| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lshpdisj | Structured version Visualization version Unicode version | ||
| Description: A hyperplane and the span in the hyperplane definition are disjoint. (Contributed by NM, 3-Jul-2014.) |
| Ref | Expression |
|---|---|
| lshpdisj.v |
|
| lshpdisj.o |
|
| lshpdisj.n |
|
| lshpdisj.p |
|
| lshpdisj.h |
|
| lshpdisj.w |
|
| lshpdisj.u |
|
| lshpdisj.x |
|
| lshpdisj.e |
|
| Ref | Expression |
|---|---|
| lshpdisj |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lshpdisj.w |
. . . . . . . . 9
| |
| 2 | lveclmod 19106 |
. . . . . . . . 9
| |
| 3 | 1, 2 | syl 17 |
. . . . . . . 8
|
| 4 | 3 | adantr 481 |
. . . . . . 7
|
| 5 | lshpdisj.x |
. . . . . . . 8
| |
| 6 | 5 | adantr 481 |
. . . . . . 7
|
| 7 | eqid 2622 |
. . . . . . . 8
| |
| 8 | eqid 2622 |
. . . . . . . 8
| |
| 9 | lshpdisj.v |
. . . . . . . 8
| |
| 10 | eqid 2622 |
. . . . . . . 8
| |
| 11 | lshpdisj.n |
. . . . . . . 8
| |
| 12 | 7, 8, 9, 10, 11 | lspsnel 19003 |
. . . . . . 7
|
| 13 | 4, 6, 12 | syl2anc 693 |
. . . . . 6
|
| 14 | lshpdisj.p |
. . . . . . . . . . . . . . . . 17
| |
| 15 | lshpdisj.h |
. . . . . . . . . . . . . . . . 17
| |
| 16 | lshpdisj.u |
. . . . . . . . . . . . . . . . 17
| |
| 17 | lshpdisj.e |
. . . . . . . . . . . . . . . . 17
| |
| 18 | 9, 11, 14, 15, 3, 16, 5, 17 | lshpnel 34270 |
. . . . . . . . . . . . . . . 16
|
| 19 | 18 | ad2antrr 762 |
. . . . . . . . . . . . . . 15
|
| 20 | lshpdisj.o |
. . . . . . . . . . . . . . . 16
| |
| 21 | eqid 2622 |
. . . . . . . . . . . . . . . 16
| |
| 22 | 1 | ad2antrr 762 |
. . . . . . . . . . . . . . . 16
|
| 23 | 21, 15, 3, 16 | lshplss 34268 |
. . . . . . . . . . . . . . . . 17
|
| 24 | 23 | ad2antrr 762 |
. . . . . . . . . . . . . . . 16
|
| 25 | 5 | ad2antrr 762 |
. . . . . . . . . . . . . . . 16
|
| 26 | 3 | adantr 481 |
. . . . . . . . . . . . . . . . . 18
|
| 27 | simpr 477 |
. . . . . . . . . . . . . . . . . 18
| |
| 28 | 5 | adantr 481 |
. . . . . . . . . . . . . . . . . 18
|
| 29 | 9, 10, 7, 8, 11, 26, 27, 28 | lspsneli 19001 |
. . . . . . . . . . . . . . . . 17
|
| 30 | 29 | adantr 481 |
. . . . . . . . . . . . . . . 16
|
| 31 | simpr 477 |
. . . . . . . . . . . . . . . 16
| |
| 32 | 9, 20, 21, 11, 22, 24, 25, 30, 31 | lspsnel4 19124 |
. . . . . . . . . . . . . . 15
|
| 33 | 19, 32 | mtbid 314 |
. . . . . . . . . . . . . 14
|
| 34 | 33 | ex 450 |
. . . . . . . . . . . . 13
|
| 35 | 34 | necon4ad 2813 |
. . . . . . . . . . . 12
|
| 36 | eleq1 2689 |
. . . . . . . . . . . . 13
| |
| 37 | eqeq1 2626 |
. . . . . . . . . . . . 13
| |
| 38 | 36, 37 | imbi12d 334 |
. . . . . . . . . . . 12
|
| 39 | 35, 38 | syl5ibrcom 237 |
. . . . . . . . . . 11
|
| 40 | 39 | ex 450 |
. . . . . . . . . 10
|
| 41 | 40 | com23 86 |
. . . . . . . . 9
|
| 42 | 41 | com24 95 |
. . . . . . . 8
|
| 43 | 42 | imp31 448 |
. . . . . . 7
|
| 44 | 43 | rexlimdva 3031 |
. . . . . 6
|
| 45 | 13, 44 | sylbid 230 |
. . . . 5
|
| 46 | 45 | expimpd 629 |
. . . 4
|
| 47 | elin 3796 |
. . . 4
| |
| 48 | velsn 4193 |
. . . 4
| |
| 49 | 46, 47, 48 | 3imtr4g 285 |
. . 3
|
| 50 | 49 | ssrdv 3609 |
. 2
|
| 51 | 9, 21, 11 | lspsncl 18977 |
. . . . 5
|
| 52 | 3, 5, 51 | syl2anc 693 |
. . . 4
|
| 53 | 21 | lssincl 18965 |
. . . 4
|
| 54 | 3, 23, 52, 53 | syl3anc 1326 |
. . 3
|
| 55 | 20, 21 | lss0ss 18949 |
. . 3
|
| 56 | 3, 54, 55 | syl2anc 693 |
. 2
|
| 57 | 50, 56 | eqssd 3620 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-tpos 7352 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-er 7742 df-en 7956 df-dom 7957 df-sdom 7958 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-nn 11021 df-2 11079 df-3 11080 df-ndx 15860 df-slot 15861 df-base 15863 df-sets 15864 df-ress 15865 df-plusg 15954 df-mulr 15955 df-0g 16102 df-mgm 17242 df-sgrp 17284 df-mnd 17295 df-submnd 17336 df-grp 17425 df-minusg 17426 df-sbg 17427 df-subg 17591 df-lsm 18051 df-mgp 18490 df-ur 18502 df-ring 18549 df-oppr 18623 df-dvdsr 18641 df-unit 18642 df-invr 18672 df-drng 18749 df-lmod 18865 df-lss 18933 df-lsp 18972 df-lvec 19103 df-lshyp 34264 |
| This theorem is referenced by: lshpsmreu 34396 lshpkrlem5 34401 |
| Copyright terms: Public domain | W3C validator |