MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltdifltdiv Structured version   Visualization version   Unicode version

Theorem ltdifltdiv 12635
Description: If the dividend of a division is less than the difference between a real number and the divisor, the floor function of the division plus 1 is less than the division of the real number by the divisor. (Contributed by Alexander van der Vekens, 14-Apr-2018.)
Assertion
Ref Expression
ltdifltdiv  |-  ( ( A  e.  RR  /\  B  e.  RR+  /\  C  e.  RR )  ->  ( A  <  ( C  -  B )  ->  (
( |_ `  ( A  /  B ) )  +  1 )  < 
( C  /  B
) ) )

Proof of Theorem ltdifltdiv
StepHypRef Expression
1 refldivcl 12624 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR+ )  -> 
( |_ `  ( A  /  B ) )  e.  RR )
2 peano2re 10209 . . . . . 6  |-  ( ( |_ `  ( A  /  B ) )  e.  RR  ->  (
( |_ `  ( A  /  B ) )  +  1 )  e.  RR )
31, 2syl 17 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR+ )  -> 
( ( |_ `  ( A  /  B
) )  +  1 )  e.  RR )
433adant3 1081 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR+  /\  C  e.  RR )  ->  (
( |_ `  ( A  /  B ) )  +  1 )  e.  RR )
54adantr 481 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR+  /\  C  e.  RR )  /\  A  <  ( C  -  B
) )  ->  (
( |_ `  ( A  /  B ) )  +  1 )  e.  RR )
6 rerpdivcl 11861 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR+ )  -> 
( A  /  B
)  e.  RR )
7 peano2re 10209 . . . . . 6  |-  ( ( A  /  B )  e.  RR  ->  (
( A  /  B
)  +  1 )  e.  RR )
86, 7syl 17 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR+ )  -> 
( ( A  /  B )  +  1 )  e.  RR )
983adant3 1081 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR+  /\  C  e.  RR )  ->  (
( A  /  B
)  +  1 )  e.  RR )
109adantr 481 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR+  /\  C  e.  RR )  /\  A  <  ( C  -  B
) )  ->  (
( A  /  B
)  +  1 )  e.  RR )
11 rerpdivcl 11861 . . . . . 6  |-  ( ( C  e.  RR  /\  B  e.  RR+ )  -> 
( C  /  B
)  e.  RR )
1211ancoms 469 . . . . 5  |-  ( ( B  e.  RR+  /\  C  e.  RR )  ->  ( C  /  B )  e.  RR )
13123adant1 1079 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR+  /\  C  e.  RR )  ->  ( C  /  B )  e.  RR )
1413adantr 481 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR+  /\  C  e.  RR )  /\  A  <  ( C  -  B
) )  ->  ( C  /  B )  e.  RR )
1513adant3 1081 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR+  /\  C  e.  RR )  ->  ( |_ `  ( A  /  B ) )  e.  RR )
1615adantr 481 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR+  /\  C  e.  RR )  /\  A  <  ( C  -  B
) )  ->  ( |_ `  ( A  /  B ) )  e.  RR )
1763adant3 1081 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR+  /\  C  e.  RR )  ->  ( A  /  B )  e.  RR )
1817adantr 481 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR+  /\  C  e.  RR )  /\  A  <  ( C  -  B
) )  ->  ( A  /  B )  e.  RR )
19 1red 10055 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR+  /\  C  e.  RR )  /\  A  <  ( C  -  B
) )  ->  1  e.  RR )
20 3simpa 1058 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR+  /\  C  e.  RR )  ->  ( A  e.  RR  /\  B  e.  RR+ ) )
2120adantr 481 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR+  /\  C  e.  RR )  /\  A  <  ( C  -  B
) )  ->  ( A  e.  RR  /\  B  e.  RR+ ) )
22 fldivle 12632 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR+ )  -> 
( |_ `  ( A  /  B ) )  <_  ( A  /  B ) )
2321, 22syl 17 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR+  /\  C  e.  RR )  /\  A  <  ( C  -  B
) )  ->  ( |_ `  ( A  /  B ) )  <_ 
( A  /  B
) )
2416, 18, 19, 23leadd1dd 10641 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR+  /\  C  e.  RR )  /\  A  <  ( C  -  B
) )  ->  (
( |_ `  ( A  /  B ) )  +  1 )  <_ 
( ( A  /  B )  +  1 ) )
25 rpre 11839 . . . . . . 7  |-  ( B  e.  RR+  ->  B  e.  RR )
26 ltaddsub 10502 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( A  +  B
)  <  C  <->  A  <  ( C  -  B ) ) )
2725, 26syl3an2 1360 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR+  /\  C  e.  RR )  ->  (
( A  +  B
)  <  C  <->  A  <  ( C  -  B ) ) )
2827biimpar 502 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR+  /\  C  e.  RR )  /\  A  <  ( C  -  B
) )  ->  ( A  +  B )  <  C )
29 recn 10026 . . . . . . . . . . 11  |-  ( ( A  /  B )  e.  RR  ->  ( A  /  B )  e.  CC )
306, 29syl 17 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  B  e.  RR+ )  -> 
( A  /  B
)  e.  CC )
31303adant3 1081 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  B  e.  RR+  /\  C  e.  RR )  ->  ( A  /  B )  e.  CC )
32 1cnd 10056 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  B  e.  RR+  /\  C  e.  RR )  ->  1  e.  CC )
33 rpcn 11841 . . . . . . . . . 10  |-  ( B  e.  RR+  ->  B  e.  CC )
34333ad2ant2 1083 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  B  e.  RR+  /\  C  e.  RR )  ->  B  e.  CC )
3531, 32, 34adddird 10065 . . . . . . . 8  |-  ( ( A  e.  RR  /\  B  e.  RR+  /\  C  e.  RR )  ->  (
( ( A  /  B )  +  1 )  x.  B )  =  ( ( ( A  /  B )  x.  B )  +  ( 1  x.  B
) ) )
36 recn 10026 . . . . . . . . . . 11  |-  ( A  e.  RR  ->  A  e.  CC )
37363ad2ant1 1082 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  B  e.  RR+  /\  C  e.  RR )  ->  A  e.  CC )
38 rpne0 11848 . . . . . . . . . . 11  |-  ( B  e.  RR+  ->  B  =/=  0 )
39383ad2ant2 1083 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  B  e.  RR+  /\  C  e.  RR )  ->  B  =/=  0 )
4037, 34, 39divcan1d 10802 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  B  e.  RR+  /\  C  e.  RR )  ->  (
( A  /  B
)  x.  B )  =  A )
4133mulid2d 10058 . . . . . . . . . 10  |-  ( B  e.  RR+  ->  ( 1  x.  B )  =  B )
42413ad2ant2 1083 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  B  e.  RR+  /\  C  e.  RR )  ->  (
1  x.  B )  =  B )
4340, 42oveq12d 6668 . . . . . . . 8  |-  ( ( A  e.  RR  /\  B  e.  RR+  /\  C  e.  RR )  ->  (
( ( A  /  B )  x.  B
)  +  ( 1  x.  B ) )  =  ( A  +  B ) )
4435, 43eqtrd 2656 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR+  /\  C  e.  RR )  ->  (
( ( A  /  B )  +  1 )  x.  B )  =  ( A  +  B ) )
45 recn 10026 . . . . . . . . 9  |-  ( C  e.  RR  ->  C  e.  CC )
46453ad2ant3 1084 . . . . . . . 8  |-  ( ( A  e.  RR  /\  B  e.  RR+  /\  C  e.  RR )  ->  C  e.  CC )
4746, 34, 39divcan1d 10802 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR+  /\  C  e.  RR )  ->  (
( C  /  B
)  x.  B )  =  C )
4844, 47breq12d 4666 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR+  /\  C  e.  RR )  ->  (
( ( ( A  /  B )  +  1 )  x.  B
)  <  ( ( C  /  B )  x.  B )  <->  ( A  +  B )  <  C
) )
4948adantr 481 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR+  /\  C  e.  RR )  /\  A  <  ( C  -  B
) )  ->  (
( ( ( A  /  B )  +  1 )  x.  B
)  <  ( ( C  /  B )  x.  B )  <->  ( A  +  B )  <  C
) )
5028, 49mpbird 247 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR+  /\  C  e.  RR )  /\  A  <  ( C  -  B
) )  ->  (
( ( A  /  B )  +  1 )  x.  B )  <  ( ( C  /  B )  x.  B ) )
5117, 7syl 17 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR+  /\  C  e.  RR )  ->  (
( A  /  B
)  +  1 )  e.  RR )
52 simp2 1062 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR+  /\  C  e.  RR )  ->  B  e.  RR+ )
5351, 13, 52ltmul1d 11913 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR+  /\  C  e.  RR )  ->  (
( ( A  /  B )  +  1 )  <  ( C  /  B )  <->  ( (
( A  /  B
)  +  1 )  x.  B )  < 
( ( C  /  B )  x.  B
) ) )
5453adantr 481 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR+  /\  C  e.  RR )  /\  A  <  ( C  -  B
) )  ->  (
( ( A  /  B )  +  1 )  <  ( C  /  B )  <->  ( (
( A  /  B
)  +  1 )  x.  B )  < 
( ( C  /  B )  x.  B
) ) )
5550, 54mpbird 247 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR+  /\  C  e.  RR )  /\  A  <  ( C  -  B
) )  ->  (
( A  /  B
)  +  1 )  <  ( C  /  B ) )
565, 10, 14, 24, 55lelttrd 10195 . 2  |-  ( ( ( A  e.  RR  /\  B  e.  RR+  /\  C  e.  RR )  /\  A  <  ( C  -  B
) )  ->  (
( |_ `  ( A  /  B ) )  +  1 )  < 
( C  /  B
) )
5756ex 450 1  |-  ( ( A  e.  RR  /\  B  e.  RR+  /\  C  e.  RR )  ->  ( A  <  ( C  -  B )  ->  (
( |_ `  ( A  /  B ) )  +  1 )  < 
( C  /  B
) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   class class class wbr 4653   ` cfv 5888  (class class class)co 6650   CCcc 9934   RRcr 9935   0cc0 9936   1c1 9937    + caddc 9939    x. cmul 9941    < clt 10074    <_ cle 10075    - cmin 10266    / cdiv 10684   RR+crp 11832   |_cfl 12591
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-fl 12593
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator