Step | Hyp | Ref
| Expression |
1 | | dprdsplit.1 |
. . 3
  DProd
  |
2 | | dprdsplit.2 |
. . . 4
     SubGrp    |
3 | | fdm 6051 |
. . . 4
     SubGrp    |
4 | 2, 3 | syl 17 |
. . 3
   |
5 | | ssun1 3776 |
. . . . . . . 8

  |
6 | | dprdsplit.u |
. . . . . . . 8
     |
7 | 5, 6 | syl5sseqr 3654 |
. . . . . . 7

  |
8 | 1, 4, 7 | dprdres 18427 |
. . . . . 6
   DProd    DProd   
 DProd     |
9 | 8 | simpld 475 |
. . . . 5
  DProd
    |
10 | | dprdsubg 18423 |
. . . . 5
  DProd    DProd    SubGrp    |
11 | 9, 10 | syl 17 |
. . . 4
  DProd    SubGrp    |
12 | | ssun2 3777 |
. . . . . . . 8

  |
13 | 12, 6 | syl5sseqr 3654 |
. . . . . . 7

  |
14 | 1, 4, 13 | dprdres 18427 |
. . . . . 6
   DProd    DProd   
 DProd     |
15 | 14 | simpld 475 |
. . . . 5
  DProd
    |
16 | | dprdsubg 18423 |
. . . . 5
  DProd    DProd    SubGrp    |
17 | 15, 16 | syl 17 |
. . . 4
  DProd    SubGrp    |
18 | | dprdsplit.i |
. . . . . . 7
     |
19 | | eqid 2622 |
. . . . . . 7
Cntz  Cntz   |
20 | | eqid 2622 |
. . . . . . 7
         |
21 | 2, 18, 6, 19, 20 | dmdprdsplit 18446 |
. . . . . 6
   DProd
   DProd    DProd     DProd   
 Cntz     DProd       DProd
    DProd               |
22 | 1, 21 | mpbid 222 |
. . . . 5
    DProd 
  DProd
   
DProd     Cntz     DProd       DProd     DProd              |
23 | 22 | simp2d 1074 |
. . . 4
  DProd     Cntz     DProd       |
24 | | dprdsplit.s |
. . . . 5
     |
25 | 24, 19 | lsmsubg 18069 |
. . . 4
   DProd    SubGrp   DProd    SubGrp   DProd     Cntz     DProd     
  DProd   
 DProd 
   SubGrp    |
26 | 11, 17, 23, 25 | syl3anc 1326 |
. . 3
   DProd     DProd     SubGrp    |
27 | 6 | eleq2d 2687 |
. . . . . 6
       |
28 | | elun 3753 |
. . . . . 6
  

   |
29 | 27, 28 | syl6bb 276 |
. . . . 5
  
    |
30 | 29 | biimpa 501 |
. . . 4
 
 
   |
31 | | fvres 6207 |
. . . . . . . 8
             |
32 | 31 | adantl 482 |
. . . . . . 7
 
             |
33 | 9 | adantr 481 |
. . . . . . . 8
 
  DProd     |
34 | 2, 7 | fssresd 6071 |
. . . . . . . . . 10
       SubGrp    |
35 | | fdm 6051 |
. . . . . . . . . 10
 
     SubGrp      |
36 | 34, 35 | syl 17 |
. . . . . . . . 9
     |
37 | 36 | adantr 481 |
. . . . . . . 8
 
 
   |
38 | | simpr 477 |
. . . . . . . 8
 
   |
39 | 33, 37, 38 | dprdub 18424 |
. . . . . . 7
 
       
DProd      |
40 | 32, 39 | eqsstr3d 3640 |
. . . . . 6
 
      DProd      |
41 | 24 | lsmub1 18071 |
. . . . . . . 8
   DProd    SubGrp   DProd    SubGrp  
 DProd 
 
  DProd   
 DProd 
     |
42 | 11, 17, 41 | syl2anc 693 |
. . . . . . 7
  DProd      DProd     DProd       |
43 | 42 | adantr 481 |
. . . . . 6
 
  DProd   
  DProd   
 DProd 
     |
44 | 40, 43 | sstrd 3613 |
. . . . 5
 
       DProd     DProd       |
45 | | fvres 6207 |
. . . . . . . 8
             |
46 | 45 | adantl 482 |
. . . . . . 7
 
             |
47 | 15 | adantr 481 |
. . . . . . . 8
 
  DProd     |
48 | 2, 13 | fssresd 6071 |
. . . . . . . . . 10
       SubGrp    |
49 | | fdm 6051 |
. . . . . . . . . 10
 
     SubGrp      |
50 | 48, 49 | syl 17 |
. . . . . . . . 9
     |
51 | 50 | adantr 481 |
. . . . . . . 8
 
 
   |
52 | | simpr 477 |
. . . . . . . 8
 
   |
53 | 47, 51, 52 | dprdub 18424 |
. . . . . . 7
 
       
DProd      |
54 | 46, 53 | eqsstr3d 3640 |
. . . . . 6
 
      DProd      |
55 | 24 | lsmub2 18072 |
. . . . . . . 8
   DProd    SubGrp   DProd    SubGrp  
 DProd 
 
  DProd   
 DProd 
     |
56 | 11, 17, 55 | syl2anc 693 |
. . . . . . 7
  DProd      DProd     DProd       |
57 | 56 | adantr 481 |
. . . . . 6
 
  DProd   
  DProd   
 DProd 
     |
58 | 54, 57 | sstrd 3613 |
. . . . 5
 
       DProd     DProd       |
59 | 44, 58 | jaodan 826 |
. . . 4
 

     
  DProd   
 DProd 
     |
60 | 30, 59 | syldan 487 |
. . 3
 
       DProd     DProd       |
61 | 1, 4, 26, 60 | dprdlub 18425 |
. 2
  DProd    DProd   
 DProd 
     |
62 | 8 | simprd 479 |
. . 3
  DProd    
DProd    |
63 | 14 | simprd 479 |
. . 3
  DProd    
DProd    |
64 | | dprdsubg 18423 |
. . . . 5
  DProd
 DProd  SubGrp    |
65 | 1, 64 | syl 17 |
. . . 4
  DProd  SubGrp    |
66 | 24 | lsmlub 18078 |
. . . 4
   DProd    SubGrp   DProd    SubGrp   DProd  SubGrp      DProd     DProd 
 DProd 
 
 DProd  
  DProd   
 DProd 
    DProd     |
67 | 11, 17, 65, 66 | syl3anc 1326 |
. . 3
    DProd   
 DProd   DProd   
 DProd  
  DProd   
 DProd 
    DProd     |
68 | 62, 63, 67 | mpbi2and 956 |
. 2
   DProd     DProd    
 DProd    |
69 | 61, 68 | eqssd 3620 |
1
  DProd    DProd   
 DProd 
     |