Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lshpcmp Structured version   Visualization version   Unicode version

Theorem lshpcmp 34275
Description: If two hyperplanes are comparable, they are equal. (Contributed by NM, 9-Oct-2014.)
Hypotheses
Ref Expression
lshpcmp.h  |-  H  =  (LSHyp `  W )
lshpcmp.w  |-  ( ph  ->  W  e.  LVec )
lshpcmp.t  |-  ( ph  ->  T  e.  H )
lshpcmp.u  |-  ( ph  ->  U  e.  H )
Assertion
Ref Expression
lshpcmp  |-  ( ph  ->  ( T  C_  U  <->  T  =  U ) )

Proof of Theorem lshpcmp
Dummy variable  v is distinct from all other variables.
StepHypRef Expression
1 eqid 2622 . . . . 5  |-  ( Base `  W )  =  (
Base `  W )
2 lshpcmp.h . . . . 5  |-  H  =  (LSHyp `  W )
3 lshpcmp.w . . . . . 6  |-  ( ph  ->  W  e.  LVec )
4 lveclmod 19106 . . . . . 6  |-  ( W  e.  LVec  ->  W  e. 
LMod )
53, 4syl 17 . . . . 5  |-  ( ph  ->  W  e.  LMod )
6 lshpcmp.u . . . . 5  |-  ( ph  ->  U  e.  H )
71, 2, 5, 6lshpne 34269 . . . 4  |-  ( ph  ->  U  =/=  ( Base `  W ) )
8 eqid 2622 . . . . . . . 8  |-  ( LSubSp `  W )  =  (
LSubSp `  W )
98, 2, 5, 6lshplss 34268 . . . . . . 7  |-  ( ph  ->  U  e.  ( LSubSp `  W ) )
101, 8lssss 18937 . . . . . . 7  |-  ( U  e.  ( LSubSp `  W
)  ->  U  C_  ( Base `  W ) )
119, 10syl 17 . . . . . 6  |-  ( ph  ->  U  C_  ( Base `  W ) )
12 lshpcmp.t . . . . . . . . 9  |-  ( ph  ->  T  e.  H )
13 eqid 2622 . . . . . . . . . 10  |-  ( LSpan `  W )  =  (
LSpan `  W )
14 eqid 2622 . . . . . . . . . 10  |-  ( LSSum `  W )  =  (
LSSum `  W )
151, 13, 8, 14, 2, 5islshpsm 34267 . . . . . . . . 9  |-  ( ph  ->  ( T  e.  H  <->  ( T  e.  ( LSubSp `  W )  /\  T  =/=  ( Base `  W
)  /\  E. v  e.  ( Base `  W
) ( T (
LSSum `  W ) ( ( LSpan `  W ) `  { v } ) )  =  ( Base `  W ) ) ) )
1612, 15mpbid 222 . . . . . . . 8  |-  ( ph  ->  ( T  e.  (
LSubSp `  W )  /\  T  =/=  ( Base `  W
)  /\  E. v  e.  ( Base `  W
) ( T (
LSSum `  W ) ( ( LSpan `  W ) `  { v } ) )  =  ( Base `  W ) ) )
1716simp3d 1075 . . . . . . 7  |-  ( ph  ->  E. v  e.  (
Base `  W )
( T ( LSSum `  W ) ( (
LSpan `  W ) `  { v } ) )  =  ( Base `  W ) )
18 id 22 . . . . . . . . . . . . 13  |-  ( (
ph  /\  v  e.  ( Base `  W )
)  ->  ( ph  /\  v  e.  ( Base `  W ) ) )
1918adantrr 753 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( v  e.  ( Base `  W
)  /\  ( T
( LSSum `  W )
( ( LSpan `  W
) `  { v } ) )  =  ( Base `  W
) ) )  -> 
( ph  /\  v  e.  ( Base `  W
) ) )
203adantr 481 . . . . . . . . . . . . 13  |-  ( (
ph  /\  v  e.  ( Base `  W )
)  ->  W  e.  LVec )
218, 2, 5, 12lshplss 34268 . . . . . . . . . . . . . 14  |-  ( ph  ->  T  e.  ( LSubSp `  W ) )
2221adantr 481 . . . . . . . . . . . . 13  |-  ( (
ph  /\  v  e.  ( Base `  W )
)  ->  T  e.  ( LSubSp `  W )
)
239adantr 481 . . . . . . . . . . . . 13  |-  ( (
ph  /\  v  e.  ( Base `  W )
)  ->  U  e.  ( LSubSp `  W )
)
24 simpr 477 . . . . . . . . . . . . 13  |-  ( (
ph  /\  v  e.  ( Base `  W )
)  ->  v  e.  ( Base `  W )
)
251, 8, 13, 14, 20, 22, 23, 24lsmcv 19141 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  v  e.  ( Base `  W
) )  /\  T  C.  U  /\  U  C_  ( T ( LSSum `  W
) ( ( LSpan `  W ) `  {
v } ) ) )  ->  U  =  ( T ( LSSum `  W
) ( ( LSpan `  W ) `  {
v } ) ) )
2619, 25syl3an1 1359 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
v  e.  ( Base `  W )  /\  ( T ( LSSum `  W
) ( ( LSpan `  W ) `  {
v } ) )  =  ( Base `  W
) ) )  /\  T  C.  U  /\  U  C_  ( T ( LSSum `  W ) ( (
LSpan `  W ) `  { v } ) ) )  ->  U  =  ( T (
LSSum `  W ) ( ( LSpan `  W ) `  { v } ) ) )
27263expia 1267 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
v  e.  ( Base `  W )  /\  ( T ( LSSum `  W
) ( ( LSpan `  W ) `  {
v } ) )  =  ( Base `  W
) ) )  /\  T  C.  U )  -> 
( U  C_  ( T ( LSSum `  W
) ( ( LSpan `  W ) `  {
v } ) )  ->  U  =  ( T ( LSSum `  W
) ( ( LSpan `  W ) `  {
v } ) ) ) )
28 simplrr 801 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
v  e.  ( Base `  W )  /\  ( T ( LSSum `  W
) ( ( LSpan `  W ) `  {
v } ) )  =  ( Base `  W
) ) )  /\  T  C.  U )  -> 
( T ( LSSum `  W ) ( (
LSpan `  W ) `  { v } ) )  =  ( Base `  W ) )
2928sseq2d 3633 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
v  e.  ( Base `  W )  /\  ( T ( LSSum `  W
) ( ( LSpan `  W ) `  {
v } ) )  =  ( Base `  W
) ) )  /\  T  C.  U )  -> 
( U  C_  ( T ( LSSum `  W
) ( ( LSpan `  W ) `  {
v } ) )  <-> 
U  C_  ( Base `  W ) ) )
3028eqeq2d 2632 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
v  e.  ( Base `  W )  /\  ( T ( LSSum `  W
) ( ( LSpan `  W ) `  {
v } ) )  =  ( Base `  W
) ) )  /\  T  C.  U )  -> 
( U  =  ( T ( LSSum `  W
) ( ( LSpan `  W ) `  {
v } ) )  <-> 
U  =  ( Base `  W ) ) )
3127, 29, 303imtr3d 282 . . . . . . . . 9  |-  ( ( ( ph  /\  (
v  e.  ( Base `  W )  /\  ( T ( LSSum `  W
) ( ( LSpan `  W ) `  {
v } ) )  =  ( Base `  W
) ) )  /\  T  C.  U )  -> 
( U  C_  ( Base `  W )  ->  U  =  ( Base `  W ) ) )
3231exp42 639 . . . . . . . 8  |-  ( ph  ->  ( v  e.  (
Base `  W )  ->  ( ( T (
LSSum `  W ) ( ( LSpan `  W ) `  { v } ) )  =  ( Base `  W )  ->  ( T  C.  U  ->  ( U  C_  ( Base `  W
)  ->  U  =  ( Base `  W )
) ) ) ) )
3332rexlimdv 3030 . . . . . . 7  |-  ( ph  ->  ( E. v  e.  ( Base `  W
) ( T (
LSSum `  W ) ( ( LSpan `  W ) `  { v } ) )  =  ( Base `  W )  ->  ( T  C.  U  ->  ( U  C_  ( Base `  W
)  ->  U  =  ( Base `  W )
) ) ) )
3417, 33mpd 15 . . . . . 6  |-  ( ph  ->  ( T  C.  U  ->  ( U  C_  ( Base `  W )  ->  U  =  ( Base `  W ) ) ) )
3511, 34mpid 44 . . . . 5  |-  ( ph  ->  ( T  C.  U  ->  U  =  ( Base `  W ) ) )
3635necon3ad 2807 . . . 4  |-  ( ph  ->  ( U  =/=  ( Base `  W )  ->  -.  T  C.  U ) )
377, 36mpd 15 . . 3  |-  ( ph  ->  -.  T  C.  U
)
38 df-pss 3590 . . . . 5  |-  ( T 
C.  U  <->  ( T  C_  U  /\  T  =/= 
U ) )
3938simplbi2 655 . . . 4  |-  ( T 
C_  U  ->  ( T  =/=  U  ->  T  C.  U ) )
4039necon1bd 2812 . . 3  |-  ( T 
C_  U  ->  ( -.  T  C.  U  ->  T  =  U )
)
4137, 40syl5com 31 . 2  |-  ( ph  ->  ( T  C_  U  ->  T  =  U ) )
42 eqimss 3657 . 2  |-  ( T  =  U  ->  T  C_  U )
4341, 42impbid1 215 1  |-  ( ph  ->  ( T  C_  U  <->  T  =  U ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   E.wrex 2913    C_ wss 3574    C. wpss 3575   {csn 4177   ` cfv 5888  (class class class)co 6650   Basecbs 15857   LSSumclsm 18049   LModclmod 18863   LSubSpclss 18932   LSpanclspn 18971   LVecclvec 19102  LSHypclsh 34262
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-tpos 7352  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-0g 16102  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-grp 17425  df-minusg 17426  df-sbg 17427  df-subg 17591  df-cntz 17750  df-lsm 18051  df-cmn 18195  df-abl 18196  df-mgp 18490  df-ur 18502  df-ring 18549  df-oppr 18623  df-dvdsr 18641  df-unit 18642  df-invr 18672  df-drng 18749  df-lmod 18865  df-lss 18933  df-lsp 18972  df-lvec 19103  df-lshyp 34264
This theorem is referenced by:  lshpinN  34276  lfl1dim  34408  lfl1dim2N  34409  lkrpssN  34450  dochlkr  36674  dochsatshpb  36741  lcfl9a  36794  lclkrlem2e  36800  lclkrlem2g  36802  lclkrlem2s  36814  lcfrlem25  36856  lcfrlem35  36866  hdmaplkr  37205
  Copyright terms: Public domain W3C validator