed substitution hints:    ph( z)    V( z)

Proof of Theorem lspfixed
Dummy variables  k 
l are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lspfixed.g . . 3  |-  ( ph  ->  X  e.  ( N `
 { Y ,  Z } ) )
2 lspfixed.v . . . 4  |-  V  =  ( Base `  W
)
3 lspfixed.p . . . 4  |-  .+  =  ( +g  `  W )
4 eqid 2622 . . . 4  |-  (Scalar `  W )  =  (Scalar `  W )
5 eqid 2622 . . . 4  |-  ( Base `  (Scalar `  W )
)  =  ( Base `  (Scalar `  W )
)
6 eqid 2622 . . . 4  |-  ( .s
`  W )  =  ( .s `  W
)
7 lspfixed.n . . . 4  |-  N  =  ( LSpan `  W )
8 lspfixed.w . . . . 5  |-  ( ph  ->  W  e.  LVec )
9 lveclmod 19106 . . . . 5  |-  ( W  e.  LVec  ->  W  e. 
LMod )
108, 9syl 17 . . . 4  |-  ( ph  ->  W  e.  LMod )
11 lspfixed.y . . . 4  |-  ( ph  ->  Y  e.  V )
12 lspfixed.z . . . 4  |-  ( ph  ->  Z  e.  V )
132, 3, 4, 5, 6, 7, 10, 11, 12lspprel 19094 . . 3  |-  ( ph  ->  ( X  e.  ( N `  { Y ,  Z } )  <->  E. k  e.  ( Base `  (Scalar `  W ) ) E. l  e.  ( Base `  (Scalar `  W )
) X  =  ( ( k ( .s
`  W ) Y )  .+  ( l ( .s `  W
) Z ) ) ) )
141, 13mpbid 222 . 2  |-  ( ph  ->  E. k  e.  (
Base `  (Scalar `  W
) ) E. l  e.  ( Base `  (Scalar `  W ) ) X  =  ( ( k ( .s `  W
) Y )  .+  ( l ( .s
`  W ) Z ) ) )
15103ad2ant1 1082 . . . . . . 7  |-  ( (
ph  /\  ( k  e.  ( Base `  (Scalar `  W ) )  /\  l  e.  ( Base `  (Scalar `  W )
) )  /\  X  =  ( ( k ( .s `  W
) Y )  .+  ( l ( .s
`  W ) Z ) ) )  ->  W  e.  LMod )
16 eqid 2622 . . . . . . . . . 10  |-  ( LSubSp `  W )  =  (
LSubSp `  W )
172, 16, 7lspsncl 18977 . . . . . . . . 9  |-  ( ( W  e.  LMod  /\  Z  e.  V )  ->  ( N `  { Z } )  e.  (
LSubSp `  W ) )
1810, 12, 17syl2anc 693 . . . . . . . 8  |-  ( ph  ->  ( N `  { Z } )  e.  (
LSubSp `  W ) )
19183ad2ant1 1082 . . . . . . 7  |-  ( (
ph  /\  ( k  e.  ( Base `  (Scalar `  W ) )  /\  l  e.  ( Base `  (Scalar `  W )
) )  /\  X  =  ( ( k ( .s `  W
) Y )  .+  ( l ( .s
`  W ) Z ) ) )  -> 
( N `  { Z } )  e.  (
LSubSp `  W ) )
2083ad2ant1 1082 . . . . . . . . 9  |-  ( (
ph  /\  ( k  e.  ( Base `  (Scalar `  W ) )  /\  l  e.  ( Base `  (Scalar `  W )
) )  /\  X  =  ( ( k ( .s `  W
) Y )  .+  ( l ( .s
`  W ) Z ) ) )  ->  W  e.  LVec )
214lvecdrng 19105 . . . . . . . . 9  |-  ( W  e.  LVec  ->  (Scalar `  W )  e.  DivRing )
2220, 21syl 17 . . . . . . . 8  |-  ( (
ph  /\  ( k  e.  ( Base `  (Scalar `  W ) )  /\  l  e.  ( Base `  (Scalar `  W )
) )  /\  X  =  ( ( k ( .s `  W
) Y )  .+  ( l ( .s
`  W ) Z ) ) )  -> 
(Scalar `  W )  e.  DivRing )
23 simp2l 1087 . . . . . . . 8  |-  ( (
ph  /\  ( k  e.  ( Base `  (Scalar `  W ) )  /\  l  e.  ( Base `  (Scalar `  W )
) )  /\  X  =  ( ( k ( .s `  W
) Y )  .+  ( l ( .s
`  W ) Z ) ) )  -> 
k  e.  ( Base `  (Scalar `  W )
) )
24 lspfixed.f . . . . . . . . . 10  |-  ( ph  ->  -.  X  e.  ( N `  { Z } ) )
25243ad2ant1 1082 . . . . . . . . 9  |-  ( (
ph  /\  ( k  e.  ( Base `  (Scalar `  W ) )  /\  l  e.  ( Base `  (Scalar `  W )
) )  /\  X  =  ( ( k ( .s `  W
) Y )  .+  ( l ( .s
`  W ) Z ) ) )  ->  -.  X  e.  ( N `  { Z } ) )
26 simpl3 1066 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
k  e.  ( Base `  (Scalar `  W )
)  /\  l  e.  ( Base `  (Scalar `  W
) ) )  /\  X  =  ( (
k ( .s `  W ) Y ) 
.+  ( l ( .s `  W ) Z ) ) )  /\  k  =  ( 0g `  (Scalar `  W ) ) )  ->  X  =  ( ( k ( .s
`  W ) Y )  .+  ( l ( .s `  W
) Z ) ) )
27 simpr 477 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
k  e.  ( Base `  (Scalar `  W )
)  /\  l  e.  ( Base `  (Scalar `  W
) ) )  /\  X  =  ( (
k ( .s `  W ) Y ) 
.+  ( l ( .s `  W ) Z ) ) )  /\  k  =  ( 0g `  (Scalar `  W ) ) )  ->  k  =  ( 0g `  (Scalar `  W ) ) )
2827oveq1d 6665 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
k  e.  ( Base `  (Scalar `  W )
)  /\  l  e.  ( Base `  (Scalar `  W
) ) )  /\  X  =  ( (
k ( .s `  W ) Y ) 
.+  ( l ( .s `  W ) Z ) ) )  /\  k  =  ( 0g `  (Scalar `  W ) ) )  ->  ( k ( .s `  W ) Y )  =  ( ( 0g `  (Scalar `  W ) ) ( .s `  W ) Y ) )
29 simpl1 1064 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  (
k  e.  ( Base `  (Scalar `  W )
)  /\  l  e.  ( Base `  (Scalar `  W
) ) )  /\  X  =  ( (
k ( .s `  W ) Y ) 
.+  ( l ( .s `  W ) Z ) ) )  /\  k  =  ( 0g `  (Scalar `  W ) ) )  ->  ph )
3029, 10syl 17 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
k  e.  ( Base `  (Scalar `  W )
)  /\  l  e.  ( Base `  (Scalar `  W
) ) )  /\  X  =  ( (
k ( .s `  W ) Y ) 
.+  ( l ( .s `  W ) Z ) ) )  /\  k  =  ( 0g `  (Scalar `  W ) ) )  ->  W  e.  LMod )
3129, 11syl 17 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
k  e.  ( Base `  (Scalar `  W )
)  /\  l  e.  ( Base `  (Scalar `  W
) ) )  /\  X  =  ( (
k ( .s `  W ) Y ) 
.+  ( l ( .s `  W ) Z ) ) )  /\  k  =  ( 0g `  (Scalar `  W ) ) )  ->  Y  e.  V
)
32 eqid 2622 . . . . . . . . . . . . . . . . 17  |-  ( 0g
`  (Scalar `  W )
)  =  ( 0g
`  (Scalar `  W )
)
33 lspfixed.o . . . . . . . . . . . . . . . . 17  |-  .0.  =  ( 0g `  W )
342, 4, 6, 32, 33lmod0vs 18896 . . . . . . . . . . . . . . . 16  |-  ( ( W  e.  LMod  /\  Y  e.  V )  ->  (
( 0g `  (Scalar `  W ) ) ( .s `  W ) Y )  =  .0.  )
3530, 31, 34syl2anc 693 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
k  e.  ( Base `  (Scalar `  W )
)  /\  l  e.  ( Base `  (Scalar `  W
) ) )  /\  X  =  ( (
k ( .s `  W ) Y ) 
.+  ( l ( .s `  W ) Z ) ) )  /\  k  =  ( 0g `  (Scalar `  W ) ) )  ->  ( ( 0g
`  (Scalar `  W )
) ( .s `  W ) Y )  =  .0.  )
3628, 35eqtrd 2656 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
k  e.  ( Base `  (Scalar `  W )
)  /\  l  e.  ( Base `  (Scalar `  W
) ) )  /\  X  =  ( (
k ( .s `  W ) Y ) 
.+  ( l ( .s `  W ) Z ) ) )  /\  k  =  ( 0g `  (Scalar `  W ) ) )  ->  ( k ( .s `  W ) Y )  =  .0.  )
3736oveq1d 6665 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
k  e.  ( Base `  (Scalar `  W )
)  /\  l  e.  ( Base `  (Scalar `  W
) ) )  /\  X  =  ( (
k ( .s `  W ) Y ) 
.+  ( l ( .s `  W ) Z ) ) )  /\  k  =  ( 0g `  (Scalar `  W ) ) )  ->  ( ( k ( .s `  W
) Y )  .+  ( l ( .s
`  W ) Z ) )  =  (  .0.  .+  ( l
( .s `  W
) Z ) ) )
38 simp2r 1088 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( k  e.  ( Base `  (Scalar `  W ) )  /\  l  e.  ( Base `  (Scalar `  W )
) )  /\  X  =  ( ( k ( .s `  W
) Y )  .+  ( l ( .s
`  W ) Z ) ) )  -> 
l  e.  ( Base `  (Scalar `  W )
) )
39123ad2ant1 1082 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( k  e.  ( Base `  (Scalar `  W ) )  /\  l  e.  ( Base `  (Scalar `  W )
) )  /\  X  =  ( ( k ( .s `  W
) Y )  .+  ( l ( .s
`  W ) Z ) ) )  ->  Z  e.  V )
402, 4, 6, 5lmodvscl 18880 . . . . . . . . . . . . . . . 16  |-  ( ( W  e.  LMod  /\  l  e.  ( Base `  (Scalar `  W ) )  /\  Z  e.  V )  ->  ( l ( .s
`  W ) Z )  e.  V )
4115, 38, 39, 40syl3anc 1326 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( k  e.  ( Base `  (Scalar `  W ) )  /\  l  e.  ( Base `  (Scalar `  W )
) )  /\  X  =  ( ( k ( .s `  W
) Y )  .+  ( l ( .s
`  W ) Z ) ) )  -> 
( l ( .s
`  W ) Z )  e.  V )
4241adantr 481 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
k  e.  ( Base `  (Scalar `  W )
)  /\  l  e.  ( Base `  (Scalar `  W
) ) )  /\  X  =  ( (
k ( .s `  W ) Y ) 
.+  ( l ( .s `  W ) Z ) ) )  /\  k  =  ( 0g `  (Scalar `  W ) ) )  ->  ( l ( .s `  W ) Z )  e.  V
)
432, 3, 33lmod0vlid 18893 . . . . . . . . . . . . . 14  |-  ( ( W  e.  LMod  /\  (
l ( .s `  W ) Z )  e.  V )  -> 
(  .0.  .+  (
l ( .s `  W ) Z ) )  =  ( l ( .s `  W
) Z ) )
4430, 42, 43syl2anc 693 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
k  e.  ( Base `  (Scalar `  W )
)  /\  l  e.  ( Base `  (Scalar `  W
) ) )  /\  X  =  ( (
k ( .s `  W ) Y ) 
.+  ( l ( .s `  W ) Z ) ) )  /\  k  =  ( 0g `  (Scalar `  W ) ) )  ->  (  .0.  .+  ( l ( .s
`  W ) Z ) )  =  ( l ( .s `  W ) Z ) )
4526, 37, 443eqtrd 2660 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
k  e.  ( Base `  (Scalar `  W )
)  /\  l  e.  ( Base `  (Scalar `  W
) ) )  /\  X  =  ( (
k ( .s `  W ) Y ) 
.+  ( l ( .s `  W ) Z ) ) )  /\  k  =  ( 0g `  (Scalar `  W ) ) )  ->  X  =  ( l ( .s `  W ) Z ) )
4629, 18syl 17 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
k  e.  ( Base `  (Scalar `  W )
)  /\  l  e.  ( Base `  (Scalar `  W
) ) )  /\  X  =  ( (
k ( .s `  W ) Y ) 
.+  ( l ( .s `  W ) Z ) ) )  /\  k  =  ( 0g `  (Scalar `  W ) ) )  ->  ( N `  { Z } )  e.  ( LSubSp `  W )
)
47 simpl2r 1115 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
k  e.  ( Base `  (Scalar `  W )
)  /\  l  e.  ( Base `  (Scalar `  W
) ) )  /\  X  =  ( (
k ( .s `  W ) Y ) 
.+  ( l ( .s `  W ) Z ) ) )  /\  k  =  ( 0g `  (Scalar `  W ) ) )  ->  l  e.  (
Base `  (Scalar `  W
) ) )
482, 7lspsnid 18993 . . . . . . . . . . . . . . 15  |-  ( ( W  e.  LMod  /\  Z  e.  V )  ->  Z  e.  ( N `  { Z } ) )
4910, 12, 48syl2anc 693 . . . . . . . . . . . . . 14  |-  ( ph  ->  Z  e.  ( N `
 { Z }
) )
5029, 49syl 17 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
k  e.  ( Base `  (Scalar `  W )
)  /\  l  e.  ( Base `  (Scalar `  W
) ) )  /\  X  =  ( (
k ( .s `  W ) Y ) 
.+  ( l ( .s `  W ) Z ) ) )  /\  k  =  ( 0g `  (Scalar `  W ) ) )  ->  Z  e.  ( N `  { Z } ) )
514, 6, 5, 16lssvscl 18955 . . . . . . . . . . . . 13  |-  ( ( ( W  e.  LMod  /\  ( N `  { Z } )  e.  (
LSubSp `  W ) )  /\  ( l  e.  ( Base `  (Scalar `  W ) )  /\  Z  e.  ( N `  { Z } ) ) )  ->  (
l ( .s `  W ) Z )  e.  ( N `  { Z } ) )
5230, 46, 47, 50, 51syl22anc 1327 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
k  e.  ( Base `  (Scalar `  W )
)  /\  l  e.  ( Base `  (Scalar `  W
) ) )  /\  X  =  ( (
k ( .s `  W ) Y ) 
.+  ( l ( .s `  W ) Z ) ) )  /\  k  =  ( 0g `  (Scalar `  W ) ) )  ->  ( l ( .s `  W ) Z )  e.  ( N `  { Z } ) )
5345, 52eqeltrd 2701 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
k  e.  ( Base `  (Scalar `  W )
)  /\  l  e.  ( Base `  (Scalar `  W
) ) )  /\  X  =  ( (
k ( .s `  W ) Y ) 
.+  ( l ( .s `  W ) Z ) ) )  /\  k  =  ( 0g `  (Scalar `  W ) ) )  ->  X  e.  ( N `  { Z } ) )
5453ex 450 . . . . . . . . . 10  |-  ( (
ph  /\  ( k  e.  ( Base `  (Scalar `  W ) )  /\  l  e.  ( Base `  (Scalar `  W )
) )  /\  X  =  ( ( k ( .s `  W
) Y )  .+  ( l ( .s
`  W ) Z ) ) )  -> 
( k  =  ( 0g `  (Scalar `  W ) )  ->  X  e.  ( N `  { Z } ) ) )
5554necon3bd 2808 . . . . . . . . 9  |-  ( (
ph  /\  ( k  e.  ( Base `  (Scalar `  W ) )  /\  l  e.  ( Base `  (Scalar `  W )
) )  /\  X  =  ( ( k ( .s `  W
) Y )  .+  ( l ( .s
`  W ) Z ) ) )  -> 
( -.  X  e.  ( N `  { Z } )  ->  k  =/=  ( 0g `  (Scalar `  W ) ) ) )
5625, 55mpd 15 . . . . . . . 8  |-  ( (
ph  /\  ( k  e.  ( Base `  (Scalar `  W ) )  /\  l  e.  ( Base `  (Scalar `  W )
) )  /\  X  =  ( ( k ( .s `  W
) Y )  .+  ( l ( .s
`  W ) Z ) ) )  -> 
k  =/=  ( 0g
`  (Scalar `  W )
) )
57 eqid 2622 . . . . . . . . 9  |-  ( invr `  (Scalar `  W )
)  =  ( invr `  (Scalar `  W )
)
585, 32, 57drnginvrcl 18764 . . . . . . . 8  |-  ( ( (Scalar `  W )  e.  DivRing  /\  k  e.  ( Base `  (Scalar `  W
) )  /\  k  =/=  ( 0g `  (Scalar `  W ) ) )  ->  ( ( invr `  (Scalar `  W )
) `  k )  e.  ( Base `  (Scalar `  W ) ) )
5922, 23, 56, 58syl3anc 1326 . . . . . . 7  |-  ( (
ph  /\  ( k  e.  ( Base `  (Scalar `  W ) )  /\  l  e.  ( Base `  (Scalar `  W )
) )  /\  X  =  ( ( k ( .s `  W
) Y )  .+  ( l ( .s
`  W ) Z ) ) )  -> 
( ( invr `  (Scalar `  W ) ) `  k )  e.  (
Base `  (Scalar `  W
) ) )
60493ad2ant1 1082 . . . . . . . 8  |-  ( (
ph  /\  ( k  e.  ( Base `  (Scalar `  W ) )  /\  l  e.  ( Base `  (Scalar `  W )
) )  /\  X  =  ( ( k ( .s `  W
) Y )  .+  ( l ( .s
`  W ) Z ) ) )  ->  Z  e.  ( N `  { Z } ) )
6115, 19, 38, 60, 51syl22anc 1327 . . . . . . 7  |-  ( (
ph  /\  ( k  e.  ( Base `  (Scalar `  W ) )  /\  l  e.  ( Base `  (Scalar `  W )
) )  /\  X  =  ( ( k ( .s `  W
) Y )  .+  ( l ( .s
`  W ) Z ) ) )  -> 
( l ( .s
`  W ) Z )  e.  ( N `
 { Z }
) )
624, 6, 5, 16lssvscl 18955 . . . . . . 7  |-  ( ( ( W  e.  LMod  /\  ( N `  { Z } )  e.  (
LSubSp `  W ) )  /\  ( ( (
invr `  (Scalar `  W
) ) `  k
)  e.  ( Base `  (Scalar `  W )
)  /\  ( l
( .s `  W
) Z )  e.  ( N `  { Z } ) ) )  ->  ( ( (
invr `  (Scalar `  W
) ) `  k
) ( .s `  W ) ( l ( .s `  W
) Z ) )  e.  ( N `  { Z } ) )
6315, 19, 59, 61, 62syl22anc 1327 . . . . . 6  |-  ( (
ph  /\  ( k  e.  ( Base `  (Scalar `  W ) )  /\  l  e.  ( Base `  (Scalar `  W )
) )  /\  X  =  ( ( k ( .s `  W
) Y )  .+  ( l ( .s
`  W ) Z ) ) )  -> 
( ( ( invr `  (Scalar `  W )
) `  k )
( .s `  W
) ( l ( .s `  W ) Z ) )  e.  ( N `  { Z } ) )
645, 32, 57drnginvrn0 18765 . . . . . . . 8  |-  ( ( (Scalar `  W )  e.  DivRing  /\  k  e.  ( Base `  (Scalar `  W
) )  /\  k  =/=  ( 0g `  (Scalar `  W ) ) )  ->  ( ( invr `  (Scalar `  W )
) `  k )  =/=  ( 0g `  (Scalar `  W ) ) )
6522, 23, 56, 64syl3anc 1326 . . . . . . 7  |-  ( (
ph  /\  ( k  e.  ( Base `  (Scalar `  W ) )  /\  l  e.  ( Base `  (Scalar `  W )
) )  /\  X  =  ( ( k ( .s `  W
) Y )  .+  ( l ( .s
`  W ) Z ) ) )  -> 
( ( invr `  (Scalar `  W ) ) `  k )  =/=  ( 0g `  (Scalar `  W
) ) )
66 lspfixed.e . . . . . . . . . 10  |-  ( ph  ->  -.  X  e.  ( N `  { Y } ) )
67663ad2ant1 1082 . . . . . . . . 9  |-  ( (
ph  /\  ( k  e.  ( Base `  (Scalar `  W ) )  /\  l  e.  ( Base `  (Scalar `  W )
) )  /\  X  =  ( ( k ( .s `  W
) Y )  .+  ( l ( .s
`  W ) Z ) ) )  ->  -.  X  e.  ( N `  { Y } ) )
68 simpl3 1066 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
k  e.  ( Base `  (Scalar `  W )
)  /\  l  e.  ( Base `  (Scalar `  W
) ) )  /\  X  =  ( (
k ( .s `  W ) Y ) 
.+  ( l ( .s `  W ) Z ) ) )  /\  l  =  ( 0g `  (Scalar `  W ) ) )  ->  X  =  ( ( k ( .s
`  W ) Y )  .+  ( l ( .s `  W
) Z ) ) )
69 oveq1 6657 . . . . . . . . . . . . . . 15  |-  ( l  =  ( 0g `  (Scalar `  W ) )  ->  ( l ( .s `  W ) Z )  =  ( ( 0g `  (Scalar `  W ) ) ( .s `  W ) Z ) )
702, 4, 6, 32, 33lmod0vs 18896 . . . . . . . . . . . . . . . 16  |-  ( ( W  e.  LMod  /\  Z  e.  V )  ->  (
( 0g `  (Scalar `  W ) ) ( .s `  W ) Z )  =  .0.  )
7115, 39, 70syl2anc 693 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( k  e.  ( Base `  (Scalar `  W ) )  /\  l  e.  ( Base `  (Scalar `  W )
) )  /\  X  =  ( ( k ( .s `  W
) Y )  .+  ( l ( .s
`  W ) Z ) ) )  -> 
( ( 0g `  (Scalar `  W ) ) ( .s `  W
) Z )  =  .0.  )
7269, 71sylan9eqr 2678 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
k  e.  ( Base `  (Scalar `  W )
)  /\  l  e.  ( Base `  (Scalar `  W
) ) )  /\  X  =  ( (
k ( .s `  W ) Y ) 
.+  ( l ( .s `  W ) Z ) ) )  /\  l  =  ( 0g `  (Scalar `  W ) ) )  ->  ( l ( .s `  W ) Z )  =  .0.  )
7372oveq2d 6666 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
k  e.  ( Base `  (Scalar `  W )
)  /\  l  e.  ( Base `  (Scalar `  W
) ) )  /\  X  =  ( (
k ( .s `  W ) Y ) 
.+  ( l ( .s `  W ) Z ) ) )  /\  l  =  ( 0g `  (Scalar `  W ) ) )  ->  ( ( k ( .s `  W
) Y )  .+  ( l ( .s
`  W ) Z ) )  =  ( ( k ( .s
`  W ) Y )  .+  .0.  )
)
74113ad2ant1 1082 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( k  e.  ( Base `  (Scalar `  W ) )  /\  l  e.  ( Base `  (Scalar `  W )
) )  /\  X  =  ( ( k ( .s `  W
) Y )  .+  ( l ( .s
`  W ) Z ) ) )  ->  Y  e.  V )
752, 4, 6, 5lmodvscl 18880 . . . . . . . . . . . . . . . 16  |-  ( ( W  e.  LMod  /\  k  e.  ( Base `  (Scalar `  W ) )  /\  Y  e.  V )  ->  ( k ( .s
`  W ) Y )  e.  V )
7615, 23, 74, 75syl3anc 1326 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( k  e.  ( Base `  (Scalar `  W ) )  /\  l  e.  ( Base `  (Scalar `  W )
) )  /\  X  =  ( ( k ( .s `  W
) Y )  .+  ( l ( .s
`  W ) Z ) ) )  -> 
( k ( .s
`  W ) Y )  e.  V )
772, 3, 33lmod0vrid 18894 . . . . . . . . . . . . . . 15  |-  ( ( W  e.  LMod  /\  (
k ( .s `  W ) Y )  e.  V )  -> 
( ( k ( .s `  W ) Y )  .+  .0.  )  =  ( k
( .s `  W
) Y ) )
7815, 76, 77syl2anc 693 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( k  e.  ( Base `  (Scalar `  W ) )  /\  l  e.  ( Base `  (Scalar `  W )
) )  /\  X  =  ( ( k ( .s `  W
) Y )  .+  ( l ( .s
`  W ) Z ) ) )  -> 
( ( k ( .s `  W ) Y )  .+  .0.  )  =  ( k
( .s `  W
) Y ) )
7978adantr 481 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
k  e.  ( Base `  (Scalar `  W )
)  /\  l  e.  ( Base `  (Scalar `  W
) ) )  /\  X  =  ( (
k ( .s `  W ) Y ) 
.+  ( l ( .s `  W ) Z ) ) )  /\  l  =  ( 0g `  (Scalar `  W ) ) )  ->  ( ( k ( .s `  W
) Y )  .+  .0.  )  =  (
k ( .s `  W ) Y ) )
8068, 73, 793eqtrd 2660 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
k  e.  ( Base `  (Scalar `  W )
)  /\  l  e.  ( Base `  (Scalar `  W
) ) )  /\  X  =  ( (
k ( .s `  W ) Y ) 
.+  ( l ( .s `  W ) Z ) ) )  /\  l  =  ( 0g `  (Scalar `  W ) ) )  ->  X  =  ( k ( .s `  W ) Y ) )
812, 16, 7lspsncl 18977 . . . . . . . . . . . . . . . 16  |-  ( ( W  e.  LMod  /\  Y  e.  V )  ->  ( N `  { Y } )  e.  (
LSubSp `  W ) )
8210, 11, 81syl2anc 693 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( N `  { Y } )  e.  (
LSubSp `  W ) )
83823ad2ant1 1082 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( k  e.  ( Base `  (Scalar `  W ) )  /\  l  e.  ( Base `  (Scalar `  W )
) )  /\  X  =  ( ( k ( .s `  W
) Y )  .+  ( l ( .s
`  W ) Z ) ) )  -> 
( N `  { Y } )  e.  (
LSubSp `  W ) )
842, 7lspsnid 18993 . . . . . . . . . . . . . . . 16  |-  ( ( W  e.  LMod  /\  Y  e.  V )  ->  Y  e.  ( N `  { Y } ) )
8510, 11, 84syl2anc 693 . . . . . . . . . . . . . . 15  |-  ( ph  ->  Y  e.  ( N `
 { Y }
) )
86853ad2ant1 1082 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( k  e.  ( Base `  (Scalar `  W ) )  /\  l  e.  ( Base `  (Scalar `  W )
) )  /\  X  =  ( ( k ( .s `  W
) Y )  .+  ( l ( .s
`  W ) Z ) ) )  ->  Y  e.  ( N `  { Y } ) )
874, 6, 5, 16lssvscl 18955 . . . . . . . . . . . . . 14  |-  ( ( ( W  e.  LMod  /\  ( N `  { Y } )  e.  (
LSubSp `  W ) )  /\  ( k  e.  ( Base `  (Scalar `  W ) )  /\  Y  e.  ( N `  { Y } ) ) )  ->  (
k ( .s `  W ) Y )  e.  ( N `  { Y } ) )
8815, 83, 23, 86, 87syl22anc 1327 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( k  e.  ( Base `  (Scalar `  W ) )  /\  l  e.  ( Base `  (Scalar `  W )
) )  /\  X  =  ( ( k ( .s `  W
) Y )  .+  ( l ( .s
`  W ) Z ) ) )  -> 
( k ( .s
`  W ) Y )  e.  ( N `
 { Y }
) )
8988adantr 481 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
k  e.  ( Base `  (Scalar `  W )
)  /\  l  e.  ( Base `  (Scalar `  W
) ) )  /\  X  =  ( (
k ( .s `  W ) Y ) 
.+  ( l ( .s `  W ) Z ) ) )  /\  l  =  ( 0g `  (Scalar `  W ) ) )  ->  ( k ( .s `  W ) Y )  e.  ( N `  { Y } ) )
9080, 89eqeltrd 2701 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
k  e.  ( Base `  (Scalar `  W )
)  /\  l  e.  ( Base `  (Scalar `  W
) ) )  /\  X  =  ( (
k ( .s `  W ) Y ) 
.+  ( l ( .s `  W ) Z ) ) )  /\  l  =  ( 0g `  (Scalar `  W ) ) )  ->  X  e.  ( N `  { Y } ) )
9190ex 450 . . . . . . . . . 10  |-  ( (
ph  /\  ( k  e.  ( Base `  (Scalar `  W ) )  /\  l  e.  ( Base `  (Scalar `  W )
) )  /\  X  =  ( ( k ( .s `  W
) Y )  .+  ( l ( .s
`  W ) Z ) ) )  -> 
( l  =  ( 0g `  (Scalar `  W ) )  ->  X  e.  ( N `  { Y } ) ) )
9291necon3bd 2808 . . . . . . . . 9  |-  ( (
ph  /\  ( k  e.  ( Base `  (Scalar `  W ) )  /\  l  e.  ( Base `  (Scalar `  W )
) )  /\  X  =  ( ( k ( .s `  W
) Y )  .+  ( l ( .s
`  W ) Z ) ) )  -> 
( -.  X  e.  ( N `  { Y } )  ->  l  =/=  ( 0g `  (Scalar `  W ) ) ) )
9367, 92mpd 15 . . . . . . . 8  |-  ( (
ph  /\  ( k  e.  ( Base `  (Scalar `  W ) )  /\  l  e.  ( Base `  (Scalar `  W )
) )  /\  X  =  ( ( k ( .s `  W
) Y )  .+  ( l ( .s
`  W ) Z ) ) )  -> 
l  =/=  ( 0g
`  (Scalar `  W )
) )
94 simpl1 1064 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
k  e.  ( Base `  (Scalar `  W )
)  /\  l  e.  ( Base `  (Scalar `  W
) ) )  /\  X  =  ( (
k ( .s `  W ) Y ) 
.+  ( l ( .s `  W ) Z ) ) )  /\  Z  =  .0.  )  ->  ph )
9594, 1syl 17 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
k  e.  ( Base `  (Scalar `  W )
)  /\  l  e.  ( Base `  (Scalar `  W
) ) )  /\  X  =  ( (
k ( .s `  W ) Y ) 
.+  ( l ( .s `  W ) Z ) ) )  /\  Z  =  .0.  )  ->  X  e.  ( N `  { Y ,  Z } ) )
96 preq2 4269 . . . . . . . . . . . . . 14  |-  ( Z  =  .0.  ->  { Y ,  Z }  =  { Y ,  .0.  } )
9796fveq2d 6195 . . . . . . . . . . . . 13  |-  ( Z  =  .0.  ->  ( N `  { Y ,  Z } )  =  ( N `  { Y ,  .0.  } ) )
982, 33, 7, 15, 74lsppr0 19092 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( k  e.  ( Base `  (Scalar `  W ) )  /\  l  e.  ( Base `  (Scalar `  W )
) )  /\  X  =  ( ( k ( .s `  W
) Y )  .+  ( l ( .s
`  W ) Z ) ) )  -> 
( N `  { Y ,  .0.  } )  =  ( N `  { Y } ) )
9997, 98sylan9eqr 2678 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
k  e.  ( Base `  (Scalar `  W )
)  /\  l  e.  ( Base `  (Scalar `  W
) ) )  /\  X  =  ( (
k ( .s `  W ) Y ) 
.+  ( l ( .s `  W ) Z ) ) )  /\  Z  =  .0.  )  ->  ( N `  { Y ,  Z } )  =  ( N `  { Y } ) )
10095, 99eleqtrd 2703 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
k  e.  ( Base `  (Scalar `  W )
)  /\  l  e.  ( Base `  (Scalar `  W
) ) )  /\  X  =  ( (
k ( .s `  W ) Y ) 
.+  ( l ( .s `  W ) Z ) ) )  /\  Z  =  .0.  )  ->  X  e.  ( N `  { Y } ) )
101100ex 450 . . . . . . . . . 10  |-  ( (
ph  /\  ( k  e.  ( Base `  (Scalar `  W ) )  /\  l  e.  ( Base `  (Scalar `  W )
) )  /\  X  =  ( ( k ( .s `  W
) Y )  .+  ( l ( .s
`  W ) Z ) ) )  -> 
( Z  =  .0. 
->  X  e.  ( N `  { Y } ) ) )
102101necon3bd 2808 . . . . . . . . 9  |-  ( (
ph  /\  ( k  e.  ( Base `  (Scalar `  W ) )  /\  l  e.  ( Base `  (Scalar `  W )
) )  /\  X  =  ( ( k ( .s `  W
) Y )  .+  ( l ( .s
`  W ) Z ) ) )  -> 
( -.  X  e.  ( N `  { Y } )  ->  Z  =/=  .0.  ) )
10367, 102mpd 15 . . . . . . . 8  |-  ( (
ph  /\  ( k  e.  ( Base `  (Scalar `  W ) )  /\  l  e.  ( Base `  (Scalar `  W )
) )  /\  X  =  ( ( k ( .s `  W
) Y )  .+  ( l ( .s
`  W ) Z ) ) )  ->  Z  =/=  .0.  )
1042, 6, 4, 5, 32, 33, 20, 38, 39lvecvsn0 19109 . . . . . . . 8  |-  ( (
ph  /\  ( k  e.  ( Base `  (Scalar `  W ) )  /\  l  e.  ( Base `  (Scalar `  W )
) )  /\  X  =  ( ( k ( .s `  W
) Y )  .+  ( l ( .s
`  W ) Z ) ) )  -> 
( ( l ( .s `  W ) Z )  =/=  .0.  <->  (
l  =/=  ( 0g
`  (Scalar `  W )
)  /\  Z  =/=  .0.  ) ) )
10593, 103, 104mpbir2and 957 . . . . . . 7  |-  ( (
ph  /\  ( k  e.  ( Base `  (Scalar `  W ) )  /\  l  e.  ( Base `  (Scalar `  W )
) )  /\  X  =  ( ( k ( .s `  W
) Y )  .+  ( l ( .s
`  W ) Z ) ) )  -> 
( l ( .s
`  W ) Z )  =/=  .0.  )
1062, 6, 4, 5, 32, 33, 20, 59, 41lvecvsn0 19109 . . . . . . 7  |-  ( (
ph  /\  ( k  e.  ( Base `  (Scalar `  W ) )  /\  l  e.  ( Base `  (Scalar `  W )
) )  /\  X  =  ( ( k ( .s `  W
) Y )  .+  ( l ( .s
`  W ) Z ) ) )  -> 
( ( ( (
invr `  (Scalar `  W
) ) `  k
) ( .s `  W ) ( l ( .s `  W
) Z ) )  =/=  .0.  <->  ( (
( invr `  (Scalar `  W
) ) `  k
)  =/=  ( 0g
`  (Scalar `  W )
)  /\  ( l
( .s `  W
) Z )  =/= 
.0.  ) ) )
10765, 105, 106mpbir2and 957 . . . . . 6  |-  ( (
ph  /\  ( k  e.  ( Base `  (Scalar `  W ) )  /\  l  e.  ( Base `  (Scalar `  W )
) )  /\  X  =  ( ( k ( .s `  W
) Y )  .+  ( l ( .s
`  W ) Z ) ) )  -> 
( ( ( invr `  (Scalar `  W )
) `  k )
( .s `  W
) ( l ( .s `  W ) Z ) )  =/= 
.0.  )
108 eldifsn 4317 . . . . . 6  |-  ( ( ( ( invr `  (Scalar `  W ) ) `  k ) ( .s
`  W ) ( l ( .s `  W ) Z ) )  e.  ( ( N `  { Z } )  \  {  .0.  } )  <->  ( (
( ( invr `  (Scalar `  W ) ) `  k ) ( .s
`  W ) ( l ( .s `  W ) Z ) )  e.  ( N `
 { Z }
)  /\  ( (
( invr `  (Scalar `  W
) ) `  k
) ( .s `  W ) ( l ( .s `  W
) Z ) )  =/=  .0.  ) )
10963, 107, 108sylanbrc 698 . . . . 5  |-  ( (
ph  /\  ( k  e.  ( Base `  (Scalar `  W ) )  /\  l  e.  ( Base `  (Scalar `  W )
) )  /\  X  =  ( ( k ( .s `  W
) Y )  .+  ( l ( .s
`  W ) Z ) ) )  -> 
( ( ( invr `  (Scalar `  W )
) `  k )
( .s `  W
) ( l ( .s `  W ) Z ) )  e.  ( ( N `  { Z } )  \  {  .0.  } ) )
110 simp3 1063 . . . . . . 7  |-  ( (
ph  /\  ( k  e.  ( Base `  (Scalar `  W ) )  /\  l  e.  ( Base `  (Scalar `  W )
) )  /\  X  =  ( ( k ( .s `  W
) Y )  .+  ( l ( .s
`  W ) Z ) ) )  ->  X  =  ( (
k ( .s `  W ) Y ) 
.+  ( l ( .s `  W ) Z ) ) )
1112, 3lmodvacl 18877 . . . . . . . . 9  |-  ( ( W  e.  LMod  /\  (
k ( .s `  W ) Y )  e.  V  /\  (
l ( .s `  W ) Z )  e.  V )  -> 
( ( k ( .s `  W ) Y )  .+  (
l ( .s `  W ) Z ) )  e.  V )
11215, 76, 41, 111syl3anc 1326 . . . . . . . 8  |-  ( (
ph  /\  ( k  e.  ( Base `  (Scalar `  W ) )  /\  l  e.  ( Base `  (Scalar `  W )
) )  /\  X  =  ( ( k ( .s `  W
) Y )  .+  ( l ( .s
`  W ) Z ) ) )  -> 
( ( k ( .s `  W ) Y )  .+  (
l ( .s `  W ) Z ) )  e.  V )
1132, 7lspsnid 18993 . . . . . . . 8  |-  ( ( W  e.  LMod  /\  (
( k ( .s
`  W ) Y )  .+  ( l ( .s `  W
) Z ) )  e.  V )  -> 
( ( k ( .s `  W ) Y )  .+  (
l ( .s `  W ) Z ) )  e.  ( N `
 { ( ( k ( .s `  W ) Y ) 
.+  ( l ( .s `  W ) Z ) ) } ) )
11415, 112, 113syl2anc 693 . . . . . . 7  |-  ( (
ph  /\  ( k  e.  ( Base `  (Scalar `  W ) )  /\  l  e.  ( Base `  (Scalar `  W )
) )  /\  X  =  ( ( k ( .s `  W
) Y )  .+  ( l ( .s
`  W ) Z ) ) )  -> 
( ( k ( .s `  W ) Y )  .+  (
l ( .s `  W ) Z ) )  e.  ( N `
 { ( ( k ( .s `  W ) Y ) 
.+  ( l ( .s `  W ) Z ) ) } ) )
115110, 114eqeltrd 2701 . . . . . 6  |-  ( (
ph  /\  ( k  e.  ( Base `  (Scalar `  W ) )  /\  l  e.  ( Base `  (Scalar `  W )
) )  /\  X  =  ( ( k ( .s `  W
) Y )  .+  ( l ( .s
`  W ) Z ) ) )  ->  X  e.  ( N `  { ( ( k ( .s `  W
) Y )  .+  ( l ( .s
`  W ) Z ) ) } ) )
1162, 4, 6, 5, 32, 7lspsnvs 19114 . . . . . . . 8  |-  ( ( W  e.  LVec  /\  (
( ( invr `  (Scalar `  W ) ) `  k )  e.  (
Base `  (Scalar `  W
) )  /\  (
( invr `  (Scalar `  W
) ) `  k
)  =/=  ( 0g
`  (Scalar `  W )
) )  /\  (
( k ( .s
`  W ) Y )  .+  ( l ( .s `  W
) Z ) )  e.  V )  -> 
( N `  {
( ( ( invr `  (Scalar `  W )
) `  k )
( .s `  W
) ( ( k ( .s `  W
) Y )  .+  ( l ( .s
`  W ) Z ) ) ) } )  =  ( N `
 { ( ( k ( .s `  W ) Y ) 
.+  ( l ( .s `  W ) Z ) ) } ) )
11720, 59, 65, 112, 116syl121anc 1331 . . . . . . 7  |-  ( (
ph  /\  ( k  e.  ( Base `  (Scalar `  W ) )  /\  l  e.  ( Base `  (Scalar `  W )
) )  /\  X  =  ( ( k ( .s `  W
) Y )  .+  ( l ( .s
`  W ) Z ) ) )  -> 
( N `  {
( ( ( invr `  (Scalar `  W )
) `  k )
( .s `  W
) ( ( k ( .s `  W
) Y )  .+  ( l ( .s
`  W ) Z ) ) ) } )  =  ( N `
 { ( ( k ( .s `  W ) Y ) 
.+  ( l ( .s `  W ) Z ) ) } ) )
1182, 3, 4, 6, 5lmodvsdi 18886 . . . . . . . . . . 11  |-  ( ( W  e.  LMod  /\  (
( ( invr `  (Scalar `  W ) ) `  k )  e.  (
Base `  (Scalar `  W
) )  /\  (
k ( .s `  W ) Y )  e.  V  /\  (
l ( .s `  W ) Z )  e.  V ) )  ->  ( ( (
invr `  (Scalar `  W
) ) `  k
) ( .s `  W ) ( ( k ( .s `  W ) Y ) 
.+  ( l ( .s `  W ) Z ) ) )  =  ( ( ( ( invr `  (Scalar `  W ) ) `  k ) ( .s
`  W ) ( k ( .s `  W ) Y ) )  .+  ( ( ( invr `  (Scalar `  W ) ) `  k ) ( .s
`  W ) ( l ( .s `  W ) Z ) ) ) )
11915, 59, 76, 41, 118syl13anc 1328 . . . . . . . . . 10  |-  ( (
ph  /\  ( k  e.  ( Base `  (Scalar `  W ) )  /\  l  e.  ( Base `  (Scalar `  W )
) )  /\  X  =  ( ( k ( .s `  W
) Y )  .+  ( l ( .s
`  W ) Z ) ) )  -> 
( ( ( invr `  (Scalar `  W )
) `  k )
( .s `  W
) ( ( k ( .s `  W
) Y )  .+  ( l ( .s
`  W ) Z ) ) )  =  ( ( ( (
invr `  (Scalar `  W
) ) `  k
) ( .s `  W ) ( k ( .s `  W
) Y ) ) 
.+  ( ( (
invr `  (Scalar `  W
) ) `  k
) ( .s `  W ) ( l ( .s `  W
) Z ) ) ) )
120 eqid 2622 . . . . . . . . . . . . . . 15  |-  ( .r
`  (Scalar `  W )
)  =  ( .r
`  (Scalar `  W )
)
121 eqid 2622 . . . . . . . . . . . . . . 15  |-  ( 1r
`  (Scalar `  W )
)  =  ( 1r
`  (Scalar `  W )
)
1225, 32, 120, 121, 57drnginvrl 18766 . . . . . . . . . . . . . 14  |-  ( ( (Scalar `  W )  e.  DivRing  /\  k  e.  ( Base `  (Scalar `  W
) )  /\  k  =/=  ( 0g `  (Scalar `  W ) ) )  ->  ( ( (
invr `  (Scalar `  W
) ) `  k
) ( .r `  (Scalar `  W ) ) k )  =  ( 1r `  (Scalar `  W ) ) )
12322, 23, 56, 122syl3anc 1326 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( k  e.  ( Base `  (Scalar `  W ) )  /\  l  e.  ( Base `  (Scalar `  W )
) )  /\  X  =  ( ( k ( .s `  W
) Y )  .+  ( l ( .s
`  W ) Z ) ) )  -> 
( ( ( invr `  (Scalar `  W )
) `  k )
( .r `  (Scalar `  W ) ) k )  =  ( 1r
`  (Scalar `  W )
) )
124123oveq1d 6665 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( k  e.  ( Base `  (Scalar `  W ) )  /\  l  e.  ( Base `  (Scalar `  W )
) )  /\  X  =  ( ( k ( .s `  W
) Y )  .+  ( l ( .s
`  W ) Z ) ) )  -> 
( ( ( (
invr `  (Scalar `  W
) ) `  k
) ( .r `  (Scalar `  W ) ) k ) ( .s
`  W ) Y )  =  ( ( 1r `  (Scalar `  W ) ) ( .s `  W ) Y ) )
1252, 4, 6, 5, 120lmodvsass 18888 . . . . . . . . . . . . 13  |-  ( ( W  e.  LMod  /\  (
( ( invr `  (Scalar `  W ) ) `  k )  e.  (
Base `  (Scalar `  W
) )  /\  k  e.  ( Base `  (Scalar `  W ) )  /\  Y  e.  V )
)  ->  ( (
( ( invr `  (Scalar `  W ) ) `  k ) ( .r
`  (Scalar `  W )
) k ) ( .s `  W ) Y )  =  ( ( ( invr `  (Scalar `  W ) ) `  k ) ( .s
`  W ) ( k ( .s `  W ) Y ) ) )
12615, 59, 23, 74, 125syl13anc 1328 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( k  e.  ( Base `  (Scalar `  W ) )  /\  l  e.  ( Base `  (Scalar `  W )
) )  /\  X  =  ( ( k ( .s `  W
) Y )  .+  ( l ( .s
`  W ) Z ) ) )  -> 
( ( ( (
invr `  (Scalar `  W
) ) `  k
) ( .r `  (Scalar `  W ) ) k ) ( .s
`  W ) Y )  =  ( ( ( invr `  (Scalar `  W ) ) `  k ) ( .s
`  W ) ( k ( .s `  W ) Y ) ) )
1272, 4, 6, 121lmodvs1 18891 . . . . . . . . . . . . 13  |-  ( ( W  e.  LMod  /\  Y  e.  V )  ->  (
( 1r `  (Scalar `  W ) ) ( .s `  W ) Y )  =  Y )
12815, 74, 127syl2anc 693 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( k  e.  ( Base `  (Scalar `  W ) )  /\  l  e.  ( Base `  (Scalar `  W )
) )  /\  X  =  ( ( k ( .s `  W
) Y )  .+  ( l ( .s
`  W ) Z ) ) )  -> 
( ( 1r `  (Scalar `  W ) ) ( .s `  W
) Y )  =  Y )
129124, 126, 1283eqtr3d 2664 . . . . . . . . . . 11  |-  ( (
ph  /\  ( k  e.  ( Base `  (Scalar `  W ) )  /\  l  e.  ( Base `  (Scalar `  W )
) )  /\  X  =  ( ( k ( .s `  W
) Y )  .+  ( l ( .s
`  W ) Z ) ) )  -> 
( ( ( invr `  (Scalar `  W )
) `  k )
( .s `  W
) ( k ( .s `  W ) Y ) )  =  Y )
130129oveq1d 6665 . . . . . . . . . 10  |-  ( (
ph  /\  ( k  e.  ( Base `  (Scalar `  W ) )  /\  l  e.  ( Base `  (Scalar `  W )
) )  /\  X  =  ( ( k ( .s `  W
) Y )  .+  ( l ( .s
`  W ) Z ) ) )  -> 
( ( ( (
invr `  (Scalar `  W
) ) `  k
) ( .s `  W ) ( k ( .s `  W
) Y ) ) 
.+  ( ( (
invr `  (Scalar `  W
) ) `  k
) ( .s `  W ) ( l ( .s `  W
) Z ) ) )  =  ( Y 
.+  ( ( (
invr `  (Scalar `  W
) ) `  k
) ( .s `  W ) ( l ( .s `  W
) Z ) ) ) )
131119, 130eqtrd 2656 . . . . . . . . 9  |-  ( (
ph  /\  ( k  e.  ( Base `  (Scalar `  W ) )  /\  l  e.  ( Base `  (Scalar `  W )
) )  /\  X  =  ( ( k ( .s `  W
) Y )  .+  ( l ( .s
`  W ) Z ) ) )  -> 
( ( ( invr `  (Scalar `  W )
) `  k )
( .s `  W
) ( ( k ( .s `  W
) Y )  .+  ( l ( .s
`  W ) Z ) ) )  =  ( Y  .+  (
( ( invr `  (Scalar `  W ) ) `  k ) ( .s
`  W ) ( l ( .s `  W ) Z ) ) ) )
132131sneqd 4189 . . . . . . . 8  |-  ( (
ph  /\  ( k  e.  ( Base `  (Scalar `  W ) )  /\  l  e.  ( Base `  (Scalar `  W )
) )  /\  X  =  ( ( k ( .s `  W
) Y )  .+  ( l ( .s
`  W ) Z ) ) )  ->  { ( ( (
invr `  (Scalar `  W
) ) `  k
) ( .s `  W ) ( ( k ( .s `  W ) Y ) 
.+  ( l ( .s `  W ) Z ) ) ) }  =  { ( Y  .+  ( ( ( invr `  (Scalar `  W ) ) `  k ) ( .s
`  W ) ( l ( .s `  W ) Z ) ) ) } )
133132fveq2d 6195 . . . . . . 7  |-  ( (
ph  /\  ( k  e.  ( Base `  (Scalar `  W ) )  /\  l  e.  ( Base `  (Scalar `  W )
) )  /\  X  =  ( ( k ( .s `  W
) Y )  .+  ( l ( .s
`  W ) Z ) ) )  -> 
( N `  {
( ( ( invr `  (Scalar `  W )
) `  k )
( .s `  W
) ( ( k ( .s `  W
) Y )  .+  ( l ( .s
`  W ) Z ) ) ) } )  =  ( N `
 { ( Y 
.+  ( ( (
invr `  (Scalar `  W
) ) `  k
) ( .s `  W ) ( l ( .s `  W
) Z ) ) ) } ) )
134117, 133eqtr3d 2658 . . . . . 6  |-  ( (
ph  /\  ( k  e.  ( Base `  (Scalar `  W ) )  /\  l  e.  ( Base `  (Scalar `  W )
) )  /\  X  =  ( ( k ( .s `  W
) Y )  .+  ( l ( .s
`  W ) Z ) ) )  -> 
( N `  {
( ( k ( .s `  W ) Y )  .+  (
l ( .s `  W ) Z ) ) } )  =  ( N `  {
( Y  .+  (
( ( invr `  (Scalar `  W ) ) `  k ) ( .s
`  W ) ( l ( .s `  W ) Z ) ) ) } ) )
135115, 134eleqtrd 2703 . . . . 5  |-  ( (
ph  /\  ( k  e.  ( Base `  (Scalar `  W ) )  /\  l  e.  ( Base `  (Scalar `  W )
) )  /\  X  =  ( ( k ( .s `  W
) Y )  .+  ( l ( .s
`  W ) Z ) ) )  ->  X  e.  ( N `  { ( Y  .+  ( ( ( invr `  (Scalar `  W )
) `  k )
( .s `  W
) ( l ( .s `  W ) Z ) ) ) } ) )
136 oveq2 6658 . . . . . . . . 9  |-  ( z  =  ( ( (
invr `  (Scalar `  W
) ) `  k
) ( .s `  W ) ( l ( .s `  W
) Z ) )  ->  ( Y  .+  z )  =  ( Y  .+  ( ( ( invr `  (Scalar `  W ) ) `  k ) ( .s
`  W ) ( l ( .s `  W ) Z ) ) ) )
137136sneqd 4189 . . . . . . . 8  |-  ( z  =  ( ( (
invr `  (Scalar `  W
) ) `  k
) ( .s `  W ) ( l ( .s `  W
) Z ) )  ->  { ( Y 
.+  z ) }  =  { ( Y 
.+  ( ( (
invr `  (Scalar `  W
) ) `  k
) ( .s `  W ) ( l ( .s `  W
) Z ) ) ) } )
138137fveq2d 6195 . . . . . . 7  |-  ( z  =  ( ( (
invr `  (Scalar `  W
) ) `  k
) ( .s `  W ) ( l ( .s `  W
) Z ) )  ->  ( N `  { ( Y  .+  z ) } )  =  ( N `  { ( Y  .+  ( ( ( invr `  (Scalar `  W )
) `  k )
( .s `  W
) ( l ( .s `  W ) Z ) ) ) } ) )
139138eleq2d 2687 . . . . . 6  |-  ( z  =  ( ( (
invr `  (Scalar `  W
) ) `  k
) ( .s `  W ) ( l ( .s `  W
) Z ) )  ->  ( X  e.  ( N `  {
( Y  .+  z
) } )  <->  X  e.  ( N `  { ( Y  .+  ( ( ( invr `  (Scalar `  W ) ) `  k ) ( .s
`  W ) ( l ( .s `  W ) Z ) ) ) } ) ) )
140139rspcev 3309 . . . . 5  |-  ( ( ( ( ( invr `  (Scalar `  W )
) `  k )
( .s `  W
) ( l ( .s `  W ) Z ) )  e.  ( ( N `  { Z } )  \  {  .0.  } )  /\  X  e.  ( N `  { ( Y  .+  ( ( ( invr `  (Scalar `  W )
) `  k )
( .s `  W
) ( l ( .s `  W ) Z ) ) ) } ) )  ->  E. z  e.  (
( N `  { Z } )  \  {  .0.  } ) X  e.  ( N `  {
( Y  .+  z
) } ) )
141109, 135, 140syl2anc 693 . . . 4  |-  ( (
ph  /\  ( k  e.  ( Base `  (Scalar `  W ) )  /\  l  e.  ( Base `  (Scalar `  W )
) )  /\  X  =  ( ( k ( .s `  W
) Y )  .+  ( l ( .s
`  W ) Z ) ) )  ->  E. z  e.  (
( N `  { Z } )  \  {  .0.  } ) X  e.  ( N `  {
( Y  .+  z
) } ) )
1421413exp 1264 . . 3  |-  ( ph  ->  ( ( k  e.  ( Base `  (Scalar `  W ) )  /\  l  e.  ( Base `  (Scalar `  W )
) )  ->  ( X  =  ( (
k ( .s `  W ) Y ) 
.+  ( l ( .s `  W ) Z ) )  ->  E. z  e.  (
( N `  { Z } )  \  {  .0.  } ) X  e.  ( N `  {
( Y  .+  z
) } ) ) ) )
143142rexlimdvv 3037 . 2  |-  ( ph  ->  ( E. k  e.  ( Base `  (Scalar `  W ) ) E. l  e.  ( Base `  (Scalar `  W )
) X  =  ( ( k ( .s
`  W ) Y )  .+  ( l ( .s `  W
) Z ) )  ->  E. z  e.  ( ( N `  { Z } )  \  {  .0.  } ) X  e.  ( N `  {
( Y  .+  z
) } ) ) )
14414, 143mpd 15 1  |-  ( ph  ->  E. z  e.  ( ( N `  { Z } )  \  {  .0.  } ) X  e.  ( N `  {
( Y  .+  z
) } ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   E.wrex 2913    \ cdif 3571   {csn 4177   {cpr 4179   ` cfv 5888  (class class class)co 6650   Basecbs 15857   +g cplusg 15941   .rcmulr 15942  Scalarcsca 15944   .scvsca 15945   0gc0g 16100   1rcur 18501   invrcinvr 18671   DivRingcdr 18747   LModclmod 18863   LSubSpclss 18932   LSpanclspn 18971   LVecclvec 19102
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-tpos 7352  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-0g 16102  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-grp 17425  df-minusg 17426  df-sbg 17427  df-subg 17591  df-cntz 17750  df-lsm 18051  df-cmn 18195  df-abl 18196  df-mgp 18490  df-ur 18502  df-ring 18549  df-oppr 18623  df-dvdsr 18641  df-unit 18642  df-invr 18672  df-drng 18749  df-lmod 18865  df-lss 18933  df-lsp 18972  df-lvec 19103
This theorem is referenced by:  lsatfixedN  34296
  Copyright terms: Public domain W3C validator