HomeHome Metamath Proof Explorer
Theorem List (p. 127 of 426)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-27775)
  Hilbert Space Explorer  Hilbert Space Explorer
(27776-29300)
  Users' Mathboxes  Users' Mathboxes
(29301-42551)
 

Theorem List for Metamath Proof Explorer - 12601-12700   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremflltp1 12601 A basic property of the floor (greatest integer) function. (Contributed by NM, 24-Feb-2005.)
 |-  ( A  e.  RR  ->  A  <  ( ( |_ `  A )  +  1 ) )
 
Theoremfllep1 12602 A basic property of the floor (greatest integer) function. (Contributed by Mario Carneiro, 21-May-2016.)
 |-  ( A  e.  RR  ->  A  <_  ( ( |_ `  A )  +  1 ) )
 
Theoremfraclt1 12603 The fractional part of a real number is less than one. (Contributed by NM, 15-Jul-2008.)
 |-  ( A  e.  RR  ->  ( A  -  ( |_ `  A ) )  <  1 )
 
Theoremfracle1 12604 The fractional part of a real number is less than or equal to one. (Contributed by Mario Carneiro, 21-May-2016.)
 |-  ( A  e.  RR  ->  ( A  -  ( |_ `  A ) ) 
 <_  1 )
 
Theoremfracge0 12605 The fractional part of a real number is nonnegative. (Contributed by NM, 17-Jul-2008.)
 |-  ( A  e.  RR  ->  0  <_  ( A  -  ( |_ `  A ) ) )
 
Theoremflge 12606 The floor function value is the greatest integer less than or equal to its argument. (Contributed by NM, 15-Nov-2004.) (Proof shortened by Fan Zheng, 14-Jul-2016.)
 |-  ( ( A  e.  RR  /\  B  e.  ZZ )  ->  ( B  <_  A  <->  B  <_  ( |_ `  A ) ) )
 
Theoremfllt 12607 The floor function value is less than the next integer. (Contributed by NM, 24-Feb-2005.)
 |-  ( ( A  e.  RR  /\  B  e.  ZZ )  ->  ( A  <  B  <-> 
 ( |_ `  A )  <  B ) )
 
Theoremflflp1 12608 Move floor function between strict and non-strict inequality. (Contributed by Brendan Leahy, 25-Oct-2017.)
 |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( |_ `  A )  <_  B  <->  A  <  ( ( |_ `  B )  +  1 ) ) )
 
Theoremflid 12609 An integer is its own floor. (Contributed by NM, 15-Nov-2004.)
 |-  ( A  e.  ZZ  ->  ( |_ `  A )  =  A )
 
Theoremflidm 12610 The floor function is idempotent. (Contributed by NM, 17-Aug-2008.)
 |-  ( A  e.  RR  ->  ( |_ `  ( |_ `  A ) )  =  ( |_ `  A ) )
 
Theoremflidz 12611 A real number equals its floor iff it is an integer. (Contributed by NM, 11-Nov-2008.)
 |-  ( A  e.  RR  ->  ( ( |_ `  A )  =  A  <->  A  e.  ZZ ) )
 
Theoremflltnz 12612 If A is not an integer, then the floor of A is less than A. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
 |-  ( ( A  e.  RR  /\  -.  A  e.  ZZ )  ->  ( |_ `  A )  <  A )
 
Theoremflwordi 12613 Ordering relationship for the greatest integer function. (Contributed by NM, 31-Dec-2005.) (Proof shortened by Fan Zheng, 14-Jul-2016.)
 |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <_  B )  ->  ( |_ `  A )  <_  ( |_ `  B ) )
 
Theoremflword2 12614 Ordering relationship for the greatest integer function. (Contributed by Mario Carneiro, 7-Jun-2016.)
 |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <_  B )  ->  ( |_ `  B )  e.  ( ZZ>= `  ( |_ `  A ) ) )
 
Theoremflval2 12615* An alternate way to define the floor (greatest integer) function. (Contributed by NM, 16-Nov-2004.)
 |-  ( A  e.  RR  ->  ( |_ `  A )  =  ( iota_ x  e. 
 ZZ  ( x  <_  A  /\  A. y  e. 
 ZZ  ( y  <_  A  ->  y  <_  x ) ) ) )
 
Theoremflval3 12616* An alternate way to define the floor (greatest integer) function, as the supremum of all integers less than or equal to its argument. (Contributed by NM, 15-Nov-2004.) (Proof shortened by Mario Carneiro, 6-Sep-2014.)
 |-  ( A  e.  RR  ->  ( |_ `  A )  =  sup ( { x  e.  ZZ  |  x  <_  A } ,  RR ,  <  ) )
 
Theoremflbi 12617 A condition equivalent to floor. (Contributed by NM, 11-Mar-2005.) (Revised by Mario Carneiro, 2-Nov-2013.)
 |-  ( ( A  e.  RR  /\  B  e.  ZZ )  ->  ( ( |_ `  A )  =  B  <->  ( B  <_  A  /\  A  <  ( B  +  1 ) ) ) )
 
Theoremflbi2 12618 A condition equivalent to floor. (Contributed by NM, 15-Aug-2008.)
 |-  ( ( N  e.  ZZ  /\  F  e.  RR )  ->  ( ( |_ `  ( N  +  F ) )  =  N  <->  ( 0  <_  F  /\  F  <  1 ) ) )
 
Theoremadddivflid 12619 The floor of a sum of an integer and a fraction is equal to the integer iff the denominator of the fraction is less than the numerator. (Contributed by AV, 14-Jul-2021.)
 |-  ( ( A  e.  ZZ  /\  B  e.  NN0  /\  C  e.  NN )  ->  ( B  <  C  <->  ( |_ `  ( A  +  ( B  /  C ) ) )  =  A ) )
 
Theoremico01fl0 12620 The floor of a real number in  [ 0 ,  1 ) is 0. Remark: may shorten the proof of modid 12695 or a version of it where the antecedent is membership in an interval. (Contributed by BJ, 29-Jun-2019.)
 |-  ( A  e.  (
 0 [,) 1 )  ->  ( |_ `  A )  =  0 )
 
Theoremflge0nn0 12621 The floor of a number greater than or equal to 0 is a nonnegative integer. (Contributed by NM, 26-Apr-2005.)
 |-  ( ( A  e.  RR  /\  0  <_  A )  ->  ( |_ `  A )  e.  NN0 )
 
Theoremflge1nn 12622 The floor of a number greater than or equal to 1 is a positive integer. (Contributed by NM, 26-Apr-2005.)
 |-  ( ( A  e.  RR  /\  1  <_  A )  ->  ( |_ `  A )  e.  NN )
 
Theoremfldivnn0 12623 The floor function of a division of a nonnegative integer by a positive integer is a nonnegative integer. (Contributed by Alexander van der Vekens, 14-Apr-2018.)
 |-  ( ( K  e.  NN0  /\  L  e.  NN )  ->  ( |_ `  ( K  /  L ) )  e.  NN0 )
 
Theoremrefldivcl 12624 The floor function of a division of a real number by a positive real number is a real number. (Contributed by Alexander van der Vekens, 14-Apr-2018.)
 |-  ( ( K  e.  RR  /\  L  e.  RR+ )  ->  ( |_ `  ( K  /  L ) )  e.  RR )
 
Theoremdivfl0 12625 The floor of a fraction is 0 iff the denominator is less than the numerator. (Contributed by AV, 8-Jul-2021.)
 |-  ( ( A  e.  NN0  /\  B  e.  NN )  ->  ( A  <  B  <->  ( |_ `  ( A 
 /  B ) )  =  0 ) )
 
Theoremfladdz 12626 An integer can be moved in and out of the floor of a sum. (Contributed by NM, 27-Apr-2005.) (Proof shortened by Fan Zheng, 16-Jun-2016.)
 |-  ( ( A  e.  RR  /\  N  e.  ZZ )  ->  ( |_ `  ( A  +  N )
 )  =  ( ( |_ `  A )  +  N ) )
 
Theoremflzadd 12627 An integer can be moved in and out of the floor of a sum. (Contributed by NM, 2-Jan-2009.)
 |-  ( ( N  e.  ZZ  /\  A  e.  RR )  ->  ( |_ `  ( N  +  A )
 )  =  ( N  +  ( |_ `  A ) ) )
 
Theoremflmulnn0 12628 Move a nonnegative integer in and out of a floor. (Contributed by NM, 2-Jan-2009.) (Proof shortened by Fan Zheng, 7-Jun-2016.)
 |-  ( ( N  e.  NN0  /\  A  e.  RR )  ->  ( N  x.  ( |_ `  A ) ) 
 <_  ( |_ `  ( N  x.  A ) ) )
 
Theorembtwnzge0 12629 A real bounded between an integer and its successor is nonnegative iff the integer is nonnegative. Second half of Lemma 13-4.1 of [Gleason] p. 217. (For the first half see rebtwnz 11787.) (Contributed by NM, 12-Mar-2005.)
 |-  ( ( ( A  e.  RR  /\  N  e.  ZZ )  /\  ( N  <_  A  /\  A  <  ( N  +  1 ) ) )  ->  ( 0  <_  A  <->  0 
 <_  N ) )
 
Theorem2tnp1ge0ge0 12630 Two times an integer plus one is not negative iff the integer is not negative. (Contributed by AV, 19-Jun-2021.)
 |-  ( N  e.  ZZ  ->  ( 0  <_  (
 ( 2  x.  N )  +  1 )  <->  0 
 <_  N ) )
 
Theoremflhalf 12631 Ordering relation for the floor of half of an integer. (Contributed by NM, 1-Jan-2006.) (Proof shortened by Mario Carneiro, 7-Jun-2016.)
 |-  ( N  e.  ZZ  ->  N  <_  ( 2  x.  ( |_ `  (
 ( N  +  1 )  /  2 ) ) ) )
 
Theoremfldivle 12632 The floor function of a division of a real number by a positive real number is less than or equal to the division. (Contributed by Alexander van der Vekens, 14-Apr-2018.)
 |-  ( ( K  e.  RR  /\  L  e.  RR+ )  ->  ( |_ `  ( K  /  L ) ) 
 <_  ( K  /  L ) )
 
Theoremfldivnn0le 12633 The floor function of a division of a nonnegative integer by a positive integer is less than or equal to the division. (Contributed by Alexander van der Vekens, 14-Apr-2018.)
 |-  ( ( K  e.  NN0  /\  L  e.  NN )  ->  ( |_ `  ( K  /  L ) ) 
 <_  ( K  /  L ) )
 
Theoremflltdivnn0lt 12634 The floor function of a division of a nonnegative integer by a positive integer is less than the division of a greater dividend by the same positive integer. (Contributed by Alexander van der Vekens, 14-Apr-2018.)
 |-  ( ( K  e.  NN0  /\  N  e.  NN0  /\  L  e.  NN )  ->  ( K  <  N  ->  ( |_ `  ( K  /  L ) )  < 
 ( N  /  L ) ) )
 
Theoremltdifltdiv 12635 If the dividend of a division is less than the difference between a real number and the divisor, the floor function of the division plus 1 is less than the division of the real number by the divisor. (Contributed by Alexander van der Vekens, 14-Apr-2018.)
 |-  ( ( A  e.  RR  /\  B  e.  RR+  /\  C  e.  RR )  ->  ( A  <  ( C  -  B )  ->  ( ( |_ `  ( A  /  B ) )  +  1 )  < 
 ( C  /  B ) ) )
 
Theoremfldiv4p1lem1div2 12636 The floor of an integer equal to 3 or greater than 4, increased by 1, is less than or equal to the half of the integer minus 1. (Contributed by AV, 8-Jul-2021.)
 |-  ( ( N  =  3  \/  N  e.  ( ZZ>=
 `  5 ) ) 
 ->  ( ( |_ `  ( N  /  4 ) )  +  1 )  <_  ( ( N  -  1 )  /  2
 ) )
 
Theoremfldiv4lem1div2uz2 12637 The floor of an integer greater than 1, divided by 4 is less than or equal to the half of the integer minus 1. (Contributed by AV, 5-Jul-2021.)
 |-  ( N  e.  ( ZZ>=
 `  2 )  ->  ( |_ `  ( N 
 /  4 ) ) 
 <_  ( ( N  -  1 )  /  2
 ) )
 
Theoremfldiv4lem1div2 12638 The floor of a positive integer divided by 4 is less than or equal to the half of the integer minus 1. (Contributed by AV, 9-Jul-2021.)
 |-  ( N  e.  NN  ->  ( |_ `  ( N  /  4 ) ) 
 <_  ( ( N  -  1 )  /  2
 ) )
 
Theoremceilval 12639 The value of the ceiling function. (Contributed by David A. Wheeler, 19-May-2015.)
 |-  ( A  e.  RR  ->  ( `  A )  =  -u ( |_ `  -u A ) )
 
Theoremdfceil2 12640* Alternative definition of the ceiling function using restricted iota. (Contributed by AV, 1-Dec-2018.)
 |- =  ( x  e.  RR  |->  ( iota_ y  e.  ZZ  ( x  <_  y  /\  y  <  ( x  +  1 ) ) ) )
 
Theoremceilval2 12641* The value of the ceiling function using restricted iota. (Contributed by AV, 1-Dec-2018.)
 |-  ( A  e.  RR  ->  ( `  A )  =  ( iota_ y  e.  ZZ  ( A  <_  y  /\  y  <  ( A  +  1 ) ) ) )
 
Theoremceicl 12642 The ceiling function returns an integer (closure law). (Contributed by Jeff Hankins, 10-Jun-2007.)
 |-  ( A  e.  RR  -> 
 -u ( |_ `  -u A )  e.  ZZ )
 
Theoremceilcl 12643 Closure of the ceiling function. (Contributed by David A. Wheeler, 19-May-2015.)
 |-  ( A  e.  RR  ->  ( `  A )  e.  ZZ )
 
Theoremceige 12644 The ceiling of a real number is greater than or equal to that number. (Contributed by Jeff Hankins, 10-Jun-2007.)
 |-  ( A  e.  RR  ->  A  <_  -u ( |_ `  -u A ) )
 
Theoremceilge 12645 The ceiling of a real number is greater than or equal to that number. (Contributed by AV, 30-Nov-2018.)
 |-  ( A  e.  RR  ->  A  <_  ( `  A ) )
 
Theoremceim1l 12646 One less than the ceiling of a real number is strictly less than that number. (Contributed by Jeff Hankins, 10-Jun-2007.)
 |-  ( A  e.  RR  ->  ( -u ( |_ `  -u A )  -  1 )  <  A )
 
Theoremceilm1lt 12647 One less than the ceiling of a real number is strictly less than that number. (Contributed by AV, 30-Nov-2018.)
 |-  ( A  e.  RR  ->  ( ( `  A )  -  1 )  <  A )
 
Theoremceile 12648 The ceiling of a real number is the smallest integer greater than or equal to it. (Contributed by Jeff Hankins, 10-Jun-2007.)
 |-  ( ( A  e.  RR  /\  B  e.  ZZ  /\  A  <_  B )  -> 
 -u ( |_ `  -u A )  <_  B )
 
Theoremceille 12649 The ceiling of a real number is the smallest integer greater than or equal to it. (Contributed by AV, 30-Nov-2018.)
 |-  ( ( A  e.  RR  /\  B  e.  ZZ  /\  A  <_  B )  ->  ( `  A )  <_  B )
 
Theoremceilid 12650 An integer is its own ceiling. (Contributed by AV, 30-Nov-2018.)
 |-  ( A  e.  ZZ  ->  ( `  A )  =  A )
 
Theoremceilidz 12651 A real number equals its ceiling iff it is an integer. (Contributed by AV, 30-Nov-2018.)
 |-  ( A  e.  RR  ->  ( A  e.  ZZ  <->  ( `  A )  =  A ) )
 
Theoremflleceil 12652 The floor of a real number is less than or equal to its ceiling. (Contributed by AV, 30-Nov-2018.)
 |-  ( A  e.  RR  ->  ( |_ `  A )  <_  ( `  A )
 )
 
Theoremfleqceilz 12653 A real number is an integer iff its floor equals its ceiling. (Contributed by AV, 30-Nov-2018.)
 |-  ( A  e.  RR  ->  ( A  e.  ZZ  <->  ( |_ `  A )  =  ( `  A )
 ) )
 
Theoremquoremz 12654 Quotient and remainder of an integer divided by a positive integer. TODO - is this really needed for anything? Should we use  mod to simplify it? Remark (AV): This is a special case of divalg 15126. (Contributed by NM, 14-Aug-2008.)
 |-  Q  =  ( |_ `  ( A  /  B ) )   &    |-  R  =  ( A  -  ( B  x.  Q ) )   =>    |-  ( ( A  e.  ZZ  /\  B  e.  NN )  ->  ( ( Q  e.  ZZ  /\  R  e.  NN0 )  /\  ( R  <  B  /\  A  =  ( ( B  x.  Q )  +  R ) ) ) )
 
Theoremquoremnn0 12655 Quotient and remainder of a nonnegative integer divided by a positive integer. (Contributed by NM, 14-Aug-2008.)
 |-  Q  =  ( |_ `  ( A  /  B ) )   &    |-  R  =  ( A  -  ( B  x.  Q ) )   =>    |-  ( ( A  e.  NN0  /\  B  e.  NN )  ->  ( ( Q  e.  NN0  /\  R  e.  NN0 )  /\  ( R  <  B  /\  A  =  ( ( B  x.  Q )  +  R ) ) ) )
 
Theoremquoremnn0ALT 12656 Alternate proof of quoremnn0 12655 not using quoremz 12654. TODO - Keep either quoremnn0ALT 12656 (if we don't keep quoremz 12654) or quoremnn0 12655. (Contributed by NM, 14-Aug-2008.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  Q  =  ( |_ `  ( A  /  B ) )   &    |-  R  =  ( A  -  ( B  x.  Q ) )   =>    |-  ( ( A  e.  NN0  /\  B  e.  NN )  ->  ( ( Q  e.  NN0  /\  R  e.  NN0 )  /\  ( R  <  B  /\  A  =  ( ( B  x.  Q )  +  R ) ) ) )
 
Theoremintfrac2 12657 Decompose a real into integer and fractional parts. TODO - should we replace this with intfrac 12685? (Contributed by NM, 16-Aug-2008.)
 |-  Z  =  ( |_ `  A )   &    |-  F  =  ( A  -  Z )   =>    |-  ( A  e.  RR  ->  ( 0  <_  F  /\  F  <  1  /\  A  =  ( Z  +  F ) ) )
 
Theoremintfracq 12658 Decompose a rational number, expressed as a ratio, into integer and fractional parts. The fractional part has a tighter bound than that of intfrac2 12657. (Contributed by NM, 16-Aug-2008.)
 |-  Z  =  ( |_ `  ( M  /  N ) )   &    |-  F  =  ( ( M  /  N )  -  Z )   =>    |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  (
 0  <_  F  /\  F  <_  ( ( N  -  1 )  /  N )  /\  ( M 
 /  N )  =  ( Z  +  F ) ) )
 
Theoremfldiv 12659 Cancellation of the embedded floor of a real divided by an integer. (Contributed by NM, 16-Aug-2008.)
 |-  ( ( A  e.  RR  /\  N  e.  NN )  ->  ( |_ `  (
 ( |_ `  A )  /  N ) )  =  ( |_ `  ( A  /  N ) ) )
 
Theoremfldiv2 12660 Cancellation of an embedded floor of a ratio. Generalization of Equation 2.4 in [CormenLeisersonRivest] p. 33 (where  A must be an integer). (Contributed by NM, 9-Nov-2008.)
 |-  ( ( A  e.  RR  /\  M  e.  NN  /\  N  e.  NN )  ->  ( |_ `  (
 ( |_ `  ( A  /  M ) ) 
 /  N ) )  =  ( |_ `  ( A  /  ( M  x.  N ) ) ) )
 
Theoremfznnfl 12661 Finite set of sequential integers starting at 1 and ending at a real number. (Contributed by Mario Carneiro, 3-May-2016.)
 |-  ( N  e.  RR  ->  ( K  e.  (
 1 ... ( |_ `  N ) )  <->  ( K  e.  NN  /\  K  <_  N ) ) )
 
Theoremuzsup 12662 An upper set of integers is unbounded above. (Contributed by Mario Carneiro, 7-May-2016.)
 |-  Z  =  ( ZZ>= `  M )   =>    |-  ( M  e.  ZZ  ->  sup ( Z ,  RR*
 ,  <  )  = +oo )
 
Theoremioopnfsup 12663 An upper set of reals is unbounded above. (Contributed by Mario Carneiro, 7-May-2016.)
 |-  ( ( A  e.  RR*  /\  A  =/= +oo )  ->  sup ( ( A (,) +oo ) ,  RR* ,  <  )  = +oo )
 
Theoremicopnfsup 12664 An upper set of reals is unbounded above. (Contributed by Mario Carneiro, 7-May-2016.)
 |-  ( ( A  e.  RR*  /\  A  =/= +oo )  ->  sup ( ( A [,) +oo ) ,  RR* ,  <  )  = +oo )
 
Theoremrpsup 12665 The positive reals are unbounded above. (Contributed by Mario Carneiro, 7-May-2016.)
 |- 
 sup ( RR+ ,  RR* ,  <  )  = +oo
 
Theoremresup 12666 The real numbers are unbounded above. (Contributed by Mario Carneiro, 7-May-2016.)
 |- 
 sup ( RR ,  RR*
 ,  <  )  = +oo
 
Theoremxrsup 12667 The extended real numbers are unbounded above. (Contributed by Mario Carneiro, 7-May-2016.)
 |- 
 sup ( RR* ,  RR* ,  <  )  = +oo
 
5.6.2  The modulo (remainder) operation
 
Syntaxcmo 12668 Extend class notation with the modulo operation.
 class  mod
 
Definitiondf-mod 12669* Define the modulo (remainder) operation. See modval 12670 for its value. For example,  ( 5  mod  3 )  =  2 and  ( -u 7  mod  2 )  =  1 (ex-mod 27306). (Contributed by NM, 10-Nov-2008.)
 |- 
 mod  =  ( x  e.  RR ,  y  e.  RR+  |->  ( x  -  ( y  x.  ( |_ `  ( x  /  y ) ) ) ) )
 
Theoremmodval 12670 The value of the modulo operation. The modulo congruence notation of number theory,  J  ==  K (modulo  N), can be expressed in our notation as  ( J  mod  N )  =  ( K  mod  N ). Definition 1 in Knuth, The Art of Computer Programming, Vol. I (1972), p. 38. Knuth uses "mod" for the operation and "modulo" for the congruence. Unlike Knuth, we restrict the second argument to positive reals to simplify certain theorems. (This also gives us future flexibility to extend it to any one of several different conventions for a zero or negative second argument, should there be an advantage in doing so.) (Contributed by NM, 10-Nov-2008.) (Revised by Mario Carneiro, 3-Nov-2013.)
 |-  ( ( A  e.  RR  /\  B  e.  RR+ )  ->  ( A  mod  B )  =  ( A  -  ( B  x.  ( |_ `  ( A 
 /  B ) ) ) ) )
 
Theoremmodvalr 12671 The value of the modulo operation (multiplication in reversed order). (Contributed by Alexander van der Vekens, 14-Apr-2018.)
 |-  ( ( A  e.  RR  /\  B  e.  RR+ )  ->  ( A  mod  B )  =  ( A  -  ( ( |_ `  ( A  /  B ) )  x.  B ) ) )
 
Theoremmodcl 12672 Closure law for the modulo operation. (Contributed by NM, 10-Nov-2008.)
 |-  ( ( A  e.  RR  /\  B  e.  RR+ )  ->  ( A  mod  B )  e.  RR )
 
Theoremflpmodeq 12673 Partition of a division into its integer part and the remainder. (Contributed by Alexander van der Vekens, 14-Apr-2018.)
 |-  ( ( A  e.  RR  /\  B  e.  RR+ )  ->  ( ( ( |_ `  ( A 
 /  B ) )  x.  B )  +  ( A  mod  B ) )  =  A )
 
Theoremmodcld 12674 Closure law for the modulo operation. (Contributed by Mario Carneiro, 28-May-2016.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR+ )   =>    |-  ( ph  ->  ( A  mod  B )  e. 
 RR )
 
Theoremmod0 12675  A  mod  B is zero iff  A is evenly divisible by  B. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Fan Zheng, 7-Jun-2016.)
 |-  ( ( A  e.  RR  /\  B  e.  RR+ )  ->  ( ( A 
 mod  B )  =  0  <-> 
 ( A  /  B )  e.  ZZ )
 )
 
Theoremmulmod0 12676 The product of an integer and a positive real number is 0 modulo the positive real number. (Contributed by Alexander van der Vekens, 17-May-2018.) (Revised by AV, 5-Jul-2020.)
 |-  ( ( A  e.  ZZ  /\  M  e.  RR+ )  ->  ( ( A  x.  M )  mod  M )  =  0 )
 
Theoremnegmod0 12677  A is divisible by  B iff its negative is. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Fan Zheng, 7-Jun-2016.)
 |-  ( ( A  e.  RR  /\  B  e.  RR+ )  ->  ( ( A 
 mod  B )  =  0  <-> 
 ( -u A  mod  B )  =  0 )
 )
 
Theoremmodge0 12678 The modulo operation is nonnegative. (Contributed by NM, 10-Nov-2008.)
 |-  ( ( A  e.  RR  /\  B  e.  RR+ )  ->  0  <_  ( A  mod  B ) )
 
Theoremmodlt 12679 The modulo operation is less than its second argument. (Contributed by NM, 10-Nov-2008.)
 |-  ( ( A  e.  RR  /\  B  e.  RR+ )  ->  ( A  mod  B )  <  B )
 
Theoremmodelico 12680 Modular reduction produces a half-open interval. (Contributed by Stefan O'Rear, 12-Sep-2014.)
 |-  ( ( A  e.  RR  /\  B  e.  RR+ )  ->  ( A  mod  B )  e.  ( 0 [,) B ) )
 
Theoremmoddiffl 12681 The modulo operation differs from 
A by an integer multiple of  B. (Contributed by Mario Carneiro, 6-Sep-2016.)
 |-  ( ( A  e.  RR  /\  B  e.  RR+ )  ->  ( ( A  -  ( A  mod  B ) )  /  B )  =  ( |_ `  ( A  /  B ) ) )
 
Theoremmoddifz 12682 The modulo operation differs from 
A by an integer multiple of  B. (Contributed by Mario Carneiro, 15-Jul-2014.)
 |-  ( ( A  e.  RR  /\  B  e.  RR+ )  ->  ( ( A  -  ( A  mod  B ) )  /  B )  e.  ZZ )
 
Theoremmodfrac 12683 The fractional part of a number is the number modulo 1. (Contributed by NM, 11-Nov-2008.)
 |-  ( A  e.  RR  ->  ( A  mod  1
 )  =  ( A  -  ( |_ `  A ) ) )
 
Theoremflmod 12684 The floor function expressed in terms of the modulo operation. (Contributed by NM, 11-Nov-2008.)
 |-  ( A  e.  RR  ->  ( |_ `  A )  =  ( A  -  ( A  mod  1
 ) ) )
 
Theoremintfrac 12685 Break a number into its integer part and its fractional part. (Contributed by NM, 31-Dec-2008.)
 |-  ( A  e.  RR  ->  A  =  ( ( |_ `  A )  +  ( A  mod  1 ) ) )
 
Theoremzmod10 12686 An integer modulo 1 is 0. (Contributed by Paul Chapman, 22-Jun-2011.)
 |-  ( N  e.  ZZ  ->  ( N  mod  1
 )  =  0 )
 
Theoremzmod1congr 12687 Two arbitrary integers are congruent modulo 1, see example 4 in [ApostolNT] p. 107. (Contributed by AV, 21-Jul-2021.)
 |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( A  mod  1 )  =  ( B  mod  1 ) )
 
Theoremmodmulnn 12688 Move a positive integer in and out of a floor in the first argument of a modulo operation. (Contributed by NM, 2-Jan-2009.)
 |-  ( ( N  e.  NN  /\  A  e.  RR  /\  M  e.  NN )  ->  ( ( N  x.  ( |_ `  A ) )  mod  ( N  x.  M ) ) 
 <_  ( ( |_ `  ( N  x.  A ) ) 
 mod  ( N  x.  M ) ) )
 
Theoremmodvalp1 12689 The value of the modulo operation (expressed with sum of denominator and nominator). (Contributed by Alexander van der Vekens, 14-Apr-2018.)
 |-  ( ( A  e.  RR  /\  B  e.  RR+ )  ->  ( ( A  +  B )  -  ( ( ( |_ `  ( A  /  B ) )  +  1
 )  x.  B ) )  =  ( A 
 mod  B ) )
 
Theoremzmodcl 12690 Closure law for the modulo operation restricted to integers. (Contributed by NM, 27-Nov-2008.)
 |-  ( ( A  e.  ZZ  /\  B  e.  NN )  ->  ( A  mod  B )  e.  NN0 )
 
Theoremzmodcld 12691 Closure law for the modulo operation restricted to integers. (Contributed by Mario Carneiro, 28-May-2016.)
 |-  ( ph  ->  A  e.  ZZ )   &    |-  ( ph  ->  B  e.  NN )   =>    |-  ( ph  ->  ( A  mod  B )  e.  NN0 )
 
Theoremzmodfz 12692 An integer mod  B lies in the first  B nonnegative integers. (Contributed by Jeff Madsen, 17-Jun-2010.)
 |-  ( ( A  e.  ZZ  /\  B  e.  NN )  ->  ( A  mod  B )  e.  ( 0
 ... ( B  -  1 ) ) )
 
Theoremzmodfzo 12693 An integer mod  B lies in the first  B nonnegative integers. (Contributed by Stefan O'Rear, 6-Sep-2015.)
 |-  ( ( A  e.  ZZ  /\  B  e.  NN )  ->  ( A  mod  B )  e.  ( 0..^ B ) )
 
Theoremzmodfzp1 12694 An integer mod  B lies in the first  B  +  1 nonnegative integers. (Contributed by AV, 27-Oct-2018.)
 |-  ( ( A  e.  ZZ  /\  B  e.  NN )  ->  ( A  mod  B )  e.  ( 0
 ... B ) )
 
Theoremmodid 12695 Identity law for modulo. (Contributed by NM, 29-Dec-2008.)
 |-  ( ( ( A  e.  RR  /\  B  e.  RR+ )  /\  (
 0  <_  A  /\  A  <  B ) ) 
 ->  ( A  mod  B )  =  A )
 
Theoremmodid0 12696 A positive real number modulo itself is 0. (Contributed by Alexander van der Vekens, 15-May-2018.)
 |-  ( N  e.  RR+  ->  ( N  mod  N )  =  0 )
 
Theoremmodid2 12697 Identity law for modulo. (Contributed by NM, 29-Dec-2008.)
 |-  ( ( A  e.  RR  /\  B  e.  RR+ )  ->  ( ( A 
 mod  B )  =  A  <->  ( 0  <_  A  /\  A  <  B ) ) )
 
Theoremzmodid2 12698 Identity law for modulo restricted to integers. (Contributed by Paul Chapman, 22-Jun-2011.)
 |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( ( M 
 mod  N )  =  M  <->  M  e.  ( 0 ... ( N  -  1
 ) ) ) )
 
Theoremzmodidfzo 12699 Identity law for modulo restricted to integers. (Contributed by AV, 27-Oct-2018.)
 |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( ( M 
 mod  N )  =  M  <->  M  e.  ( 0..^ N ) ) )
 
Theoremzmodidfzoimp 12700 Identity law for modulo restricted to integers. (Contributed by AV, 27-Oct-2018.)
 |-  ( M  e.  (
 0..^ N )  ->  ( M  mod  N )  =  M )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42500 426 42501-42551
  Copyright terms: Public domain < Previous  Next >